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Abstract: We introduce in this paper a new family of uniformly convex functions related to the
Deniz–Özkan differential operator. By using this family of functions with a negative coefficient, we
obtain coefficient estimates, the radius of starlikeness, convexity, and close-to-convexity, and we find
their extreme points. Moreover, the neighborhood, partial sums, and integral means of functions for
this new family are studied.
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1. Introduction

Let A be the class of analytic functions in the open unit disc U = {t : |t| < 1} given by

h(t) = t + ∑
s≥2

asts. (1)

Let S be the subclass of A consisting of functions that are univalent in U and T be the
subclass of functions A given by

h(t) = t− ∑
s≥2

asts, as ≥ 0. (2)

The function h ∈ A is said to be in β− SP(η), the class of β−parabolic starlike functions
of the order η, 0 ≤ η < 1, if h is satisfies the condition

Re
{

th′(t)
h(t)

}
> β

∣∣∣∣ th′(t)h(t)
− 1
∣∣∣∣+ η, β ≥ 0. (3)

By substituting th′ for h in (3), we are able to derive the condition

Re
{

1 +
th′′(t)
h′(t)

}
> β

∣∣∣∣ th′′(t)h′(t)

∣∣∣∣+ η, β ≥ 0 (4)

required for the function h to be in the subclass β− UCV(η) of the β−uniformly convex
functions of order η.

These classes were defined by Bharati et al. [1] and generalized by other classes. For
example, the class β−UCV(0) = β−UCV is known as a β−uniformly convex function [2].

Indeed, it follows from (3) and (4) that

h ∈ β−UCV(η)⇔ th′(t) ∈ β− SP(η).
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Specifically, the classes 1− UCV(0) = UCV and 1− SP(0) = SP were defined by
Goodman and Rønning [3,4], respectively.

For a function h in A, Deniz and Özkan [5] (see also [6]) introduced the following
differential operator Dm

λ as follows:

Definition 1. If h ∈ A, for the parameters λ ≥ 0 and m ∈ N0 = N∪ {0} the differential operator
Dm

λ on A is defined by

D0
λh(t) = h(t)

D1
λh(t) = λt3h′′′(t) + (2λ + 1)t2h′′(t) + th′(t)

Dm
λ h(t) = D(Dm−1

λ h(t))

for t ∈ U .

For the function h in A, by the definition of the operator Dm
λ , we see that

Dm
λ h(t) = t + ∑

s≥2
s2m(λ(s− 1) + 1)masts. (5)

Moreover, Dm
λ h(t) ∈ A.

For h ∈ A given by (1) and g(t) ∈ A of the form g(t) = t + ∑∞
s=2 bsts, the Hadamard

product (or the convolution) of h and g is defined by

(h ∗ g)(t) = t + ∑
s≥2

asbsts = (g ∗ h)(t), t ∈ U .

Sălăgean derivative operator Sm [7] is one of the special cases of the operatorDm
λ as follows:

Dm
0 h(t) = Smh(t) ∗ Smh(t) = S2mh(t)

and
Dm

1 h(t) = Smh(t) ∗ Smh(t) ∗ Smh(t) = S3mh(t).

Let Ω be the class of functions w(t) analytic in U such that w(0) = 0, |w(t)| < 1. If
there is an analytical function w(t) ∈ Ω such that h(t) = g(w(t)), then h(t) is said to be
subordinate to g(t) in A. The sign for this subordination is h(t) ≺ g(t).

Lemma 1 ([8]). Let ξ ∈ C. Then,

Reξ ≥ ρ, if and only if |ξ − (1 + ρ)| ≤ |ξ + (1− ρ)|.

Lemma 2 ([8]). Let ξ ∈ C, and ρ, γ are real numbers. Then,

Reξ > ρ|ξ − 1|+ γ if and only if Re
{

ξ(1 + ρeiθ)− ρeiθ
}
> γ.

Definition 2. For 0 ≤ η < 1, 0 ≤ δ ≤ 1, β ≥ 0, m ∈ N0 = N ∪ {0}, and λ ≥ 0, we let
β− UCVm

λ (η, δ) be the subclass of A consisting of functions of the form (1) and satisfying the
analytic criterion

Re

{
t
(
Dm

λ h(t)
)′
+ δt2(Dm

λ h(t)
)′′

(1− δ)Dm
λ h(t) + δt

(
Dm

λ h(t)
)′
}
≥ β

∣∣∣∣∣ t
(
Dm

λ h(t)
)′
+ δt2(Dm

λ h(t)
)′′

(1− δ)Dm
λ h(t) + δt

(
Dm

λ h(t)
)′ − 1

∣∣∣∣∣+ η.

