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Abstract: Our interest in this article is to develop oscillation conditions for solutions of higher order
differential equations and to extend recent results in the literature to differential equations of several
delays. We obtain new asymptotic properties of a class from the positive solutions of an even higher
order neutral delay differential equation. Then we use these properties to create more effective criteria
for studying oscillation. Finally, we present some special cases of the studied equation and apply the
new results to them.
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1. Introduction

When modeling the length of time required to accomplish some hidden activities, the
concept of delay in systems is considered as playing a crucial role. When the predator
birth rate is influenced by historical levels of predators or prey rather than only present
levels, the predator-prey model exhibits a delay. Sending measured signals to the remote
control center has been much easier because to the quick development of communication
technologies. The primary challenge for engineers, nevertheless, is the inescapable lag
between the measurement and the signal received by the controller. To minimize the
possibility of experimental instability and potential harm, this lag must be taken into
account at the design stage. Delay differential equations (DDE) appear when modeling
such phenomena, and others, see [1,2].

Many biological, chemical, and physical phenomena have mathematical models that
use differential equations of the fourth-order delay. Examples of these applications include
soil settlement and elastic issues. The oscillatory traction of a muscle, which takes place
when the muscle is subjected to an inertial force, is one model that can be modeled by
a fourth-order oscillatory equation with delay, see [3]. Heterogeneity in the Fisher-KPP
reaction term is a research topic of interest. Palencia et al. [4] studied the existence of
solutions, uniqueness, and travelling wave oscillatory properties.

Over the past few years, research has consistently focused on identifying necessary
conditions for the oscillatory and non-oscillatory features of fourth and higher-order differ-
ential equations; see for example [5–9].

Below, we review in more detail some of the works that contributed to the development
of the oscillation theory of higher order DDEs.

In 1998, Zafer [10] presented an oscillation criterion for the neutral differential equation
(NDE)
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(x(`) + p(`)x(ϑ(`)))(n) + G(`, x(`), x(h(`))) = 0, (1)

where G(`, u, v) ∈ ([0, ∞)×R×R) and vG(`, u, v) > 0 for uv > 0.
Li et al. [11] and Zhang et al. [12] created and developed criteria for oscillation of

the NDE
(x(`) + p(`)x(ϑ(`)))(n) + q(`)H(x(h(`))) = 0, (2)

The results obtained are an improvement and generalization of the results [10].
It is known that studies of the oscillatory behavior of solutions of differential equations

are classified into two types, depending on the convergence or divergence of the integration∫ `
`1

r−1/α(a)da as `→ ∞. This is a result of the effect of this influence on the behavior of the
positive solutions of the equation. In the case of equations with even orders, we find that
the divergence of this integration means that there are no positive decreasing solutions.

Baculikova and Dzurina [13] studied the asymptotic and oscillation behavior of the
solutions of the higher order delay differential equations(

r(`)
(
x′(`)

)α
)(n−1)

+ q(`)xα(ϑ(`)) = 0, (3)

They set some oscillation conditions for (3) under the canonical condition

∫ `

`1

r−1/α(a)da→ ∞ as `→ ∞. (4)

where α is the ratio of two positive odd integers.
Sun et al. [14] studied the oscillation of NDE

(r(`)(x(`) + p(`)x(ϑ(`))))(n) + q(`) f (x(h(`))) = 0, (5)

under both the canonical condition (4) and non-canonical condition∫ ∞

`0

1
r1/α(a)

da < ∞, (6)

where f (u)/u ≥ k > 0.
Moaaz et al. [15] investigated the oscillatory properties of NDE(

r(`)
(
(x(`) + p(`)x(ϑ(`)))(n−1)

)α)′
+ q(`)xα(h(`)) = 0, (7)

in the noncanonical case. They derived criteria for improving conditions that exclude the
decreasing positive solutions of the considered equation.

In this study, we consider the more general neutral differential equation (NDE) of
higher order and with several delays,

d
d`

(
r(`)

(
dn−1

d`n−1 [x(`) + p(`)x(ϑ(`))]
)α
)
+

J

∑
i=1

qi(`)xα(hi(`)) = 0, ` ≥ `0, (8)

which includes many of the previous equations as special cases. We deal with the oscillatory
behavior of the solutions of Equation (8), so that we introduce new criteria that guarantee
the oscillation of all solutions of this equation in the non-canonical condition. For this, we
assume the following for n and α:

(H1) n ∈ N, n ≥ 4, and α ∈ Q+
odd := {a/b : a, b ∈ Z+ and a, b are odd}.

Moreover, r, p and qi are continuous real functions on [`0, ∞), and r is differentiable,
which satisfy the conditions:

(H2) r(`) > 0, r′(`) ≥ 0, 0 ≤ p(`) < 1 and qi(`) ≥ 0 for i = 1, 2, . . . , J.
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Furthermore, ϑ and hi are continuous delay functions on [`0, ∞) and hi is differentiable,
which satisfy the conditions:

(H3) ϑ(`) ≤ `, hi(`) ≤ `, h′i(`) > 0. and lim`→∞ ϑ(`) = lim`→∞ hi(`) = ∞ for i =
1, 2, . . . , J.

