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Abstract: Tuberculosis (TB), caused by Mycobacterium tuberculosis is one of the treacherous infectious
diseases of global concern. In this paper, we consider a deterministic model of TB infection with the
public health education and hospital treatment impact. The effective reproductive number, Rph, that
measures the potential spread of TB is presented by employing the next generation matrix approach.
We investigate local and global stability of the TB-free equilibrium point, endemic equilibrium point,
and sensitivity analysis. The analyses of the proposed model show that the model undergoes the
phenomenon of backward bifurcation when the effective reproduction number (Rph) is less than
one, where two stable equilibria, namely, the DFE and an EEP coexist. Further, we compute the
sensitivity of the impact of each parameter on the effective reproductive number of the model by
employing a normalized sensitivity index formula. Numerical simulation of the proposed model
was conducted using Maple 2016 and MatLab R2020b software and compared with the theoretical
results for illustration purposes. The investigation results can be useful in providing information to
policy makers and public health authorities in mitigating the spread of TB infection by public health
education and hospital treatment.

Keywords: tuberculosis infection; public health education; hospital treatment; effective reproduction
number; stability analysis; bifurcation analysis; sensitivity analysis
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1. Introduction

Tuberculosis (TB) is one of the most hazardous infectious diseases that has become
a significant widespread phenomenon, claiming more lives than any other contagious
disease every day, according to [1]. Approximately 1/3 of the total population has a TB
infection, resulting in millions of deaths and new cases annually (World Health Organi-
zation report). The report corroborates that TB is one of the top ten causes of mortality
globally of both human and animal populations [2–6]. In 2020, for instance, 10 million
individuals developed tuberculosis (TB), and more than 1.5 million died from it, including
214,000 HIV-positive persons (Human Immunodeficiency Virus) [7]. Typically, the signs
may not be instantaneous when an individual contracts the disease. Thus, the individual
remains asymptomatic for a long time or is latently infected for life [8]. Young adults may
become infected by TB when they are most active [5]. Generally, TB-related deaths often
happen in middle-income countries, for example, India, which leads the count, followed by
Indonesia, China, the Philippines, Pakistan, Nigeria, Bangladesh, and South Africa. Such
countries account for over 87% of the entire TB trouble in the world. As a result, it is vital
to implement techniques and methods that make it simple to understand how this disease
spreads and predict its progression.

TB is a communicable disease caused by Mycobacterium tuberculosis affecting mostly the
lungs [9,10]. However, it can also attack different organs including the brain, kidney, spine,
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central nervous system, or the lymphatic system [2,5,11–13]. It is important to note that the
active lung TB disease typically begins with a cough, with sputum or blood on occasion,
chest pains, fatigue, unexpected weight reduction, fever, and night sweats, which may last
at least three or more weeks at a time. It has been reported by [14] that a pregnant woman
who is infected may infect the foetus in some situations. Only individuals who have active
TB can spread the disease. The latently infected individuals do not spread the bacteria [5,7].
Transmission starts with one individual, then onto the next, and relies upon the number of
infected and expelled drops, the period of contaminated risk exposure, the virulence of the
Mycobacterium tuberculosis, and the activity of environmental ventilation [7,10,15].

It was reported that behavioural change played a significant role in the transmission
of infections [16–18]. Public health educational campaigns on TB disease plays a vital role
in TB management and prevention [16,19], and can increase health literacy and awareness
of TB among the population. The identification case rate and cure rate of TB patients can
be improved by health education on TB disease, as it is an effective choice to minimize
the spread of TB. As a result of the emergence of multi-resistance, treatment of TB is very
challenging. Drug-resistant TB is a major public health concern across many developing
countries, while treatment takes longer and needs more expensive drugs [5]. However,
in many developing countries, the treatment of TB is not entirely free. Some TB patients
cannot afford the full cost of treatment. As a result, some TB patients are treated at home
to save money, as they can not afford to stay in the hospital. Some patients who were not
cured choose to be discharged and continue their treatment at home [20].

Several mathematical models have been constructed to study the dynamical behaviour
of TB infection. Abimbade et al. [21] formulated and analyzed an optimal control anal-
ysis of a TB transmission with incomplete treatment and exogenous re-infection, where
they further divided the infected compartment into two groups, namely, uninformed and
enlightened. Their findings revealed that both single controls and combinations of three
controls have a positive influence on TB burden reduction. Recently, Ojo et al. [22] proposed
a mathematical model for TB transmission with control. Their findings demonstrated that
minimizing effective contact with infected people and increasing the rate of vaccinating sus-
ceptible persons with high vaccine efficacy will bring down the TB burden in a population.
Xueyong et al. [16] formulated a TB model with healthy education and treatment. The qual-
itative analysis of their model exhibited the phenomenon of backward bifurcation, where
the stable disease-free equilibrium co-exists with a stable endemic equilibrium, when the
reproduction number is less than one. Huo and Zou [20] investigated a TB dynamics model
with two types of treatment, namely, treatment at home and treatment in hospital. Their
findings revealed that home treatment has a significant detrimental impact on tuberculosis
spread. Okuonghae contributed significantly to TB epidemiology. They investigated the
dynamics of TB and developed different models with comprehensive observations and
results. Okuonghae and Egonmwan [23] presented a deterministic model that explores
the impact of diagnosing and treating both latent and active TB infections on the disease’s
infection dynamics in a population. Castillo and Song [6] studied a comprehensive review
of the literature on TB dynamics. They compiled many dynamical models of TB and estab-
lished a theoretical framework. Recently, Mustapha et al. [24] introduced a TB model with
hospitalization and reinfection. A mathematical analysis of the equilibrium points, the basic
reproduction number, and sensitivity analysis was discussed. However, the authors of [24]
did not include public health education in their model. This factor continues to be one of
the most important aspects in people’s lives. Public health services contributed to reducing
the spread of TB infection.

Inspired by the above discussions, this paper seeks to fill a gap in the references cited,
focusing on both public health education and hospital treatment. Infectious individuals
in this model are divided into two classes: Infected individuals receiving treatment at
home and infected individuals receiving treatment at the hospital. In this paper, we
consider the impact of public health education and hospital treatment, comparing with
the previous paper of [20]. The key differences are, in this paper, both the susceptible and
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infected compartment are divided into two classes, which are susceptible and educated
susceptible, and infected individuals at home and in the hospital. The other parts of the
paper are assembled as follows: Section 2 is devoted to the model formulation along with its
fundamental properties. Section 3 deals with analysis of the existence of equilibria and how it
relates to the effective reproduction number. Section 4, bifurcation analysis was conducted
theoretically and supported with some numerical experiments to give a visualization of the
results. Sensitivity analysis is presented in Section 5. Numerical results and discussions are
given in Section 6. Finally, conclusions and future work are given in Section 7.