We observe that the subclass β − UCVm
λ (η, δ) reduces to a number of well-known

analytic function subclasses by specializing the parameters η, β, λ, δ, and m. These sub-
classes include:
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0−UCV0
λ(0, 0) ≡ S∗→ The class of starlike functions (see [9], pp. 40–43);

0−UCV0
λ(0, 1) ≡ C → The class of convex functions (see [9], pp. 40–43);

0−UCV0
λ(η, 1) ≡ C(η)→ The class of convex functions of the order η ([10]);

0−UCV0
λ(η, 0) ≡ S∗(η)→ The class of starlike functions of the order η ([10]);

1−UCV0
λ(0, 0) ≡ SP → The class of parabolic starlike functions ([11]);

1−UCV0
λ(0, 1) ≡ UCV → The class of uniformly convex functions ([3,12]);

β−UCV0
λ(0, 0) ≡ β− SP → The class of β− parabolic starlike functions ([13]);

β−UCV0
λ(0, 1) ≡ β−UCV → The class of β− uniformly convex functions ([14]);

1−UCV0
λ(2ρ− 1, 0) ≡ PS∗(ρ) (1

2
≤ ρ < 1)→ The class of parabolic starlike functions of the order ρ ([15]);

1−UCV0
λ(2ρ− 1, 1) ≡ UCV(ρ) (1

2
≤ ρ < 1)→ The class of parabolic convex functions of the order ρ ([15]);

1−UCV0
λ(η, 0) ≡ SP(η)→ The class of parabolic starlike functions of the order η ([11]);

1−UCV0
λ(η, 1) ≡ UCV(η)→ The class of uniformly convex functions of the order η ([11]);

β−UCV0
λ(η, 0) ≡ β− SP(η)→ The class of β− uniformly starlike functions of the order η ([1]);

β−UCV0
λ(η, 1) ≡ β−UCV(η)→ The class of β− uniformly convex functions of the order η ([1]);

0−UCVm
0 (η, 0) = ST m (η)→ (see [7]);

β−UCVm
0 (0, 0) = β− SPm → (see [2,16]);

β−UCVm
0 (η, 0) = T S(m, β, η) → (see [17,18]).

We note that certain subclasses for specialization of the parameters δ = 0 and δ = 1 in the
class β−UCVm

λ (η, δ) were studied by Deniz and Özkan [6] and Şeker et al. [19].
We also let β− T UCVm

λ (η, δ) = β−UCVm
λ (η, δ) ∩ T .

2. Main Results
2.1. Coefficients’ Bounds and Extreme Points

We give here the coefficient estimates and extreme points for the functions h(t) in the
class β− T UCVm

λ (η, δ).

Theorem 1. The class β− T UCVm
λ (η, δ) contains the functions h(t) defined by (2) if and only if

∑
s≥2

(δ(s− 1) + 1)[s(β + 1)− (η + β)]s2m(1 + λ(s− 1))mas ≤ 1− η. (6)

Proof. By Lemma 2 and Definition 2 we have

Re

{
t
(
Dm

λ h(t)
)′
+ δt2(Dm

λ h(t)
)′′

(1− δ)Dm
λ h(t) + δt

(
Dm

λ h(t)
)′ (1 + βeiθ

)
− βeiθ

}
≥ η, − π < θ ≤ π

or equivalently

Re


(

z
(
Dm

λ h(t)
)′
+ δt2(Dm

λ h(t)
)′′)(1 + βeiθ)

(1− δ)Dm
λ h(t) + δt

(
Dm

λ h(t)
)′ (7)

−
βeiθ

(
(1− δ)Dm

λ h(t) + δt
(
Dm

λ h(t)
)′)

(1− δ)Dm
λ h(t) + δt

(
Dm

λ h(t)
)′

 ≥ η.
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Let

F(t) =
(

1 + βeiθ
)[

t(Dm
λ h(t))′ + δt2(Dm

λ h(t))′′
]
− βeiθ

[
Dm

λ h(t)(1− δ) + δt(Dm
λ h(t))′

]
,

and
E(t) = (1− δ)Dm

λ h(t) + δt(Dm
λ h(t))′.

The inequality 7, by Lemma 1, is equivalent for 0 ≤ η < 1, to

|F(t) + (1− η)E(t)| ≥ |F(t)− (1 + η)E(t)|.