For convenience, we define the corresponding function B := x + p · (x ◦ ϑ). A solution
to Equation (8) is defined as a real differentiable function on [`x, ∞), `x ≥ `0, which satisfies
the properties B ∈ C(n−1)([`x, ∞)), r(B(n−1))α ∈ C1([`x, ∞)) and x satisfies (8) on [`x, ∞).
We will consider the eventually non-zero solutions, that is, sup{|x(`)| : ` > `∗} > 0, for
`∗ ≥ `x. A solution of (8) is said to be oscillatory if it is neither eventually positive nor
eventually negative. Otherwise, it is said to be nonoscillatory.

This article aims to extend recent previous results from the literature (see for
example [16–19]) to differential equations with even-order and several delays, and to
develop oscillation criteria for solutions of even order differential equations. For a class of
positive solutions of NDE (8), we derive new asymptotic properties. Then, we construct
better criteria for evaluating oscillation using these properties. We then apply the new
results to a some particular cases of the equation under study.

2. Previous Results

In this part, we review some results from the literature.
Below, we review the most important results of paper [10], which studies the oscillatory

behavior of solutions to Equation (1).

Theorem 1 ([10]). Assume that ψ(`) ∈ C([`0, ∞), [0, ∞)) and that F ∈ C1([`0, ∞), [0, ∞)) such
that F′ ≥ 0,

|G(`, u, v)| ≥ ψ(`)F
(

|v|
(1− p(h(`)))hn−1(`)

)
,

and ∫ ζ

`0

1
F(a)

da < ∞ for all ζ > 0.

Then, all solutions of Equation (1) are oscillatory if∫ ∞

`0

ψ(a)da = ∞,

In the following theorem we give the oscillation condition of Equation (2).

Theorem 2 ([12]). Suppose that |H(u)| ≥ |u|, for all |u| ≥ u0 > 0. Then, all solutions of
Equation (2) are oscillatory if there is a λ ∈ (0, 1) such that the first-order DDE

Y′(`) +
λ

(n− 1)!
q(`)hn−1(`)(1− p(h(`)))Y(h(`)) = 0,

is oscillatory.

Now, we present one of the results of the oscillation of the Equation (3).

Theorem 3 ([13]). All solutions of Equation (3) are oscillatory if the first-order DDE

Y′(`) +
ααλα

(n− 2)!(n− 2 + α)α
q(`)ϑn−2+α(`)

r(ϑ(`))
Y(ϑ(`)) = 0,

is oscillatory, for some λ ∈ (0, 1).

In the following two theorems, Sun et al. [14] provide two different criteria for the
volatility of the Equation (5).
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Theorem 4 ([14]). Suppose that (4) holds and

h(`) ≤ ϑ(`), p(`) ≤ p0, ϑ′(`) ≥ ϑ0 > 0 and ϑ ◦ h = h ◦ ϑ. (9)

Then, all solutions of Equation (5) are oscillatory if

lim inf
`→∞

∫ `

ϑ−1(h(`))

hn−1(a)

r(h(a))
Q(a)da > (n− 1)!

(p0 + ϑ0)

kϑ0e
, (10)

where Q(`) = min{q(`), q(ϑ(`))}.

Theorem 5 ([14]). Suppose that (6) and (9) hold. Then, all solutions of Equation (5) are oscillatory
if (10) and

lim sup
`→∞

∫ `

`0

(
λ

(n− 2)!
ξ(a)Q(a)hn−2(a)− 1 + p0/ϑ0

4
1

r(a)ξ(a)

)
da = ∞,

for λ ∈ (0, 1), where ξ(`) :=
∫ ∞
` r−1/α(a)da.

Finally, we present one of the results that guarantees the oscillation of Equation (7) in
the non-canonical case.

Theorem 6 ([15]). Suppose that

lim sup
`→∞

∫ `

`0

q(a)
(

1− p(h(a))R0(a)
λhn−2(a)

(n− 2)!

)α

−
αα+1

(α+1)α+1

r1/α(a)R0(a)

da = ∞,

holds for some constant λ ∈ (0, 1) and

lim sup
`→∞

(
Rα

n−2(`)
∫ `

`1

q(a) p̃α(h(a))da
)
> 1.

Then all solutions of (7) are oscillatory, where

R0(`) :=
∫ ∞

`

1
r1/α(a)

da, Rn−2(`) :=
∫ ∞

`
Rn−3(a)da,

and

p̃(`) = 1− p(`)
Rn−2(ϑ(`))

Rn−2(`)
> 0.

In the next part, we review some lemmas from the literature that we will need in the
proof of our results.

Lemma 1 ([20]). Suppose that Y(`) ∈ Cm([`0, ∞),R+), Y(m)(`) is of constant sign and not iden-
tically zero on [`0, ∞). Assume also that Y(m−1)(`)Y(m)(`) ≤ 0, eventually, and limu→∞ Y(`) 6= 0.
Then, eventually,

Y(`) ≥ λ

(m− 1)!
um−1

∣∣∣Y(m−1)(`)
∣∣∣, for λ ∈ (0, 1).