2. Materials and Methods

In this section, a TB model with the impact of public health education and hospital
treatment was considered by stratifying total population into epidemiological classes
represented as Nι(t), into six compartments, namely, susceptible individuals (Sι), Educated
Susceptible (Pι), Exposed individuals (Eι), Infectious individuals at home (Iι1), Infectious
individuals receiving treatment at hospital (Iι2) and Recovered individuals (Rι), so that:

Nι = Sι + Pι + Eι + Iι1 + Iι2 + Rι. (1)

2.1. Clinical Assumptions of the TB Model with Public Health Education and Hospital Treatment

The assumptions used in this model are as follows:

• There is a constant recruitment rate to the susceptible population, and natural cause
of death affects individuals in all compartments, with an extra TB-induced death rate
in the infected class.

• We assume that, at any moment, the educated susceptible group may act as igno-
rantly and enter the class of susceptible at a constant rate φ, i.e., loss of temporary
protection [16].

• We further assumed that some uncured TB patients wanted to be discharged and
continue treatment at home at a rate η2, [20].

• Both infected individuals at home and in the hospital experience the infections effect
at the rate λ.

• The infected compartment is divided into two groups, namely, infected individuals
who received treatment at home Iι1, and infected individuals receiving treatment in
hospital Iι2.

• The recovered individual may be again infected by an infectious individual [25].

In this model, it is assumed that the number of susceptible population is generated
via recruitment of individuals into the population at a rate Λ. Susceptible individuals are
educated at the rate ψ, and then transferred into the educated class. We further assume that
education programs provide “temporary protection” at the per-capita rate φ [19,26]. We
assume that both infected individuals at home and in the hospital experience the infections
effect at the rate λ, where

λ =
β(Iι1 + zIι2)

Nι
. (2)

In (2), the parameter β, is the transmission rate, while 0 ≤ z ≤ 1 is the modifi-
cation parameter associated with reduced infectiousness of individuals in the hospital
(in the Iι1 compartment) compared to individuals at home. Individuals who have received
public health education have a high level of awareness. As a result, educated people are a
low-risk population. Education reduces the risk of infection by a factor of ν(0 ≤ ν ≤ 1).
The scenario ν = 0 indicates that the education is totally effective to prevent the infection,
whereas ν = 1 models the case where the education program is totally ineffective [19,26].
The populations of susceptible and educated susceptible individuals are further decreased
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as a result of natural death rate µ. Therefore, the rates of change of the populations of
susceptible and educated susceptible individuals are given, respectively, by

dSι

dt
= Λ + φPι − λSι − ψSι − µSι,

dPι

dt
= ψSι − νλPι − φPι − µPι.

The population of exposed individuals is generated via the infection of susceptible (Sι),
educated susceptible (Pι) and recovered (Rι), at the rate λ, νλ and σλ, and decreased as a
result of disease symptoms at a rate κ1, κ2, and natural death at the rate µ, and σ(0 ≤ σ ≤ 1)
is taken as the reinfection rate so that

dEι

dt
= λSι + νλPι + σλRι − (κ1 + κ2 + µ)Eι.

Similarly, the population of infected individuals at home is generated as result of
disease symptoms at a rate κ1, the rate of TB patients who are not cured from the hospital
at a rate η2 and diminished due to progression to hospital at a rate η1, recovery by TB
patients at home at a rate γ1, natural death cause µ, and TB-induced death at the rate δ1,
respectively. Thus,

dIι1

dt
= κ1Eι + η2 Iι2 − (η1 + γ1 + µ + δ1)Iι1.

In addition, the population of infected individuals receiving treatment at the hospital
is increased as a result of the disease symptoms at a rate κ2, and hospital admittance of
infected individuals receiving treatment at home at a rate η1, and diminished due to their
returning back home to Iι1 at a rate η2, natural death cause µ, recovery by TB patients at
hospital at a rate γ2, and TB induced death at the rate δ2. Therefore,

dIι2

dt
= κ1Eι + η1 Iι1 − (η1 + µ + γ2 + δ2)Iι2.

Finally, the population of recovered individuals is generated via recovery by both
infected individuals treated at home γ1 and at hospital γ2 at a rate γ1, γ2, respectively,
and diminished as a result of natural death at a rate µ and progression to the exposed class
at a rate σλ.

dRι

dt
= γ1 Iι1 + γ2 Iι2 − σλRι − µRι.

Therefore, based on the above description and assumptions, the model of TB with
public health education and hospital treatment lead to following a system of non-linear
differential equations; the schematic diagram Figure 1 below, and the parameters indicated
in the diagram are explained in Table 1.

dSι
dt = Λ + φPι − (λ + ψ + µ)Sι,

dPι
dt = ψSι − (νλ + φ + µ)Pι,

dEι
dt = λSι + νλPι + σλRι − (κ1 + κ2 + µ)Eι,

dIι1
dt = κ1Eι + η2 Iι2 − (η1 + γ1 + µ + δ1)Iι1,

dIι2
dt = κ2Eι + η1 Iι1 − (η2 + γ2 + µ + δ2)Iι2,

dRι
dt = γ1 Iι1 + γ2 Iι2 − (σλ + µ)Rι,

(3)
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where

λ =
β(Iι1 + zIι2)

Nι
, (4)

with the initial conditions given by Equation (5)

Sι(0) = Sι0 > 0, Pι(0) = Pι0 > 0, Eι(0) = Eι0 > 0, Iι1(0) = Iι10 > 0, Iι2(0) = Iι20 > 0 (5)

satisfies the equation
dNι

dt
= Λ− µNι − δ1 Iι1 − δ2 Iι2. (6)

Figure 1. The flow diagram of TB model with public health education and hospital treatment.

Table 1. Interpretation of the Variables and Parameters of the TB Model with Public Education and
hospital Treatment (23).

State Variables Explanation

Sι The number of individuals who are susceptible
Pι The number of individuals who are educated susceptible
Eι The number of individuals who are exposed to TB
Iι1 The number of infected individuals at home
Iι2 The number of infected individuals at hospital
Rι The number of individuals who have recovered
Nι Human population size

Parameters

Λ Inflow of recruitment into susceptible class
µ Per capita natural death rate of humans
ψ Information dissemination (awareness rate)
φ Rate at which the educated susceptible become susceptible
ν Reduction of infection rate as a result of awareness
β Transmission rate
z Reduction of infection rate as a result of individuals in the hospital
κ1 Progression rate from Eι to Iι1

κ2 Progression rate from Eι to Iι2
γ1 recovery rate for Iι1
γ2 recovery rate for Iι2
σ Mod. parameter for re-infection among the recovered individuals
η1 Progression rate from Iι1 to Iι2
η2 Progression rate from Iι2 to Iι1
δ1 TB induced mortality rate for Iι1
δ2 TB induced mortality rate for Iι2
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2.2. Basic Properties of the TB Model with Public Health Education and Hospital Treatment

The basic properties of the TB model (23) are explained in this subsection. In an
invariant region, the model is proved to be positive and bounded. When studying the
dynamical behaviour of an epidemiologically model, this analysis is crucial because it
demonstrates whether the model is epidemiologically relevant and mathematically well-
posed, that is, whether the model and its predictions are certain [27].