For the left side of last inequality, we obtain

|(1− η)E(t) + F(t)|

=

∣∣∣∣∣(2− η)t− ∑
s≥2

(1 + s− η)(1 + δ(s− 1))s2m(λ(s− 1) + 1)masts

−βeiθ ∑
s≥2

(s− 1)(1 + δ(s− 1))s2m(λ(s− 1) + 1)masts

∣∣∣∣∣
≥ (2− η)|t| − ∑

s≥2
(1 + s− η)(1 + δ(s− 1))s2m(λ(s− 1) + 1)mas|t|s

−β ∑
s≥2

(s− 1)(1 + δ(s− 1))s2m(λ(s− 1) + 1)mas|t|s.

Additionally, the right side can be written as

|F(t)− (1 + η)E(t)|

=

∣∣∣∣∣−ηt− ∑
s≥2

(s− 1− η)(1 + δ(s− 1))s2m(λ(s− 1) + 1)masts

−βeiθ ∑
s≥2

(s− 1)(1 + δ(s− 1))s2m(λ(s− 1) + 1)masts

∣∣∣∣∣
≥ η|t|+ ∑

s≥2
(s− 1− η)(1 + δ(s− 1))s2m(λ(s− 1) + 1)mas|t|s

+β ∑
s≥2

(s− 1)(1 + δ(s− 1))s2m(λ(s− 1) + 1)mas|t|s

and so

|F(t) + (1− η)E(t)| − |F(t)− (1 + η)E(t)|
≥ 2(1− η)|t| − 2 ∑

s≥2
(1 + δ(s− 1))(s(1 + β)− β− η)s2m(λ(s− 1) + 1)mas|t|s ≥ 0.

The last expression above is equivalent to

∑
s≥2

(1 + (s− 1)δ)[s(1 + β)− (η + β)]s2m(λ(s− 1) + 1)mas ≤ 1− η.

Conversely, suppose that (6) holds. Then, we must show that by Lemma 2

Re


[(
Dm

λ h(t)
)′t + δt2(Dm

λ h(t)
)′′](1 + βeiθ)− βeiθ

[
(1− δ)Dm

λ h(t) + δt
(
Dm

λ f (t)
)′]

(1− δ)Dm
λ h(t) + δt

(
Dm

λ h(t)
)′

 ≥ η.
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Upon choosing the values of t on the positive real axis where 0 ≤ t = r < 1, the above
inequality becomes

Re

 (1− η)−∑s≥2

[
(1 + δ(s− 1))

(
s
(

1 + βeiθ
)
−
(

η + βeiθ
))]

s2m(λ(s− 1) + 1)masrs−1

1−∑s≥2(1 + δ(s− 1))s2m(λ(s− 1) + 1)masrs−1

 ≥ 0.

Since Re(−eiθ) ≥ −
∣∣eiθ
∣∣ = −1, the above inequality reduces to

Re

{
(1− η)−∑s≥2[(1 + δ(s− 1))(s(1 + β)− (η + β))]s2m(λ(s− 1) + 1)masrs−1

1−∑s≥2(1 + δ(s− 1))s2m(λ(s− 1) + 1)masrs−1

}
≥ 0.

We reach the desired conclusion by letting r → 1.

Corollary 1. If h(t) ∈ β− T UCVm
λ (η, δ), then

as ≤
(1− η)

(1 + δ(s− 1))(s(1 + β)− (η + β))s2m(λ(s− 1) + 1)m .

Next, we obtain the extreme points for β− T UCVm
λ (η, δ).

Theorem 2. Let h1(t) = t and

hs(t) = t− (1− η)

(1 + δ(s− 1))(s(1 + β)− (η + β))s2m(λ(s− 1) + 1)m ts.

Then h(t) is in the class β− T UCVm
λ (η, δ) if and only if it can be expressed in the form

h(t) = ∑
s≥2

σshs(t)

where (σs ≥ 0 and ∑s≥1 σs = 1 or 1 = σ1 + ∑s≥2 σs).

Proof. Let h(t) = ∑s≥1 σshs(t) where ∑s≥1 σs = 1 and σs ≥ 0. Then,

h(t) = t− ∑
s≥2

σs Asts,

where

As =
(1− η)

(1 + (s− 1)δ)((1 + β)s− (β + η))s2m((s− 1)λ + 1)m

and we get

∑
s≥2

σs As
1

As
= ∑

s≥2
σs = 1− σ1 ≤ 1, (by Theorem 1 ).

Thus h(t) ∈ β− T UCVm
λ (η, δ) from the Theorem 1.

Conversely, we suppose that h(t) of type (2) belongs to β− T UCVm
λ (η, δ). Then,

as ≤
(1− η)

(1 + (s− 1)δ)(s(β + 1)− (β + η))s2m(1 + (s− 1)λ)m , s ≥ 2.