Lemma 2 ([21]). Assume that $1 and $2 are real numbers, $1 > 0, then,

$1H(α+1)/α − $2H ≥ − αα

(α + 1)α+1
$α+1

2
$α

1
. (11)
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The following lemma classifies the positive solutions depending on the sign of their
derivatives, which is a modification of Lemma 1.1 in [22] for the studied equation.

Lemma 3. Suppose that x ∈ C([`0, ∞),R+) is a solution to (8). Then, B is positive, r ·
(
B(n−1)

)α

is decreasing, and B satisfies one of the following cases:

(N1) B(r)(`) > 0 for r = 1, 2, . . . , n− 1 and B(n)(`) < 0;

(N2) B(r)(`) > 0 for r = 1, 2, . . . , n− 2 and B(n−1)(`) < 0;

(N3) (−1)rB(r)(`) > 0 for r = 0, 1, 2, . . . , n− 1,

eventually.

3. Auxiliary Results

Next, we provide the following notations to help us display the results easily:

h(`) := min{hi(`), i = 1, . . . , J},

R0(`) :=
∫ ∞

`

1
r1/α(a)

da,

Rm(`) :=
∫ ∞

`
Rm−1(a)da, m = 1, 2, . . . , n− 2,

Q(`) :=
J

∑
i=1

qi(`)(1− p(hi(`)))
α

and

Q∗(`) :=
J

∑
i=1

qi(`)

(
1− p(hi(`))

Rn−2(ϑ(hi(`)))

Rn−2(hi(`))

)α

.

Further, we denote the set of all eventually positive solutions of (8) which B(`) satisfies
N2 by Ω.

Lemma 4. Assume that x ∈ Ω, then,(
r(`)

(
B(n−1)(`)

)α)′
≤ −Q(`)Bα(h(`)).

Proof. Assume that x ∈ Ω, we find B′(`) > 0. Since ϑ(`) ≤ `,then we have x(ϑ(`)) ≤
B(ϑ(`)) ≤ B(`), therefore, we get

x(`) = B(`)− p(`)x(ϑ(`)) ≥ B(`)− p(`)B(ϑ(`))
≥ (1− p(`))B(`). (12)

From (8) and (12), we have

(
r(`)

(
B(n−1)(`)

)α)′
= −

J

∑
i=1

qi(`)xα(hi(`)) ≤ −
J

∑
i=1

qi(`)(1− p(hi(`)))
αBα(hi(`))

≤ −Bα(h(`))
J

∑
i=1

qi(`)(1− p(hi(`)))
α ≤ −Bα(h(`))Q(`). (13)

The proof of the lemma is complete.

Lemma 5. Assume that x ∈ Ω, then, B(n−2)(`)/R0(`) is increasing.

Proof. Assume that x ∈ Ω. From (8) we find that r(`)
(
B(n−1)(`)

)α
is decreasing.
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Now, since

B(n−2)(`) ≥ −
∫ ∞

`

r1/α(a)

r1/α(a)
B(n−1)(a)da ≥ −R0(`)r1/α(`)B(n−1)(`), (14)

and so (
B(n−2)(`)

R0(`)

)′
=

1
r1/α(`)R2

0(`)

(
R0(`)r1/α(`)B(n−1)(`) + B(n−2)(`)

)
≥ 0. (15)

The proof of the lemma is complete.

Lemma 6. Assume that x ∈ Ω, and there are γ > 0 and `1 ≥ `0 such that

1
α

r1/α(`)R1+α
0 (`)

(
hn−2(`)

)α
Q(`) ≥ ((n− 2)!)αγ, (16)

then
lim
`→∞
B(n−2)(`) = 0,

where β0 = µ0γ1/α.

Proof. Assume that x ∈ Ω, using Lemma 1 with f = B and m = n− 1, we have

B(`) ≥ µ0

(n− 2)!
`n−2B(n−2)(`), (17)

for all µ0 ∈ (0, 1). Now, since B(n−2)(`) is a positive decreasing function, we conclude
that lim`→∞ B(n−2)(`) = c1 ≥ 0. We claim that c1 = 0. If not, then B(n−2)(`) ≥ c1 > 0
eventually, which with (17) gives

B(`) ≥ µ0

(n− 2)!
`n−2B(n−2)(`) ≥ µ0c1

(n− 2)!
`n−2,

for all µ0 ∈ (0, 1). Therefore, from (13), we have(
r(`)

(
B(n−1)(`)

)α)′
≤ −Q(`)Bα(h(`)) ≤ −

(
µ0c1

(n− 2)!
hn−2(`)

)α

Q(`)

≤ −µα
0cα

1

(
hn−2(`)

)α

((n− 2)!)α Q(`),

which with (16) becomes(
r(`)

(
B(n−1)(`)

)α)′
≤ −αcα

1µα
0γ

1
r1/α(`)R1+α

0 (`)
≤ −αcα

1 βα
0

1
r1/α(`)R1+α

0 (`)
. (18)