Positivity of Solutions

To established that the TB infection model system (23) is epidemiologically realistic,
all the stated variables are positive all the time.

Theorem 1. Let initial data be {(Sι, Pι, Eι, Iι1, Iι2, Rι) ≥ 0} ∈ Φ. Thus, the solution of {Sι(t),
Pι(t), Eι(t), Iι1(t), Iι2(t), Rι(t)} of the model system (23) is non-negative for all t > 0.

Proof of Theorem 1. The method described in [28,29], is applied. We use the first equation
to consider the non-linear system of (23), which clearly shows that

dSι

dt
+ (λ(t) + ψ + µ)Sι > 0,

utilizing an integrating factor gives

d
dt

[
Sι exp

(∫ t

0
(λ(ε) + ψ + µ

)
dε

]
> 0. (7)

Using the initial conditions (5) and integrating (7) results in

Sι(t) > Sι0exp
[
−
(∫ t

0
(λ(ε) + ψ + µ

)
dε

]
> 0, ∀t > 0.

Similarly, it can be shown that Pι(t) > 0, Eι(t) > 0, Iι1(t) > 0, Iι2(t) > 0, Rι(t) > 0,
∀t >0.

2.3. Invariant Region

Theorem 2. The solution of the TB model system (23) is enclosed in the region Φ subset ∈ R6
+,

given by

Φ =

{
(Sι, Pι, Eι, Iι1, Iι2, Rι) ∈ R6

+, Nι ≤
Λ
µ

}
,

for the initial conditions (5) in Φ.

Proof of Theorem 2. The change in the total population is given by

dNι

dt
= Λ− µNι − Iι1δ1 − Iι2δ2, (8)

In the absence of TB infection, there is no death from TB transmission, (that is,
δ1 = δ2 = 0) [30], hence the rate of change of the total population size in Equation (8)
is given as

dNι

dt
≤ Λ− µNι, (9)

The solution of Equation (9) is solved by using the same approach presented in [31,32],
and is given by

Nι(t) ≤
Λ
µ
−
(

Λ
µ
− Nι0

)
e−µt, (10)

where Nι0 = Nι(0).
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Using [33] we note that if Nι0 <
Λ
µ , Nι → Λ

µ asymptotically as t→ ∞ in Equation (10)

the total population size Nι → Λ
µ , which means that 0 ≤ Nι ≤ Λ

µ . Therefore, all the feasible
solutions in the model converge in the region Φ [34].

3. Existence of Equilibrium
3.1. Tuberculosis Free Equilibrium (TFE)

The TFE state denoted as T0, is generally described as a state in which no disease
exists in a given population. The infected population can be defined as a disease type.
Using the first fourth equation of system model (23) with Eι = Iι1 = Iι2 = Rι = 0 into
consideration, we arrive at:

T0 = (S0
ι , P0

ι , E0
ι , I0

ι1, I0
ι2, R0

ι ) =

(
Λ
µ

µ + φ

µ + ψ + φ
,

Λ
µ

ψ

µ + ψ + φ
, 0, 0, 0, 0

)
. (11)

3.2. Calculation of Effective Reproduction Number (Rph) For the System Model (23)

This section studies the effective reproduction number, which is a threshold parameter
that controls the spread of a disease. To obtain the effective reproduction number, we apply
the next generation approach described in [35]. The associated incidence matrix (F) and
the transition matrix (V) of system model (23), are respectively obtained as:

F =

0 β(S0
ι +νP0

ι )

N0
ι

βz(S0
ι +νP0

ι )

N0
ι

0 0 0
0 0 0

, V =

 A1 0 0
−κ1 A2 −η2
−κ2 −η1 A3

, (12)

where
A1 = κ1 + κ2 + µ, A2 = η1 + µ + γ1 + δ1, A3 = η2 + µ + γ2 + δ2. (13)

Thus, the effective reproductive number of system model (23) is calculated from the
spectral radius ρ(FV−1) as :

Rph =
β(φ + µ + νψ)(κ1 A3 + κ2η2) + z(κ2 A2 + η1κ1)

A1(A2 A3 − η1η2)(ψ + φ + µ)
. (14)

After substituting the values of A1, A2 and A3, Equation (14) becomes

Rph =
β (ν ψ + µ + φ)((η2 + µ + γ2 + δ2)κ1 + κ2η2) + z((η1 + µ + γ1 + δ1)κ2 + κ1η1)

C0 + C1 + µ((η1 + µ + γ1 + δ1)(η2 + µ + γ2 + δ2)− η1η2)(ψ + µ + φ)
. (15)

where
C0 = κ1((η1 + µ + γ1 + δ1)(η2 + µ + γ2 + δ2)− η1η2)(ψ + µ + φ),

C1 = κ2((η1 + µ + γ1 + δ1)(η2 + µ + γ2 + δ2)− η1η2)(ψ + µ + φ).

The term effective reproduction number, represented by Rph, is defined as the expected
number of secondary cases generated by a single infected individual during the period of
infectiousness in a population of susceptible individuals where public health education
and hospital treatment are incorporated [36].

3.3. Local Stability of TB Free Equilibrium

To prove the local stability of the TFE, the Jacobian of the proposed model system (23)
is used. After that, the Jacobian is used to derive the characteristic equation, from which
the eigenvalue result is obtained.

Theorem 3. The TFE of the proposed model system (23) is locally asymptotically stable when
Rph < 1.
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Proof of Theorem 3. To prove the system’s local stability, the Jacobian of the proposed
model system (23) is investigated at TFE, which is then given by:

J(T0) =



−(µ + ψ) φ 0 − βS0
ι

N0
ι

− βzS0
ι

N0
ι

0

ψ −(φ + µ) 0 − νβP0
ι

N0
ι

− νβzP0
ι

N0
ι

0

0 0 −A1
β(S0+νβP0)

N0

βz(S0+νP0
ι )

N0
ι

0

0 0 κ1 −A2 η2 0

0 0 κ2 η1 −A3 0

0 0 0 γ1 γ2 −µ


. (16)

The characteristic equation of (16) is given by:

(λ + µ)(λ + ψ + µ)(λ + φ + µ)(λ + A1)(λ + A2)(λ + A3) = 0. (17)

It can be seen from (17) that:

λ1 = −µ < 0,

λ2 = −(ψ + µ) < 0,

λ3 = −(φ + µ) < 0,

λ4 = −A1 < 0,

λ5 = −A2 < 0,

λ6 = −A3 < 0.

(18)

The result reveals that all the eigenvalues λ1, λ2, λ3, λ4, λ5, λ6 are negative given that
all the parameters values are greater than zero. As a result, according to the principle of
linearized stability [37], the TFE is asymptotically stable.