Setting

σs =
(1 + δ(s− 1))(s(1 + β)− (η + β))s2m(λ(s− 1) + 1)m

(1− η)
as

and
σ1 = 1− ∑

s≥2
σs,
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we obtain
h(t) = ∑

s≥1
σshs(t) = σ1h1(t) + ∑

s≥2
σshs(t).

This completes the proof.

2.2. Distortion and Growth Theorems

We obtain the covering property, distortion, and growth theorems for functions from
the new family.

Theorem 3. Let h(t) ∈ β− T UCVm
λ (η, δ). Then,

r− 1− η

(δ + 1)(β + 2− η)(4(λ + 1))m r2 ≤ |h(t)| ≤ r +
1− η

(δ + 1)(β + 2− η)(4(λ + 1))m r2 (|t| = r).

The result is sharp with the extremal function h given by

h(t) = t− 1− η

(1 + δ)(β + 2− η)(4(1 + λ))m t2.

Proof. From Theorem 1, since h ∈ β− T UCVm
λ (η, δ) we obtain

4m(1 + δ)(λ + 1)m(β− η + 2) ∑
s≥2

as

≤ ∑
s≥2

(1 + (s− 1)δ)s2m[(β + 1)s− (η + β)]((s− 1)λ + 1)mas ≤ 1− η

or

∑
s≥2

as ≤
1− η

(1 + δ)(β− η + 2)(4(λ + 1))m . (8)

Thus, by Equation (8), we obtain

|h(t)| =

∣∣∣∣∣t− ∑
s≥2

asts

∣∣∣∣∣ ≤ |t|+ ∑
s≥2

as|t|s

≤ r + r2 ∑
s≥2

as ≤ r +
1− η

(1 + δ)(β− η + 2)(4(λ + 1))m r2

and similarly,

|h(t)| =

∣∣∣∣∣t− ∑
s≥2

asts

∣∣∣∣∣ ≥ |t| − ∑
s≥2

as|t|s

≥ r− r2 ∑
s≥2

as ≥ r− 1− η

(1 + δ)(β− η + 2)(4(λ + 1))m r2.

Corollary 2. If h(t) ∈ β− T UCVm
λ (η, 1), then

r− 1− η

2(2− η + β)(4(1 + λ))m r2 ≤ |h(t)| ≤ r +
1− η

2(2− η + β)(4(λ + 1))m r2 (|t| = r).

For the extremal function h given by

h(t) = t− 1− η

2(β + 2− η)(4(1 + λ))m t2,

the result is sharp.
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Theorem 4. The disk |t| < 1 is mapped onto a domain that contains the disk

|ξ| < 1− 1− η

(1 + δ)(β + 2− η)(4(1 + λ))m

by any h ∈ β− T UCVm
λ (η, δ) and onto a domain that contains the disk

|ξ| < 1− 1− η

2(β + 2− η)(4(1 + λ))m

by any h ∈ β− T UCVm
λ (η, 1).

Proof. The results follow upon letting r → 1 in Theorem 3 and its corollary.

Theorem 5. Let h ∈ β− T UCVm
λ (η, δ). Then

1− r
2(1− η)

(β + 2− η)(4(1 + λ))m ≤
∣∣h′(t)∣∣ ≤ 1 + r

2(1− η)

(β + 2− η)(4(1 + λ))m (|t| = r).

Proof. We have ∣∣h′(t)∣∣ ≤ 1 + ∑
s≥2

ass|t|s−1 ≤ 1 + r ∑
s≥2

sas. (9)

Since h ∈ β− T UCVm
λ (η, δ), according to Theorem 1

(1 + δ)22m−1(β− η + 2)(λ + 1)m ∑
s≥2

sas

≤ ∑
s≥2

(1 + (s− 1)δ)s2m(s(β + 1)− (β + η))(λ(s− 1) + 1)mas

≤ 1− η

or

∑
s≥2

sas ≤
2(1− η)

(1 + δ)(β + 2− η)(4(λ + 1))m . (10)

In view of inequalities (9) and (10), we obtain∣∣h′(t)∣∣ ≤ 1 + ∑
s≥2

sas|t|s−1

≤ 1 + r ∑
s≥2

sas

≤ 1 + r
2(1− η)

(1 + δ)(β− η + 2)(4(1 + λ))m .

Similarly ∣∣h′(t)∣∣ ≥ 1− r
2(1− η)

(1 + δ)(β + 2− η)(4(1 + λ))m

and thus, the proof is completed.

Corollary 3. If h ∈ β− T UCVm
λ (η, 1), then

1− (1− η)

(β− η + 2)(4(λ + 1))m r ≤
∣∣h′(t)∣∣ ≤ 1 +

(1− η)

(β− η + 2)(4(λ + 1))m r (|t| = r).