Integrating (18) from `2 to `, we have

r(`)
(
B(n−1)(`)

)α
≤ r(`2)

(
B(n−1)(`2)

)α
− αcα

1 βα
0

∫ `

`2

1
r1/α(a)R1+α

0 (a)
da

≤ βα
0cα

1

(
1

Rα
0(`2)

− 1
Rα

0(`)

)
. (19)
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Since R−α
0 (`)→ ∞ as `→ ∞, there is a `3 ≥ `2 such that R−α

0 (`)− R−α
0 (`2) ≥ εR−α

0 (`)
for all ε ∈ (0, 1). Therefore, (19) becomes

B(n−1)(`) ≤ −c1ε1/αβ0
1

r1/α(`)R0(`)
, (20)

for all ` ≥ `3. Integrating (20) from `3 to `, we have

B(n−2)(`) ≤ B(n−2)(`3)− c1ε1/αβ0

∫ `

`3

1
r1/α(a)R0(a)

da

≤ B(n−2)(`3)− c1ε1/αβ0 ln
R0(`3)

R0(`)
→ −∞ as `→ ∞,

which is a contradiction. Then, c1 = 0. The proof of the lemma is complete.

Lemma 7. Assume that x ∈ Ω, and (16) holds, then

B(n−2)(`)/Rβ0
0 (`) is decreasing (21)

and
B(n−2)(`)/R1−β0

0 (`) is increasing (22)

for ` ≥ `0, where β0 = µ0γ1/α, µ0 ∈ (0, 1) and α ≤ 1.

Proof. Assume that x ∈ Ω, from (13), (16) and (17), we obtain(
r(`)

(
B(n−1)(`)

)α)′
≤ −

αβα
0

r1/α(`)R1+α
0 (`)

(
B(n−2)(h(`))

)α
. (23)

By integrating (23) from `1 to ` and using the fact B(n−1)(`) < 0, we have

r(`)
(
B(n−1)(`)

)α
≤ r(`1)

(
B(n−1)(`1)

)α
− αβα

0

∫ `

`1

1
r1/α(a)R1+α

0 (a)

(
B(n−2)(h(a))

)α
da

≤ r(`1)
(
B(n−1)(`1)

)α
− αβα

0

(
B(n−2)(`)

)α
∫ `

`1

1
r1/α(a)R1+α

0 (a)
da

≤ r(`1)
(
B(n−1)(`1)

)α
+

βα
0

Rα
0(`1)

(
B(n−2)(`)

)α
−

βα
0

Rα
0(`)

(
B(n−2)(`)

)α
.

Since B(n−2)(`)→ 0 as `→ ∞ there is a `2 ≥ `1 such that

r(`1)
(
B(n−1)(`1)

)α
+

βα
0

Rα
0(`1)

(
B(n−2)(`)

)α
≤ 0,

for ` ≥ `2. Therefore, we get

r(`)
(
B(n−1)(`)

)α
≤ −

βα
0

Rα
0(`)

(
B(n−2)(`)

)α
,

and so
r1/α(`)B(n−1)(`)R0(`) + β0B(n−2)(`) ≤ 0, (24)

then (
B(n−2)(`)

Rβ0
0 (`)

)′
=

R0(`)r1/α(`)B(n−1)(`) + β0B(n−2)(`)

r1/α(`)R1+β0
0 (`)

≤ 0.

Now, from (13), (16), (17) and (24), we obtain
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(
r(`)

(
B(n−1)(`)

)α)′
≤ −

(
µ0

(n− 2)!
hn−2(`)

)α

Q(`)
(
B(n−2)(h(`))

)α

≤ −αβα
0

1
r1/α(`)R1+α

0 (`)

(
B(n−2)(h(`))

)α
(25)

and

r1/α(`)B(n−1)(`) ≤ −β0
B(n−2)(`)

R0(`)
,

and so (
r1/α(`)B(n−1)(`)

)1−α
≥
(

β0
B(n−2)(`)

R0(`)

)1−α

, (26)

Now, we find(
r1/α(`)B(n−1)(`)R0(`) + B(n−2)(`)

)′
=
(

r1/α(`)B(n−1)(`)
)′

R0(`)−B(n−1)(`) + B(n−1)(`)

=
(

r1/α(`)B(n−1)(`)
)′

R0(`)

=
1
α

(
r(`)

(
B(n−1)(`)

)α)′(
r1/α(`)B(n−1)(`)

)1−α
R0(`),

from (25) and (26), we get

(
r1/α(`)B(n−1)(`)R0(`) + B(n−2)(`)

)′
≤ −βα

0

(
B(n−2)(h(`))

)α

r1/α(`)R1+α
0 (`)

(
β0
B(n−2)(`)

R0(`)

)1−α

R0(`)

≤ −βα
0

(
B(n−2)(`)

)α

r1/α(`)Rα
0(`)

(
β0
B(n−2)(`)

R0(`)

)1−α

≤ −β0

r1/α(`)R0(`)
B(n−2)(`).