3.4. Global Stability of the TB Free Equilibrium

This section investigates the global stability of the TFE point T0 of the model system (23).
To investigate the global stability of the system model (23), we employ the techniques
implemented by [38].

dX
dt

= F(Xι, Zι),

dZ
dt

= G(Xι, Zι); G(Xι, 0) = 0.
(19)

Here, the components Xι = (Sι, Pι, Rι) and Zι = (Eι, Iι1, Iι2), where Xι ∈ R3 denotes
the uninfected population and Zι ∈ R3 denotes the infected population.

The TB free equilibrium is defined by T0 = (X∗ι , 0).
The fixed point T0 = (X∗ι , 0) is a globally asymptotically stable equilibrium for the

system model (23) provided that Rph, which is locally asymptotically stable, and the
following two conditions must be satisfied:

(H1): for
dXι

dt
= F(Xι, 0), X∗

is globally asymptotically stable (GAS),

(H2): G(Xι, Zι) = AZι − Ĝ(Xι, Zι), Ĝ(Xι, Zι) ≥ 0 for (Xι, Zι) ∈ Φ,



Axioms 2022, 11, 723 9 of 23

If the system model (23) meets the given two criteria, then the following theorem holds.

Theorem 4. The TB free equilibrium point T0 = (X∗, 0) of the system model (23) is globally
asymptotically stable provided Rph < 1 and the conditions (H1) and (H2) are satisfied.

Proof of Theorem 4. From system model (23) we can get F(Xι, Zι) and G(Xι, Zι):

F(Xι, Zι) =

 Λ + φPι − (λ + ψ + µ)Sι

ψSι − (νλ + φ + µ)Pι

γ1 Iι1 + γ2 Iι2 − (σλ + µ)Rι

, (20)

G(Xι, Zι) =

 λSι + νλPι + σλRι − (κ1 + κ2 + µ)Eι

κ1Eι + η2 Iι2 − (η1 + γ1 + µ + δ1)Iι1
κ2Eι + η1 Iι1 − (η2 + γ2 + µ + δ2)Iι2

. (21)

At T0, Equation (20)

dX
dt

= F(Xι, 0) =

 Λ + φPι − (ψ + µ)Sι

ψSι − (φ + µ)Pι

−µRι

. (22)

From the system (22) above, we see that X∗ι =
(

Λ(µ+φ)
µ(µ+ψ+φ)

, Λψ
µ(µ+ψ+φ)

, 0
)

is globally
asymptotical stable. This can be verified from the solutions, namely,

Sι(t) =
Λ(µ+φ)

µ(µ+ψ+φ)
+
(

Sι(0)− Λ(µ+φ)
µ(µ+ψ+φ)

)
exp−(ψ+µ+φ)t.

Pι(t) =
Λψ

µ(µ+ψ+φ)
+
(

Pι(0)− Λψ
µ(µ+ψ+φ)

)
exp−(ψ+µ+φ)t.

Rι(t) = Rι(0)exp−µt.

(23)

As t→ ∞, the solution Sι(∞), Pι(∞), Rι(∞)→ Λ(µ+φ)
µ(µ+ψ+φ)

, Λψ
µ(µ+ψ+φ)

, 0, which implies
the global convergence of (22) in Φ, and this satisfies condition H1.

Next, applying the second condition of the theorem H2.
From H2, we have G(Xι, Zι) = AZι − Ĝ(Xι, Zι), Ĝ(Xι, Zι) ≥ 0 for (Xι, Zι) ∈ Φ.
Therefore, Ĝ(Xι, Zι) = AZι − G(Xι, Zι). where A is an n× n matrix, Zι is a column

vector and G(Xι, Zι) is a column vector formed from the infectious compartments. We
already know that

G(Xι, Zι) =

G1(Xι, Zι)
G2(Xι, Zι)
G3(Xι, Zι)

 =

λSι + νλPι + σλRι − (κ1 + κ2 + µ)Eι

κ1Eι + η2 Iι2 − (η1 + γ1 + µ + δ1)Iι1
κ2Eι + η1 Iι1 − (η2 + γ2 + µ + δ2)Iι2

.

Now let compute A

A =

−(κ1 + κ2 + µ) β(φ+µ+νψ)
φ+µ+ψ

βz(φ+µ+νψ)
φ+µ+ψ

κ1 −(η1 + γ1 + µ + δ1) η2
κ2 η1 −(η2 + γ2 + µ + δ2)

.

The matrix A is a metzler matrix because all its off-diagonal elements are non-negative.

A =

−(κ1 + κ2 + µ) β(φ+µ+νψ)
φ+µ+ψ

βz(φ+µ+νψ)
φ+µ+ψ

κ1 −(η1 + γ1 + µ + δ1) η2
κ2 η1 −(η2 + γ2 + µ + δ2)


Eι

Iι1
Iι2

.
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AZι =


β(φ+µ+νψ)
(φ+µ+ψ)

(Iι1 + zIι2)− (κ1 + κ2 + µ)Eι

κ1Eι − (η1 + γ1 + µ + δ1)Iι1 + η2 Iι2
κ2Eιη1 Iι1 − (η2 + γ2 + µ + δ2)Iι2

.

Thus, using Ĝ(Xι, Zι) = AZι − G(Xι, Zι), one obtains the following

Ĝ(Xι, Zι) =

β(Iι1 + zIι2)
(φ+µ+νψ)
(φ+µ+ψ)

− Sι+νPι+σRι
Nι

0
0

.

Since Ĝ(Xι, Zι) � 0, H2 is not satisfied. This suggests that backward bifurcation may
occur at T0 when Rph < 1.

3.5. Endemic Equilibrium State (T∗)

The stability of (T0) drives the disease’s short-term outbreaks. The stability at the
endemic equilibrium points (T∗) characterises its dynamics over a longer duration. We
discovered that long-term behaviour has crucial epidemiological implications, such as
whether an outbreak of a disease will lead to an endemic scenario or whether the infection
will die out. We shall conduct an endemic analysis in this section. T∗ can now be determined
by equating all of the model system in (23) to zero:

Theorem 5. The endemic equilibrium state of the model system Equation (23) exists if the effective
reproduction number Rph > 1.

The proof of Theorem 5 is presented in Appendix A.

Theorem 6. The TB model with public health education and hospital treatment (23) has:

1. One or more endemic equilibria when Rph < 1.
2. A unique endemic equilibrium when Rph > 1.
3. No endemic equilibrium otherwise.

4. Local Stability of Endemic Equilibrium

The local stability of endemic equilibrium (T∗) of the model system can be investigated
by employing the concept of center manifold presented in [6].

Theorem 7. The TB model with public health education and hospital treatment (23) undergoes
backward bifurcation with bistability of T∗ at Rph < 1 and Rph > 1.