2.3. Neighborhoods and Partial Sums

We now extend the familiar concept of neighborhoods to the analytic functions of
the family β− T UCVm

λ (η, δ). The concept of neighborhoods of analytic functions was first
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introduced by Goodman [3]. Later, Ruscheweyh [20] investigated this concept for the
elements of several notable subclasses of analytic functions, and Altintaş and Owa [21]
considered a certain family of analytic functions with negative coefficients. Moreover,
Aouf [17,22] and Deniz and co-authors [23–25] studied this concept in certain families of
analytic functions.

Definition 3. Let β ≥ 0, 0 ≤ η < 1, λ ≥ 0, 0 ≤ δ ≤ 1, σ ≥ 0, and m ∈ N0 = N ∪ {0}. We
define the σ− neighborhood of a function h ∈ A and denote it by Nσ(h) consisting of all functions

g(t) = t− ∑
s≥2

bsts ∈ A

which satisifies

∑
s≥2

(1 + δ(s− 1))(s(1 + β)− (η + β))s2m(λ(s− 1) + 1)m

(1− η)
|as − bs| ≤ σ.

Theorem 6. Let h ∈ β− T UCVm
λ (η, δ), and, for all real θ, we have η

(
eiθ − 1

)
− 2eiθ 6= 0. For

any complex number µ with |µ| < σ (0 ≤ σ), if h satisfies the following condition:

h(t) + µt
1 + µ

∈ β− T UCVm
λ (η, δ),

then Nσ(h) ⊂ β− T UCVm
λ (η, δ).

Proof. It is obvious that h ∈ β− T UCVm
λ (η, δ) if and only if∣∣∣∣∣∣

t
(
Dm

λ h(t)
)′
+ δt2(Dm

λ h(t)
)′′(1 + βeiθ)− (1 + βeiθ + η

)(
(1− δ)Dm

λ h(t) + δt
(
Dm

λ h(t)
)′)(

t
(
Dm

λ h(t)
)′
+ δt2

(
Dm

λ h(t)
)′′)(1 + βeiθ

)
+
(
1− βeiθ − η

)(
(1− δ)Dm

λ h(t) + δt
(
Dm

λ h(t)
)′)
∣∣∣∣∣∣ < 1

for any complex number α with |α| = 1, and −π < θ < π, we have(
t
(
Dm

λ h(t)
)′
+ δt2(Dm

λ h(t)
)′′)(1 + βeiθ)− (1 + βeiθ + η

)(
(1− δ)Dm

λ h(t) + δt
(
Dm

λ h(t)
)′)(

t
(
Dm

λ h(t)
)′
+ δt2

(
Dm

λ h(t)
)′′)(1 + βeiθ

)
+
(
1− βeiθ − η

)(
(1− δ)Dm

λ h(t) + δt
(
Dm

λ h(t)
)′) 6= α.

In other words, we must have

(1− α)
(
(tDm

λ h(t))′ + δt2(Dm
λ h(t))′′

)(
1 + βeiθ

)
)

−
[

βeiθ + 1 + η − α
(

1 + η − βeiθ
)](

(1− δ)Dm
λ h(t) + δt(Dm

λ h(t))′
)
6= 0

which is equivalent to

t−
∞

∑
s=2

βeiθ(1− α)(s− 1) + (1− α)(s− η)− α− 1
η(α− 1)− 2α

s2m(λ(s− 1) + 1)m(1 + δ(s− 1))asts 6= 0.

However, h ∈ β− T UCVm
λ (η, δ) if and only if

(h ∗ φ)(t)
t

6= 0, t ∈ U − {0}

where
φ(t) = t− ∑

s≥2
ests,
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and

es =
βeiθ(1− α)(s− 1) + (s− α)(1− α)− α− 1

η(α− 1)− 2α
s2m(1 + λ(s− 1))m(1 + δ(s− 1)).

We note that

|es| ≤
s(1 + β)− (η + β)

(1− η)
(δ(s− 1) + 1)s2m(λ(s− 1) + 1)m.

Since
h(t) + µt

1 + µ
∈ β− T UCVm

λ (η, δ), therefore t−1
(

h(t) + µt
1 + µ

∗ φ(t)
)
6= 0,

which is equivalent to
(h ∗ φ)(t)
(1 + µ)t

+
µ

1 + µ
6= 0. (11)

Now suppose that ∣∣∣∣ (h ∗ φ)(t)
t

∣∣∣∣ < σ.