Integrating the last inequality from ` to ∞ and using (14), we obtain

−r1/α(`)B(n−1)(`)R0(`)−B(n−2)(`) ≤ −β0

∫ ∞

`

1
r1/α(a)R0(a)

B(n−2)(a)da,

and so

r1/α(`)B(n−1)(`)R0(`) + B(n−2)(`) ≥ β0

∫ ∞

`

1
r1/α(a)R0(a)

B(n−2)(a)da

≥ β0
B(n−2)(`)

R0(`)

∫ ∞

`

1
r1/α(a)

da

≥ β0B(n−2)(`),

which means that

r1/α(`)B(n−1)(`)R0(`) + (1− β0)B(n−2)(`) ≥ 0.

Then (
B(n−2)(`)

R1−β0
0 (`)

)′
=

R0(`)r1/α(`)B(n−1)(`) + (1− β0)B(n−2)(`)

r1/α(`)R2−β0
0 (`)

≥ 0. (27)



Axioms 2022, 11, 718 9 of 21

The proof of the lemma is complete.

Lemma 8. Assume that x ∈ Ω, and (16) holds, then

lim
`→∞
B(n−2)(`)/Rβ0

0 (`) = 0.

Proof. SinceB(n−2)(`)/Rβ0
0 (`) is a positive decreasing function, lim`→∞ B(n−2)(`)/Rβ0

0 (`) =

c2 ≥ 0. We claim that c2 = 0. If not, then B(n−2)(`)/Rβ0
0 (`) ≥ c2 > 0 eventually. Now, we

introduce the function

w(`) =
B(n−2)(`) + R0(`)r1/α(`)B(n−1)(`)

Rβ0
0 (`)

.

From (16), we note that w(`) > 0 and

w′(`) =
B(n−1)(`) + R0(`)

(
r1/α(`)B(n−1)(`)

)′
−B(n−1)(`)

Rβ0
0 (`)

+β0
B(n−2)(`) + R0(`)r1/α(`)B(n−1)(`)

r1/α(`)R1+β0
0 (`)

=

(
r1/α(`)B(n−1)(`)

)′
Rβ0−1

0 (`)
+ β0

B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−1)(`)

Rβ0
0 (`)

=
1
α

(
r(`)

(
B(n−1)(`)

)α)′(
r1/α(`)B(n−1)(`)

)1−α

Rβ0−1
0 (`)

+β0
B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−1)(`)

Rβ0
0 (`)

.

using (25) and (26), we have

w′(`) ≤ −
βα

0

Rβ0−1
0 (`)

1
r1/α(`)R1+α

0 (`)

(
B(n−2)(h(`))

)α
(

β0
B(n−2)(`)

R0(`)

)1−α

+β0
B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−1)(`)

Rβ0
0 (`)

.

Since B(n−1)(`) < 0, h(`) ≤ `, we find B(n−2)(h(`)) ≥ B(n−2)(`), and then

w′(`) ≤ −
βα

0

Rβ0−1
0 (`)

1
r1/α(`)R1+α

0 (`)

(
B(n−2)(`)

)α
(

β0
B(n−2)(`)

R0(`)

)1−α

+β0
B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−1)(`)

Rβ0
0 (`)

≤ −β0
B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−1)(`)

Rβ0
0 (`)

≤ β0
B(n−1)(`)

Rβ0
0 (`)

.

Since B(n−2)(`)/Rβ0
0 (`) ≥ c2, and (24) holds, we obtain
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w′(`) ≤ β0
B(n−1)(`)

Rβ0
0 (`)

≤ −B
(n−2)(`)

Rβ0
0 (`)

β2
0

r1/α(`)R0(`)

≤
−c2β2

0
r1/α(`)R0(`)

< 0. (28)

The function w(`) converges to a non-negative constant because it is a positive de-
creasing function. Integrating (28) from `3 to ∞, we have

−w(`3) ≤ −β2
0c2 lim

`→∞
ln

R0(`3)

R0(`)
,

and so

w(`3) ≥ β2
0c2 lim

`→∞
ln

R0(`3)

R0(`)
→ ∞,

which is a contradiction and we get that c2 = 0. The proof of the lemma is complete.

If β0 ≤ 1/2, we can improve the properties in Lemma 7, as in the following lemma.

Lemma 9. Assume that x ∈ Ω, and (16) holds. If

lim
`→∞

R0(h(`))
R0(`)

= δ < ∞, (29)

and there exists an increasing sequence {βr}m
r=1 defined as

βr := β0
δβr−1

(1− βr−1)
1/α

,

with α ≤ 1, β0 = µ0γ1/α, βm−1 ≤ 1/2 and βm, µ0 ∈ (0, 1), then,

B(n−2)(`)/Rβm
0 (`) is decreasing. (30)

Proof. Since x ∈ Ω, from Lemma 7, we have that (21) and (22) hold.
Now, assume that β0 ≤ 1/2 and

β1 := β0
δβ0

(1− β0)
1/α

.