The proof of Theorem 7 is presented in Appendix B.
Figure 2 demonstrates a backward bifurcation diagram of force of infection λ against

the effective reproduction number Rph of the system model (23). We can see from the figure
that as Rph increases to one, the disease also increases and this occurs when Rph < 1. At
Rph = 1, DFE and EEP coexists; this means that the disease cannot be eradicated from the
population as a result of a high-level endemic. We can also discover that when Rph > 1, the
disease persists.
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Figure 2. The bifurcation diagram of force of infection against Rph which illustrates a backward
bifurcation for the system model (23).

5. Sensitivity Analysis

It is crucial to investigate how sensitive the TB model (23) is to changes in each of
its parameters in order to identify control strategies that will assist in the lowering of the
infection trajectory. In other words, conducting sensitivity analysis will assist in identifying
what should be done or ignored in order to stop the spread of the TB transmission [29,39,40].
When a parameter changes, we can use sensitivity indices to calculate the relative change
in a state variable. We employ the normalised forward sensitivity index of a variable to
a parameter method provided in [41] in order to perform sensitivity analysis. The ratio
of relative change in the variable to relative change in the parameter is known as the
sensitivity index. The sensitivity index may also be defined using partial derivatives when
the variable is a differentiable function of the parameter. Therefore, as stated in [41], the
normalised forward sensitivity index (SI) of a threshold, Rph, that is differentiable with
respect to a parameter, η, is defined as:

Υ
Rph
η =

∂Rph

∂η
× η

Rph
. (24)

The sensitivity of Rph to each of the 14 parameters presented in Table 2 is calculated
using the effective reproduction number given below

Rph =
β(φ + µ + νψ)(κ1 A3 + κ2η2) + z(κ2 A2 + η1κ1)

A1(A2 A3 − η1η2)(ψ + φ + µ)
, (25)

where A1, A2, and A3 are given in Equation (14).
Sensitivity index implied the parameters values obtained in Table 2.
From Table 2, we can see that the parameters have both positive and negative effects

on Rph. Positive SI values, such as β, z, µ, ν, φ, γ2, η2 and κ1, as shown in Table 2 reveal that
an increase in these parameters values increases Rph, which brings about the infection
attacking the population. While the parameters κ2, µ, ψ, γ1, η1, δ1, and δ2, have negative SI,
that is, an increase in these parameters values decrease Rph, and as a result, the infection
gradually fades from the population.
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Table 2. Sensitivity Indices of the Model Parameters in Relation to Rph.

Parameters Description Sensitivity Index

µ Per capita natural death rate of humans −0.6970
ψ Information dissemination (awareness rate) −0.2554
φ The rate at which susceptible individuals lose awareness +0.2454
ν Reduction in risk of infection due to awareness +0.1103
β Transmission rate for contact with I1 +1.0000
z Reduction of infection rate as a result of I2 +0.4476
κ1 Progression rate from Eι to I1 +0.4228
κ2 Progression rate from Eι to I2 −0.2147
γ1 Treatment rate for Iι1 −0.2573
γ2 Treatment rate for Iι2 +0.5570
η1 Progression rate from Iι1 to Iι2 −0.6832
η2 Progression rate from Iι2 to Iι1 +0.1845
δ1 TB induced mortality rate for Iι1 −0.2058
δ2 TB induced mortality rate for Iι2 −0.3714

Figure 3 demonstrates the relationship between the effective reproduction number Rph,
ψ, η1, κ1, and κ2. Figure 3a, illustrates a linear relationship between Rph and the awareness
rate ψ. We observed from Figure 3a, that Rph decreases with increasing the awareness rate
ψ of susceptible individuals. This means that susceptible individuals who are aware of the
TB disease and understand how it is transmitted have a great positive impact on the spread
of TB infection.

(a) (b)

(c) (d)

Figure 3. The relationship between ψ (a), η1 (b), κ1 (c), and κ2 (d) and the effective reproduction
number Rph.
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Figure 3b demonstrates a linear relationship between Rph and the rate at which infected
individuals progress from Iι1 class to Iι2 class. This indicates that Rph decreases with the
increasing the rate at which infected individuals Iι1 at home undergo treatment at the
hospital. This means that infected individuals treated at the hospital have a great positive
impact on the spread of TB infection too.

Figure 3c,d depicts a relationship between Rph, κ1 and κ2. It is clearly seen from the
Figure 3c,d that Rph increases with increasing κ1, while Rph decreases with increasing κ2.
Biologically, this shows that infected individuals receiving treatment at home have a great
negative impact on the dynamics of TB disease.

6. Numerical Results and Discussions

The numerical simulation of the model system (23), is performed with the values of
the parameters described in Table 3. We used ode45 solver in Matlab, which depends
on the Runge-Kutta technique to stimulate model system (23) with the parameter values
presented in Table 3, as well as the following initial conditions:

Sι(0) = 0.6, Pι(0) = 0.2, Eι(0) = 0.1, Iι1(0) = 0.1, Iι2(0) = 0.1, Rι(0) = 0.

Figure 4 is a graphical representation of system model (23) showing the differences
between susceptible and educated susceptible individuals. We can see from Figure 4
that, as time increases, the number of educated susceptible individuals’ health continues
to increase until it reaches the carrying capacity, whereas, the number of susceptible
individuals continues to decrease with time as more and more of them become infected.
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Time (Years)

0.2

0.25
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ts
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Figure 4. Simulations of system (23) showing the behaviour of susceptible and educated susceptible.
Parameters used are Λ = 450,862, β = 0.86, ν = 0.25, φ = 0.2, σ = 0.65, z = 0.11, µ = 0.02041,
ψ = 0.5, η1 = 0.02, η2 = 0.02, γ1 = 0.5, γ2 = 0.6, κ1 = 0.03, κ2 = 0.3, δ1 = 0.2, δ2 = 0.12.

Figure 5 depicts the impact of the various values of awareness rate (ψ), on the dynam-
ics of Sι, Eι, Iι1 and Iι2. In general, this figure reflects that when ψ, increases, the number of
Eι, Iι1 and Iι2 decreases rapidly. This demonstrates that public health education of suscepti-
ble individuals has the effect of limiting TB disease spread. As a result, public policymakers
must focus on increasing the value of awareness rate ψ in order to prevent and control TB
infection in a population.
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Figure 5. Impact of awareness rate (ψ) on Sι, Eι, Iι1, and Iι2, varying ψ. Other parameters are given
as Λ = 450,862, β = 0.86, ν = 0.25, φ = 0.2, σ = 0.65, z = 0.11, µ = 0.02041, ψ = 0.5, η1 = 0.02,
η2 = 0.02, γ1 = 0.5, γ2 = 0.6, κ1 = 0.03, κ2 = 0.3, δ1 = 0.2, δ2 = 0.12.

Table 3. The Parameters and Baseline Values of the Model with Public Health Education and Hospital
Treatment (23).