Then, by (11), we must have∣∣∣∣ (h ∗ φ)(t)
t(1 + µ)

+
µ

1 + µ

∣∣∣∣ ≥ |µ|
|1 + µ| −

1
|1 + µ|

∣∣∣∣ (h ∗ φ)(t)
t

∣∣∣∣ > |µ| − σ

|1 + µ| ≥ 0,

which is a contradiction to |µ| < σ. However, we have∣∣∣∣ (h ∗ φ)(t)
t

∣∣∣∣ ≥ σ.

If
g(t) = t− ∑

s≥2
bsts ∈ Nσ(h),

then

σ−
∣∣∣∣ (g ∗ φ)(t)

t

∣∣∣∣ ≤ ∣∣∣∣ ((h− g) ∗ φ)(t)
t

∣∣∣∣ ≤ ∑
s≥2
|as − bs||es||ts|

< ∑
s≥2

s(1 + β)− (η + β)

(1− η)
|as − bs|(1 + sδ− δ)s2m(λ(s− 1) + 1)m ≤ σ.

We now conclude that
(g ∗ φ)(t)

t
6= 0,

which implies that g ∈ β− T UCVm
λ (η, δ).

Theorem 7. Let h ∈ A be given by (2). Define h1(t) = t, hk(t) = t−∑k
s≥2 asts, (k = 2, 3, . . .)

and also suppose that ∑s≥2 ascs ≤ 1, where

cs =
(1 + (s− 1)δ)((β + 1)s− (β + η))s2m(λ(s− 1) + 1)m

(1− η)
.

Then
(i)

h ∈ β− T UCVm
λ (η, δ),



Axioms 2022, 11, 731 10 of 15

(ii)

1− 1
ck+1

< Re
{

h(t)
hk(t)

}
< 1 +

1
ck+1

, Re
{

hk(t)
h(t)

}
>

ck+1
1 + ck+1

, t ∈ U , k = 2, 3, . . . .

Proof. (i) Since
t + µt
1 + µ

= t ∈ β− T UCVm
λ (η, δ), |µ| < 1,

by Theorem 6 we have N1(t) ⊂ β− T UCVm
λ (η, δ) (N1(t) denoting the one-neighborhood).

Now, since ∑s≥2 csas ≤ 1, h ∈ N1(t) and h ∈ β− T UCVm
λ (η, δ),

(ii) we have

cs =

[
(s− 1)(1 + β)

1− η
+ 1
]
(1 + δ(s− 1))s2m(λ(s− 1) + 1)m,

and {cs} is an increasing sequence. So, we obtain

k

∑
s=2

as + ck+1 ∑
s≥k+1

as ≤ 1. (12)

Now, by introducing G1(t) given by

G1(t) = ck+1

[
h(t)
hk(t)

−
(

1− 1
ck+1

)]
and making use of (12), we obtain∣∣∣∣G1(t)− 1

G1(t) + 1

∣∣∣∣ = ∣∣∣∣ −ck+1 ∑s≥k+1 asts

2− ck+1 ∑s≥k+1 asts

∣∣∣∣ < ck+1 ∑s≥k+1 as

2− ck+1 ∑s≥k+1 as −∑k
s≥1 as

< 1.

Therefore, ReG1(t) > 0, and we obtain

Re
{

h(t)
hk(t)

}
> 1− 1

ck+1
.

Now, let

G2(t) = ck+1

[
h(t)
hk(t)

−
(

1 +
1

ck+1

)]
,

then, we have∣∣∣∣G2(t) + 1
G2(t)− 1

∣∣∣∣ = ∣∣∣∣ −ck+1 ∑s≥k+1 asts

−ck+1 ∑s≥k+1 asts − 2

∣∣∣∣ < ck+1 ∑s≥k+1 as

2− ck+1 ∑s≥k+1 as −∑k
s≥1 as

< 1.

Therefore, ReG2(t) < 0, and we obtain

Re
{

h(t)
hk(t)

}
< 1 +

1
ck+1

.

For the second inequality, we define

F(t) = (1 + ck+1)

[
hk(t)
h(t)

− ck+1
1 + ck+1

]
,
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then by using (12), we obtain∣∣∣∣ F(t)− 1
F(t) + 1

∣∣∣∣ =

∣∣∣∣ (1 + ck+1)(hk(t)− h(t))
(1 + ck+1)hk(t)− (ck+1 − 1)h(t)

∣∣∣∣
=

∣∣∣∣∣ (1 + ck+1)∑∞
s=k+1 asts−1

2 + (ck+1 − 1)∑∞
s=k+1 asts−1 − 2 ∑k

s=2 asts−1

∣∣∣∣∣
≤

(1 + ck+1)∑∞
s=k+1 as

2− 2 ∑k
s≥2 as + (1− ck+1)∑s≥k+1 as

≤ 1.