Next, we will prove (30) at m = 1. As in the proof of Lemma 7 we find(
r(`)

(
B(n−1)(`)

)α)′
≤ −αβα

0
1

r1/α(`)R1+α
0 (`)

(
B(n−2)(h(`))

)α
. (31)

Integrating (31) from `1 to `, and using (21) and (29), we have
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r(`)
(
B(n−1)(`)

)α

≤ r(`1)
(
B(n−1)(`1)

)α
− αβα

0

∫ `

`1

(
B(n−2)(h(a))

)α

r1/α(a)R1+α
0 (a)

da

≤ r(`1)
(
B(n−1)(`1)

)α
− αβα

0

∫ `

`1

Rαβ0
0 (h(a))

r1/α(a)R1+α
0 (a)

(
B(n−2)(a)

Rβ0
0 (a)

)α

da

≤ r(`1)
(
B(n−1)(`1)

)α
− αβα

0

(
B(n−2)(`)

Rβ0
0 (`)

)α ∫ `

`1

R−1−α+αβ0
0 (a)

r1/α(a)

Rαβ0
0 (h(a))

Rαβ0
0 (a)

da

≤ r(`1)
(
B(n−1)(`1)

)α
− αβα

0δαβ0

(
B(n−2)(`)

Rβ0
0 (`)

)α ∫ `

`1

R−1−α+αβ0
0 (a)

r1/α(a)
da

≤ r(`1)
(
B(n−1)(`1)

)α
−

βα
0δαβ0

1− β0

(
B(n−2)(`)

Rβ0
0 (`)

)α(
1

Rα(1−β0)
0 (`)

− 1

Rα(1−β0)
0 (`1)

)

≤ r(`1)
(
B(n−1)(`1)

)α
+ βα

1
1

Rα(1−β0)
0 (`1)

(
B(n−2)(`)

Rβ0
0 (`)

)α

− βα
1

(
B(n−2)(`)

R0(`)

)α

.

Since B(n−2)(`)/Rβ0
0 (`)→ 0 as `→ ∞, we get

r(`1)
(
B(n−1)(`1)

)α
+ βα

1
1

Rα(1−β0)
0 (`1)

(
B(n−2)(`)

Rβ0
0 (`)

)α

≤ 0.

Hence, we have

r(`)
(
B(n−1)(`)

)α
≤ −βα

1

(
B(n−2)(`)

R0(`)

)α

,

and so
r1/α(`)B(n−1)(`)R0(`) + β1B(n−2)(`) ≤ 0,

then (
B(n−2)(`)

Rβ1
0 (`)

)′
=

R0(`)r1/α(`)B(n−1)(`) + β1B(n−2)(`)

r1/α(`)R1+β1
0 (`)

≤ 0.

By repeating the same approach used previously, we can prove that(
B(n−2)(`)

R1−β1
0 (`)

)′
≥ 0.

Similarly, if βk−1 < βk ≤ 1/2, then we can prove

r1/α(`)B(n−1)(`)R0(`) + βkB(n−2)(`) ≤ 0, (32)

for k = 2, 3, . . . , m. The proof of the lemma is complete.

Lemma 10. Assume that x is a positive solution of (8) and B satisfies N3. Then(
B(`)

Rn−2(`)

)′
≥ 0. (33)

Proof. Assume that x is a positive solution of (8) and B satisfies N3. From (8), we find

r(`)
(
B(n−1)(`)

)α
is decreasing, and so
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r1/α(`)B(n−1)(`)
∫ ∞

`

1
r1/α(a)

da ≥
∫ ∞

`

1
r1/α(a)

r1/α(a)B(n−1)(a)da

= lim
`→∞
B(n−2)(`)−B(n−2)(`). (34)

Since B(n−2)(`) is a positive decreasing function, we have that B(n−2)(`) converges to
a nonnegative constant when `→ ∞. Thus, (34) becomes

−B(n−2)(`) ≤ r1/α(`)B(n−1)(`)R0(`), (35)

from (35), we get

(
B(n−2)(`)

R0(`)

)′
=

(
r1/α(`)R0(`)B(n−1)(`) + B(n−2)(`)

)
r1/α(`)R2

0(`)
≥ 0,

which leads to

−B(n−3)(`) ≥
∫ ∞

`

B(n−2)(a)

R0(a)
R0(a)da ≥

B(n−2)(`)

R0(`)

∫ ∞

`
R0(a)da

=
B(n−2)(`)

R0(`)
R1(a).

This implies(
B(n−3)(`)

R1(`)

)′
=

R1(`)B(n−2)(`) + B(n−3)(`)R0(`)

R2
1(`)

≤ 0.

Similarly, we repeat the same previous process (n− 4) times, we have(
B′(`)

Rn−3(`)

)′
≤ 0.

Now,

−B(`) ≤
∫ ∞

`

B′(a)
Rn−3(a)

Rn−3(a)da ≤
B′(`)

Rn−3(`)

∫ ∞

`
Rn−3(a)da

=
B′(`)

Rn−3(`)
Rn−2(`).

This implies (
B(`)

Rn−2(`)

)′
=

Rn−2(`)B′(`) + B(`)Rn−3(`)

R2
n−2(`)

≥ 0.