Parameters Baseline Values Ranges References

Λ 3,768,410 year−1 [3,000,000, 4,000,000] [42]
µ 0.02041 year−1 [0.0143, 0.03] [23]
ψ Variable [0–1] Assumed
φ Variable [0–1] Assumed
ν Variable [0–1] Assumed
β Variable Varied Assumed
σ 0.25 [0–1] [25,43]
z 0.11 [0–0.9] [16]
κ1 Variable [0–1] Assumed
κ2 Variable [0–1] Assumed
γ1 0.09 year−1 [0–1] [20]
γ2 0.72 year−1 [0–1] [20]
η1 Variable [0–1] assumed
η2 Variable [0–1] assumed
δ1 0.2 year−1 - [44]
δ2 0.02 year−1 - [45]

Figure 6 investigates the impact of varying the rate at which the educated susceptible
lose the awareness φ. This figure demonstrates a worst-case scenario in which an increase
in loss of awareness in the susceptible individual leads to an increase in the proportion of
infectious individuals.
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Figure 6. Impact at which educated susceptible lose awareness (φ) on Iι1, and Iι2, varying φ. Other
parameters are given as Λ = 450,862, β = 0.86, ν = 0.25, φ = 0.2, σ = 0.65, z = 0.11, µ = 0.02041,
ψ = 0.5, η1 = 0.02, η2 = 0.02, γ1 = 0.5, γ2 = 0.6, κ1 = 0.03, κ2 = 0.3, δ1 = 0.2, δ2 = 0.12.

Figure 7 investigates the effect of varying the reduction of infection by infected in-
dividuals receiving treatment at the hospital z. In this figure, z, is varied between 0 to 1.
Of course, lowering the value of z, from 1 to 0, as expected, reduces the proportion of
infected individuals, although at different rates.
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Figure 7. Impact of reduction of infection rate as a result of I2 (z) on Iι1, and Iι2, varying z. Other
parameters are given as Λ = 450,862, β = 0.86, ν = 0.25, φ = 0.2, σ = 0.65, z = 0.11, µ = 0.02041,
ψ = 0.5, η1 = 0.02, η2 = 0.02, γ1 = 0.5, γ2 = 0.6, κ1 = 0.03, κ2 = 0.3, δ1 = 0.2, δ2 = 0.12.

Figure 8 illustrates the impact of varying the rate at which infected individuals at home
go out for treatment in the hospital, η1 between 0 and 1 on the individuals treated at home
Iι1 and infected individuals receiving treatment at the hospital, respectively. Obviously,
as expected, an increase in the value of η1, from 0 to 1 greatly reduced the number of
infected individuals both at home and at hospital. Epidemiologically, this shows that rate
at which infected individuals at home go out for treatment in the hospital have a great
impact on reducing the transmission of TB disease in the population.
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Figure 8. Impact of progression rate (η1) from Iι1 to Iι2 on Iι1, and Iι2, varying η1. Other parameters
are given as Λ = 450,862, β = 0.86, ν = 0.25, φ = 0.2, σ = 0.65, z = 0.11, µ = 0.02041, ψ = 0.5,
η1 = 0.02, η2 = 0.02, γ1 = 0.5, γ2 = 0.6, κ1 = 0.03, κ2 = 0.3, δ1 = 0.2, δ2 = 0.12.

7. Conclusions

This paper presented a new deterministic model of TB infection subject to the use of
public health education and hospital treatment. To gain insight into its dynamic features,
the model was rigorously analyzed. The analyses of the model, which contains six mutually-
exclusive epidemiological partitions, show that the model undergoes the phenomenon of
backward bifurcation when the effective reproduction number (Rph) is less than one, where
two stable equilibria, namely, the DFE and an EEP coexist when the corresponding effective
reproductive number is less than one. This backward bifurcation phenomenon of this article
is very vital, and this occurs only under education of susceptible individuals and treatment
of TB-infected individuals in the hospital. This is mostly telling us that, even if the effective
reproduction number is less than unity, while necessary, it is not sufficient for efficiently
controlling the spread of a TB epidemic, which is against classical epidemiological theory.
In this scenario, TB elimination will depend upon the initial sizes of the sub-populations of
the model. The parameters are sensitive to the transmission dynamics of TB diseases, either
negatively (µ, ν, ψ, η1, γ1, γ2, δ1, δ2, and κ2) or positively (β1, β2 and κ1). According to the
numerical investigation, increasing the public health education ψ on the Sι class, and the
progression rate η1 from Iι1 to Iι2, have a significant great effect on reducing the prevalence
of TB burden see Figures 5 and 8. Given that public health education and hospital treatment
can reduce the spread of TB infection, this programme should be continued and improved.

In light of the model study in this paper, some gaps in this paper need to be filled;
these proposed gaps will allow for possible extension and improvement of the paper.
The proposed model can be extended and improved in the future by:

• Considering a stochastic model approach. This will result in more realistic TB
model dynamics.

• Since the spread of tuberculosis affects all age groups, it is crucial to consider the
dynamics of the TB model by incorporating an age-structured model.

• Real data will also be considered because collecting data for TB patients is difficult
in epidemiological models; as a result, we use data collected or estimated from liter-
ature sources. Once we have real-world data for TB patients, we can compare it to
theoretical outcomes.

• Analyzing the dynamics of the TB model using a fractional order differential equation
(FODE). It will be extremely interesting to use a FODE to examine the dynamics of
TB model.
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Appendix A

Proof of Theorem 5. At the endemic state, the model system Equation (23) has an equilib-
rium point called TB endemic equilibrium point.

dS∗ι
dt

=
dP∗ι
dt

=
dE∗ι
dt

=
dI∗ι1
dt

=
dI∗ι2
dt

=
dR∗ι
dt

= 0. (A1)

By setting the derivatives of the left hand side of Equation (23) to zero and solving
simultaneously we have

S∗ι = Λ(νλ∗+φ+µ)
νλ∗2+A4λ∗+A5

,

P∗ι = ψλ∗

νλ∗2+A4λ∗+A5
,

E∗ι = Λ(νλ∗+φ+µ+νψ)(A11λ∗A10λ∗)
(νλ∗2+A4λ∗+A5)(A9λ∗+A10)

,

I∗ι1 = κ1ΛA1 A3(σλ∗+µ)(νλ∗+φ+µ+νψ)λ∗

(νλ∗2+A4λ∗+A5)(A9λ∗+A10)
,

I∗ι2 = κ1ΛA1(σλ∗+µ)(νλ∗+φ+µ+νψ)λ∗

(νλ∗2+A4λ∗+A5)(A9λ∗+A10)
,

R∗ι = κ1ΛA0(γ1 A3+γ2)(νλ∗+φ+µ+νψ)λ∗

(νλ∗2+A4λ∗+A5)(A9λ∗+A10)
.