This shows that ReF(t) > 0, and, finally,

Re
{

hk(t)
h(t)

}
>

ck+1
1 + ck+1

.

Theorem 8. Let the conditions be as in Theorem 7. Then, for k = 2, 3, . . . , we have

1− k + 1
ck+1

< Re
{

h′(t)
h′k(t)

}
, Re

{
h′k(t)
h′(t)

}
>

ck+1
k + 1 + ck+1

, t ∈ U , k = 2, 3, . . . .

Proof. The proof of Theorem 8 is similar to that of Theorem 7.

2.4. Radius of Close-to-Convexity, Starlikeness, and Convexity

We focus on obtaining the radii of convexity, starlikeness, and close-to-convexity.

Theorem 9. Let the function h(t), defined by (2), be in the class β− T UCVm
λ (η, δ). Then, h(t)

is close-to-convex of the order ε (0 ≤ ε < 1) in |z| < r1(η, β, δ, ε, m), where

r1(η, β, δ, ε, m) = inf
s≥2

{
(1− ε)(1 + δ(s− 1))(s(1 + β)− (η + β))s2m(λ(s− 1) + 1)m

s(1− η)

} 1
s−1

. (13)

Proof. We must prove that∣∣h′(t)− 1
∣∣ ≤ 1− ε where |t| < r1(η, β, δ, ε, m).

We have ∣∣h′(t)− 1
∣∣ ≤ ∑

s≥2
sas|t|s−1.

Thus, |h′(t)− 1| ≤ 1− ε if

∑
s≥2

(
s

1− ε

)
as|t|s−1 ≤ 1. (14)

From Theorem 1 , we obtain

∑
s≥2

(1 + δ(s− 1))[(β + 1)s− (η + β)]s2m(λ(s− 1) + 1)m

(1− η)
as ≤ 1. (15)

Hence, (14) is true if

s|t|s−1

1− ε
≤ (1 + δ(s− 1))[s(1 + β)− (β + η)]s2m(λ(s− 1) + 1)m

(1− η)
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Equivalently,

|t| ≤
{
(1− ε)(1 + δ(s− 1))(s(1 + β)− (η + β))s2m(λ(s− 1) + 1)m

s(1− η)

} 1
s−1

, s ≥ 2. (16)

The theorem follows from (16).

Theorem 10. If h(t) is of the form (2) and is in the class β− T UCVm
λ (η, δ), then h(t) is starlike

of the order ε (0 ≤ ε < 1) in |t| < r2(η, β, δ, ε, m), where

r2(η, β, δ, ε, m) = inf
s≥2

{
(1− ε)((s− 1)δ + 1)((β + 1)s− (β + η))s2m(1 + (s− 1)λ)m

(1− η)(s− ε)

} 1
s−1

. (17)

Proof. It suffices to show that∣∣∣∣ th′(t)h(t)
− 1
∣∣∣∣ ≤ 1− ε for |t| < r2(η, β, δ, ε, m).

We have ∣∣∣∣ th′(t)h(t)
− 1
∣∣∣∣ ≤ ∑s≥2(s− 1)as|t|s−1

1−∑s≥2 as|t|s−1 .

Thus, ∣∣∣∣ th′(t)h(t)
− 1
∣∣∣∣ ≤ 1− ε if

∑s≥2(s− ε)as|t|s−1

(1− ε)
≤ 1 (18)

by using (15), (18) is true if

s− ε

1− ε
|t|s−1 ≤ (1 + δ(s− 1))(s(1 + β)− (η + β))s2m(λ(s− 1) + 1)m

(1− η)

or, equivalently,

|t| ≤
{
(1− ε)(1 + δ(s− 1))(s(1 + β)− (η + β))s2m(λ(s− 1) + 1)m

(s− ε)(1− η)

} 1
s−1

, s ≥ 2.

The theorem follows easily from the last expression.

Theorem 11. If h is of the form (2) and is in β− T UCVm
λ (η, δ), then h(t) is convex of the order

ε for 0 ≤ ε < 1 in |t| < r3(η, β, δ, ε, m) , where

r3(η, β, δ, ε, m) = inf
s≥2

{
(1− ε)(δ(s− 1) + 1)(s(1 + β)− (η + β))s2m(λ(s− 1) + 1)m

s(s− ε)(1− η)

} 1
s−1

.