The proof of the lemma is complete.

4. Main Results

In the following theorems, we prove that there are no positive solutions that satisfy
case N2.

Theorem 7. Assume that (16) holds. If

β0 > 1/2, (36)

for some µ0 ∈ (0, 1), then the class Ω is empty, where β0 is defined as in Lemma 7.
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Proof. Assume the contrary that x ∈ Ω. From Lemma 7, we have that the functions
B(n−2)(`)/Rβ0

0 (`) and B(n−2)(`)/R1−β0
0 (`) are decreasing and increasing for ` ≥ `1, respec-

tively. In another meaning, we have

r1/α(`)B(n−1)(`)R0(`) + β0B(n−2)(`) ≤ 0 (37)

and
r1/α(`)B(n−1)(`)R0(`) + (1− β0)B(n−2)(`) ≥ 0. (38)

from (37) and (38), we get

0 ≤ r1/α(`)B(n−1)(`)R0(`) + (1− β0)B(n−2)(`)

= r1/α(`)B(n−1)(`)R0(`) + β0B(n−2)(`) + B(n−2)(`)− 2β0B(n−2)(`)

≤ (1− 2β0)B(n−2)(`).

Since B(n−2)(`) > 0, must be 1− 2β0 ≥ 0, which measn that

β0 ≤ 1/2,

a contradiction. The proof of the theorem is complete.

Theorem 8. Assume that (16) and (29) hold. If there exists a positive integer number m such that

w′(`) +
1
α

µα
0 β1−α

m

((n− 2)!)α(1− βm)

R0(`)

R1−α
0 (h(`))

(
hn−2(`)

)α
Q(`)w(h(`)) = 0, (39)

then the class Ω is empty, where α ≤ 1 and βm is defined as in Lemma 9.

Proof. Assume the contrary, that x ∈ Ω. From Lemma 9, we have that (30) holds.
Now, we define the function

w(`) = r1/α(`)B(n−1)(`)R0(`) + B(n−2)(`).

It follows from (14) that w(`) > 0 for ` ≥ `1. From (30), we obtain

r1/α(`)B(n−1)(`)R0(`) ≤ −βmB(n−2)(`).

Then, from the definition of w(`), we find

w(`) = r1/α(`)B(n−1)(`)R0(`) + βmB(n−2)(`)− βmB(n−2)(`) + B(n−2)(`)

≤ (1− βm)B(n−2)(`). (40)

From (17) and (13), we get

w′(`) =
(

r1/α(`)B(n−1)(`)
)′

R0(`) ≤
1
α

(
r(`)

(
B(n−1)(`)

)α)′(
r1/α(`)B(n−1)(`)

)1−α
R0(`)

≤ − 1
α

Q(`)Bα(h(`))
(

r1/α(`)B(n−1)(`)
)1−α

R0(`)

≤ − 1
α

Q(`)Bα(h(`))

(
βm
B(n−2)(`)

R0(`)

)1−α

R0(`)

≤ − 1
α

β1−α
m Q(`)R0(`)Bα(h(`))

(
B(n−2)(`)

R0(`)

)1−α

≤ − 1
α

β1−α
m Q(`)R0(`)

(
µ0

(n− 2)!
hn−2(`)

)α(
B(n−2)(h(`))

)α
(
B(n−2)(`)

R0(`)

)1−α

,
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from (15), we note that B(n−2)(`)/R0(`) is increasing, then

B(n−2)(h(`))
R0(h(`))

≤ B
(n−2)(`)

R0(`)

and (
B(n−2)(h(`))

R0(h(`))

)1−α

≤
(
B(n−2)(`)

R0(`)

)1−α

,

then, we have

w′(`) ≤ − 1
α

β1−α
m Q(`)R0(`)

(
µ0

(n− 2)!
hn−2(`)

)α(
B(n−2)(h(`))

)α
(
B(n−2)(h(`))

R0(h(`))

)1−α

≤ − 1
α

β1−α
m µα

0
((n− 2)!)α Q(`)

R0(`)

R1−α
0 (h(`))

(
hn−2(`)

)α
B(n−2)(h(`)),

which, from (40), gives

w′(`) +
1
α

µα
0 β1−α

m

((n− 2)!)α(1− βm)

R0(`)

R1−α
0 (h(`))

(
hn−2(`)

)α
Q(`)w(h(`)) ≤ 0. (41)

Hence, w(`) is a positive solution of (41). Using [[23], Corollary 1], we see that (39)
also has a positive solution, a contradiction. This contradiction completes the proof of
the theorem.

Corollary 1. Assume that (16) and (29) hold. If

lim inf
`→∞

∫ `

h(`)

1
α

R0(a)
(
hn−2(a)

)αQ(a)

R1−α
0 (h(a))

da >
βα−1

m (1− βm)((n− 2)!)α

e
, (42)

holds, then the class Ω is empty.

Theorem 9. Assume that (16) and (29) hold. If

lim sup
`→∞

∫ `

`0

[(
λhn−2(a)

(n− 2)!