(A2)

Further

λ∗ =
β(I∗ι1 + zI∗ι2)

N∗ι
, (A3)

First, the nominator

β(I∗ι1 + zI∗ι2) = β

[
κ1ΛA1 A3(σλ∗ + µ)(νλ∗ + φ + µ + νψ)λ∗

(νλ∗2 + A4λ∗ + A5)(A9λ∗ + A10)
+

zκ1ΛA1(σλ∗ + µ)(νλ∗ + φ + µ + νψ)λ∗

(νλ∗2 + A4λ∗ + A5)(A9λ∗ + A10)

]
(A4)

=
β(A3 + z)κ1ΛA1(σλ∗ + µ)(νλ∗ + φ + µ + νψ)λ∗

(νλ∗2 + A4λ∗ + A5)(A9λ∗ + A10)
, (A5)
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and the denominator is Nι = S∗ι + P∗ι + E∗ι + I∗ι1 + I∗ι2 + R∗ι . After substituting the values of
S∗ι + P∗ι + E∗ι + I∗ι1 + I∗ι2 + R∗ι in Equation (A2), we obtain

Nι =
Λ

(νλ∗2 + A4λ + A5)(A9λ∗ + A10)
[(νλ∗ + φ + µ + ψ)(A9λ∗ + A10) + A12(λ

∗)], (A6)

where

A12(λ
∗) = (νλ∗ + φ + µ + νψ)(A11λ∗ + A10)λ

∗ + κ1 A1 A3(σλ∗ + µ)(νλ∗ + φ + µ + νψ)λ∗

+κ1 A1(σλ∗ + µ)(νλ∗ + φ + µ + νψ)λ∗κ1 A1(γ1 A3 + γ2)(νλ∗ + φ + µ + νψ)
(A7)

= (νλ∗ + φ + µ + νψ)λ∗(A13λ∗ + A14),

where

A13 = A11 + κ1 A1 A3 + κ1 A1σ, A14 = A10 + µκ1 A1 A3 + µκ1 A1 + κ1 A1(γ1 A3 + σ2).

Thus

Nι =
Λ[(νλ∗ + φ + µ + ψ)(A9λ∗ + A10) + (νλ∗ + φ + µ + ψ)(A13λ∗ + A14)]

(νλ∗2 + A4λ∗ + A5)(A9λ∗ + A10)
. (A8)

Hence, from (A3) using (A5) and (A8), to get

λ∗ =
κ1 A1β(A3 + z)(σλ∗ + µ)(νλ∗ + φ + µ + νψ)λ∗

[(νλ∗ + φ + µ + ψ)(A9λ∗ + A10) + (νλ∗ + φ + µ + νψ)(A13λ∗ + A14)λ∗]
, (A9)

⇒

λ∗ − κ1 A1β(A3 + z)(σλ∗ + µ)(νλ∗ + φ + µ + νψ)λ∗

[(νλ∗ + φ + µ + ψ)(A9λ∗ + A10) + (νλ∗ + φ + µ + νψ)(A13λ∗ + A14)λ∗]
= 0,

⇒

λ∗ = 0 or 1− κ1 A1β(A3 + z)(σλ∗ + µ)(νλ∗ + φ + µ + νψ)

[(νλ∗ + φ + µ + ψ)(A9λ∗ + A10) + (νλ∗ + φ + µ + νψ)(A13λ∗ + A14)λ∗]
= 0,

⇒(νλ∗ + φ + µ + ψ)(A9λ∗ + A10) + (νλ∗ + φ + µ + νψ)(A13λ∗ + A14)λ
∗]

−κ1 A1β(A3 + z)(σλ∗ + µ)(νλ∗ + φ + µ + νψ).
(A10)

νλ∗(A9λ∗ + A10) + (φ + µ + ψ)(A9λ∗ + A10) + νλ∗2(A13λ∗ + A14) + (φ + µ + νψ)

(A13λ∗ + A14)λ
∗ − κ1 A1β(A3 + z)(σλ∗ + µ)νλ∗ − κ1 A1β(A3 + z)(σλ∗ + µ)(φ + µ + νψ) = 0.

(A11)

νA9λ∗2 + νA10λ∗ + A9(φ + µ + ψ)λ∗ + A10(φ + µ + ψ) + νA13λ∗3 + νA14λ∗2

+ A13(φ + µ + νψ)λ∗2 + A14(φ + µ + νψ)λ∗ − κ1 A1β(A3 + z)σλ∗2 − µκ1 A1β(A3 + z)νλ∗

− (φ + µ + νψ)κ1 A1β(A3 + z)σλ∗ − µ(φ + µ + νψ)κ1 A1β(A3 + z) = 0,

(A12)

νA13λ∗3 + A15λ∗2 + A16λ∗ + A17 = 0. (A13)

where

A15 =νA9 + νA14 + A13(φ + µ + νψ)− σνκ1 A1β(A3 + z)

A16 =νA10 + A9(φ + µ + ψ) + A14(φ + µ + νψ)− κ1 A1β(A3 + z)(µν + σ(φ + µ + νψ))

A17 =A10(φ + µ + ψ)(1− Rph).

(A14)

Here, Rph is the effective reproduction number given in (15).
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Clearly, it is evident that (Iι) is given by the positive real roots of the polynomial (A13).
The number of possible positive real roots of the cubic polynomial (A13) depends on the
signs of A15, A16, and A17. The following theorem can be established.

Appendix B

Proof of Theorem 7. To apply the method in presented in Theorem 4.1 of [6], the following
simplification and change of variables are made on the model system (23). Let

Sι = x1, Pι = x2, Eι = x3, Iι1 = x4, Iι2 = x5, Rι = x6, (A15)

so that
Nι = x1 + x2 + x3 + x4 + x5 + x6, (A16)

Also, by utilizing the vector notation X = (x1, x2, x3, x4, x5, x6)
T , then, the model

system (23) becomes dX
dt = ( f1, f2, f3, f4, f5, f6)

T as follows

dx1
dt = f1 = Λ + φx2 − (λ + ψ + µ)x1,

dx2
dt = f2 = ψx1 − (νλ + φ + µ)x2,

dx3
dt = f3 = λx1 + νλx2 + σλx6 − (κ1 + κ2 + µ)x3,

dx4
dt = f4 = κ1x3 + η2x5 − (η1 + γ1 + µ + δ1)x4,

dx5
dt = f5 = κ2x3 + η1x4 − (η2 + γ2 + µ + δ2)x5,

dx6
dt = f6 = γ1x4 + γ2x5 − (σλ + µ)x6,

(A17)

where

λ =
β(x4 + zx5)

Nι
, (A18)

The Jacobian of the system (A17), evaluated at the TFE, T0 (denoted by J(T0)), is
given by

J(T0) =



−(µ + ψ) φ 0 − βx0
1

N0
ι

− βzx0
1

N0
ι

0

ψ −(φ + µ) 0 − νβx0
2

N0
ι

− νβzx0
2

N0
ι

0

0 0 −A1
β(x0

1+νx0
2)

N0
ι

βz(x0
1+νx0

2)