Proof. We show that ∣∣∣∣∣ th
′′
(t)

h′(t)

∣∣∣∣∣ ≤ 1− ε for |t| < r3(η, β, δ, ε, m). (19)

Substituting the series expansions h′′(t) and h′(t) into the left side of (19), we obtain∣∣∣∣∣−∑s≥2 s(s− 1)asts−1

1−∑s≥2 sasts−1

∣∣∣∣∣ ≤ ∑s≥2 s(s− 1)as|t|s−1

1−∑s≥2 sas|t|s−1 .
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The last expression above is bounded by (1− ε) if

∑
s≥2

s(s− ε)

1− ε
as|t|s−1 ≤ 1. (20)

In view of (19), it follows that (20) is true if

s(s− ε)

1− ε
|t|s−1 ≤

(
(1 + δ(s− 1))(s(1 + β)− (η + β))s2m(λ(s− 1) + 1)m

(1− η)

)
or

|t| <
{
(1− ε)(1 + δ(s− 1))(s(1 + β)− (η + β))s2m(λ(s− 1) + 1)m

s(s− ε)(1− η)

} 1
s−1

and this complete the proof.

2.5. Integral Means

We will need Littlewood’s [26] subordination result for the investigation that follows.

Lemma 3. If h(t) and g(t) are analytic in U with h(t) ≺ g(t), then∫ 2π

0

∣∣∣h(reiθ)
∣∣∣µdθ ≤

∫ 2π

0

∣∣∣g(reiθ)
∣∣∣µdθ,

where µ > 0, t = reiθ , and 0 < r < 1.

Applying Lemma 3 to functions h(t) in the classes β− T UCVm
λ (η, δ) gives the follow-

ing result when utilizing established methods.

Theorem 12. Let µ > 0. If h(t) ∈ β− T UCVm
λ (η, δ) is of the form (2), and h2(t) is defined by

h2(t) = t− 1− η

(δ + 1)(β + 2− η)(4(λ + 1))m t2,

then we obtain ∫ 2π

0
|h(t)|µdθ ≤

∫ 2π

0
|h2(t)|µdθ, (21)

for t = reiθ , 0 < r < 1.

Proof. For h(t) = t−∑∞
s≥2 asts, (21) is equivalent to proving that

∫ 2π

0

∣∣∣∣∣1− ∑
s≥2

asts−1

∣∣∣∣∣
µ

dθ ≤
∫ 2π

0

∣∣∣∣1− 1− η

(1 + δ)(β− η + 2)(4(λ + 1))m t
∣∣∣∣µdθ.

By Lemma 3, it suffices to show that

1− ∑
s≥2

asts−1 ≺ 1− 1− η

(1 + δ)(β− η + 2)(4(λ + 1))m t.

By definition of the subordination, we can write

1− ∑
s≥2

asts−1 = 1− 1− η

(1 + δ)(β− η + 2)((1 + λ)4)m w(t) (22)
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and, thus, from (22) and (6),

|w(t)| =

∣∣∣∣∣∑s≥2

(1 + δ)(β− η + 2)(4(λ + 1))m

1− η
asts−1

∣∣∣∣∣
≤ |t|∑

s≥2

(1 + δ)(β− η + 2)(4(λ + 1))m

1− η
as

≤ |t|∑
s≥2

(1 + δ(s− 1))(s(β + 1)− β− η)s2m(1 + λ(s− 1))m

1− η
as ≤ |t|,

and the proof is completed.

Similarly, we can prove the following result.

Corollary 4. Let µ > 0. If h(t) ∈ β− T UCVm
λ (η, 1) is given by (2), and h2(t) is defined by

h2(t) = t− 1− η

22m+1(β− η + 2)(λ + 1)m t2,

then for t = reiθ , 0 < r < 1, we have∫ 2π

0
|h(t)|µdθ ≤

∫ 2π

0
|h2(t)|µdθ.

Remark 1. By putting δ = λ = 0 into all of the above results, we obtain the related results
obtained by Rosy and Murugusundaramoorthy [18] and Aouf [17]. Moreover, if we use δ = m = 0
and δ− 1 = m = 0 in all the above results, we obtain the related results obtained by Bharati [1].

3. Conclusions

This paper makes a modest effort to introduce the class β− T UCVm
λ (η, δ). This offers

an intriguing changeover from uniformly convex functions, combining the concept of the
differential operator Dm

λ . We derived a coefficient formula, neighborhoods, partial sums,
radii of close-to-convexity, starlikeness and convexity, covering, distortion theorems, and
the integral mean inequalities for functions in our class. In special cases, our findings
contain the results obtained by some of the authors cited in the references. These results
will open up many new opportunities for research in this field and related fields. Using
the operator Dm

λ , someone can define different general subclasses of analytic functions.
For these subclasses, some problems, such as subordination, inclusion, coefficients, and
covering theorems of the Geometric Function Theory, can be solved.
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