N0
ι

0

0 0 κ1 −A2 η2 0

0 0 κ2 η1 −A3 0

0 0 0 γ1 γ2 −µ


, (A19)

where A1, A2, and A3 are as in (13), from which it has been shown in (14) that the effective
reproduction number, Rph is given by

Rph =
β(φ + µ + νψ)(κ1 A3 + κ2η2) + z(κ2 A2 + η1κ1)

A1(A2 A3 − η1η2)(ψ + φ + µ)
(A20)

Consider the case when Rph = 1. Suppose, further, that β = β0 is chosen as a bifur-
cation parameter, since Rph is often inconvenient to use directly as bifurcation parameter.
Solving for β gives Rph = 1 when
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β = β0 =
A1(A2 A3 − η1η2)(ψ + φ + µ)

β(φ + µ + νψ)(κ1 A3 + κ2η2) + z(κ2 A2 + η1κ1)
(A21)

The linearized system of the transformed model system (23) with β = β0 chosen
as a bifurcation parameter has a simple zero eigenvalue. We then calculate the right
eigenvector W and the left eigenvector V which are associated with the zero eigenvalue
of the Jacobian of (A19) at (denoted by Jβ0) chosen such that J(T0)W = 0 and V J(T0) = 0
with VW = 1, where

W = [w1, w2, w3, w4, w5, w6],

V = [v1, v2, v3, v4, v5, v6].

Then

J(T0)Wi =



−(µ + ψ) φ 0 − βx0

N0
ι

− zβx0

N0
ι

0

ψ −(φ + µ) 0 − νβx0

N0
ι

− zνβx0

N0
ι

0

0 0 −A1
βx0

1+νβx0
2

N0
ι

zβx0
1+νzβx0

2
N0

ι
0

0 0 κ1 −A2 η2 0

0 0 κ2 η1 −A3 0

0 0 0 γ1 γ2 −µ





w1
w2
w3
w4
w5
w6

 =



0
0
0
0
0
0

. (A22)

i.e.,

−(µ + ψ)w1 + φw2 −
βx0

1
N0

ι
w4 −

zβx0
1

N0
ι

w5 = 0,

ψw1 − (µ + φ)w2 −
νβx0

2
N0

ι
w4 −

zνβx0
2

N0
ι

w5 = 0,

−A1w3 +
βx0

1+νβx0
2

N0
ι

w4 +
zβx0

1+νzβx0
2

N0
ι

w5 = 0,

−κ1w3 + A2w4 + η2w5 = 0,

κ2w3 + η1w4 − A3w5 = 0,

γ1w4 + γ2w5 − µw6 = 0.

(A23)

Solving (A23), gives

w1 =
−A1(η2+zA2){φ(βx0

1+νβx0
2)+βx0

1((ψ+µ)(φ+µ)−ψφ)}w5

((ψ+µ)(φ+µ)−ψφ)(A1 A2 N0
ι −β(x0

1+νx0
2)κ1)(ψ+µ)

< 0,

w2 =
−A1(η2+zA2)x0

1+νx0
2)w5

((ψ+µ)(φ+µ)−ψφ)(A1 A2 N0
ι −β(x0

1+νx0
2)κ1)

< 0,

w3 =
β(x0

1+νx0
2)(η2+zA2)w5

A1 A2 N0
ι −β(x0

1+νx0
2)κ1

> 0,

w4 =
{η2 A1 N0

ι +κ1β(x0
1+νx0

2)z}w5

A1 A2 N0
ι −β(x0

1+νx0
2)κ1

> 0,

w5 > 0 (can take any value),

w6 =
{A1 N0

ι γ1η2+(A1 A2 N0
ι −β(x0

1+νx0
2)κ1)γ2+β(x0

1+νx0
2)κ1γ1z}w5

µ(A1 A2 N0
ι −β(x0

1+νx0
2)κ1)

> 0.

(A24)
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Similarly, calculating the left eigenvector V = (v1, v2, v3, v4, v5, v6)
T with V J(T0) = 0,

gives

J(T0)Vi = (v1, v2, v3, v4, v5, v6)



−(µ + ψ) φ 0 − βx0

N0
ι

− zβx0

N0
ι

0

ψ −(φ + µ) 0 − νβx0

N0
ι

− zνβx0

N0
ι

0

0 0 −A1
βx0+νβx0

N0
ι

zβx0+νzβx0

N0
ι

0

0 0 κ1 −A2 η2 0

0 0 κ2 η1 −A3 0

0 0 0 γ1 γ2 −µ


=



0
0
0
0
0
0

. (A25)

i.e.,
−(µ + ψ)v1 + ψv2 = 0,

φv1 − (µ + φ)v2 = 0,

−A1v3 + κ1v4 + κ2v5 = 0,

− βx0
1

N0
ι

v1 −
νβx0

2
N0

ι
v2 +

βx0
1+νβx0

2
N0

ι
v3 − A2v4 + η1v5 + γ1v6 = 0,

− zβx0
1

N0
ι

v1 −
νzβx0

2
N0

ι
v2 +

zβx0
1+νzβx0

2
N0

ι
v3 − η2v4 − A3v5 + γ2v6 = 0,

−µ1v6 = 0.

(A26)

Solving (A26), gives

v1 = v2 = v6 = 0,

v3 =
κ2{κ1β(x0

1+νx0
2)+(A1 A2 N0

ι −β(x0
1+νx0

2))}v5

A1 A2 N0
ι −β(x0

1+νx0
2)

> 0,

v4 =
β(x0

1+νx0
2))κ2v5

A1 A2 N0
ι −β(x0

1+νx0
2)κ1

> 0,

v5 > 0 (can take any value).

(A27)

The local dynamics of model system (23) around TB free equilibrium T0 are totally
calculated by a and b represented as

a =
n

∑
k,i,j=1

vkwiwj
∂2 fk(0, 0)

∂xi∂xj
, (A28)

b =
4

∑
k,i=1

vkwi
∂2 fk(0, 0)

∂xi∂ϕ
(0, 0). (A29)

Now, to determine the coefficients a and b described in Theorem 4.1 of Castillo Chavez
and Song [6] as follow:

a =
2v3β

N0
ι
(w1 + w2ν + w6σ)(w4 + w5z). (A30)
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and

b =
∂2 f3

∂x0
4∂β0

(0, 0) +
∂2 f3

∂x0
5∂β0

(0, 0) =
x0

1 + νx0
2 + σx0

6

N0
ι

+
zx0

1 + νzx0
2 + zσx0

6

N0
ι

> 0. (A31)

Hence, since a > 0 and b > 0, in this situation, it follows from Theorem 4.1 of Castillo
Chavez and Song that the system model (23) or the transformed model (A17), will undergo
a phenomenon of backward bifurcation when Rph = 1. Therefore, establishing that TB
endemic equilibrium is locally asymptotically stable if Rph < 1.
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