)α Rαβm
0 (h(a))

R−α(1−βm)
0 (a)

Q(a)− αα+1

(1 + α)1+α

1
R0(a)r1/α(a)

]
da = ∞, (43)

holds for some constant λ ∈ (0, 1), then the class Ω is empty.

Proof. Assume the contrary that x ∈ Ω. Define the function w by

w(`) =
r(`)

(
B(n−1)(`)

)α

(
B(n−2)(`)

)α , ` ≥ `1. (44)

Then w(`) < 0 for ` ≥ `1. Since r(`)
(
B(n−1)(`)

)α
is decreasing, we have

r1/α(a)B(n−1)(a) ≤ r1/α(`)B(n−1)(`),

for a ≥ ` ≥ `1. By dividing the last inequality by r1/α(a) and integrating it from ` to ∞,
we obtain

0 ≤ B(n−2)(`) + r1/α(`)B(n−1)(`)
∫ l

`

1
r1/α(a)

da,

and so
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0 ≤ B(n−2)(`) + r1/α(`)B(n−1)(`)R0(`),

which produces

− r1/α(`)B(n−1)(`)

B(n−2)(`)
R0(`) ≤ 1.

Hence, from (44), we find
− w(`)Rα

0(`) ≤ 1. (45)

From (44), we have

w′(`) =

(
r(`)

(
B(n−1)(`)

)α)′
(
B(n−2)(`)

)α − α
r(`)

(
B(n−1)(`)

)α+1

(
B(n−2)(`)

)α+1

≤ −Q(`)Bα(h(`))(
B(n−2)(`)

)α − α
w(α+1)/α

r1/α(`)
.

Using Lemma 1, we get

B(h(`)) ≥ λ

(n− 2)!
hn−2(`)B(n−2)(h(`)),

for every λ ∈ (0, 1) and for all sufficiently large `. Then,

w′(`) ≤ −Q(`)

(
λ

(n− 2)!
hn−2(`)

)α

(
B(n−2)(h(`))

)α

(
B(n−2)(`)

)α − α
w(α+1)/α(`)

r1/α(`)
.

Since B(n−2)(`)/Rβm
0 (`) is decreasing, then

B(n−2)(`) ≤ B
(n−2)(h(`))

Rβm
0 (h(`))

Rβm
0 (`), (46)

for h(`) ≤ `, thus

w′(`) ≤ −Q(`)
Rαβm

0 (h(`))

Rαβm
0 (`)

(
λ

(n− 2)!
hn−2(`)

)α

− α
w(α+1)/α(`)

r1/α(`)
. (47)

Multiplying (47) by Rα
0(`) and integrating it from `1 to `, we obtain

Rα
0(`)w(`)− Rα

0(`1)w(`1) + α
∫ `

`1

Rα−1
0 (a)

r1/α(a)
w(a)da

+
∫ `

`1

Q(a)
Rαβm

0 (h(a))

R−α(1−βm)
0 (a)

(
λhn−2(a)

(n− 2)!

)α

da+ α
∫ `

`1

w(α+1)/α(a)

r1/α(a)
Rα

0(a)da ≤ 0.

Using (11) with

$1 :=
Rα

0(a)

r1/α(a)
, $2 :=

Rα−1
0 (a)

r1/α(a)
and u := −w(a),

we have

∫ `

`1

[(
λhn−2(a)

(n− 2)!

)α Rαβm
0 (h(a))

R−α(1−βm)
0 (a)

Q(a)− αα+1

(1 + α)1+α

1
R0(a)r1/α(a)

]
da

≤ Rα
0(`1)w(`1) + 1,
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due to (45), which contradicts (43). This completes the proof of the theorem.

In the following theorems, we establish new oscillation criteria for (8).

Theorem 10. Let (16) and (29) hold. Assume that

lim inf
`→∞

∫ `

h(`)
Q(a)

(
hn−1(a)

)α

r(h(a))
da >

((n− 1)!)α

e
, (48)

(43) and

lim sup
`→∞

∫ `

`1

[
Q∗(a)Rα

n−2(a)−
αα+1

(α + 1)α+1
Rn−3(a)

Rn−2(a)

]
da = ∞, (49)

hold for some constant λ ∈ (0, 1), then, every solution of (8) is oscillatory.

Proof. Assume that Equation (8) has a non-oscillatory solution x. Without loss of generality,
we may assume that x is eventually positive. It follows from Equation (8) that there exist
three possible cases as in Lemma 3.

Assume that N1 holds. Using Lemma 1, we have

B(`) ≥ λ`n−1

(n− 1)!r1/α(`)

(
r1/α(`)B(n−1)(`)

)
, (50)

for every λ ∈ (0, 1) and for all sufficiently large `. Using (8) and (50), we obtain

(
r(`)

(
B(n−1)(`)

)α)′
= −

J

∑
i=1

qi(`)xα(hi(`))

≤ −Q(`)Bα(h(`))

≤ −Q(`)
λα
(
hn−1(`)

)α

((n− 1)!)αr(h(`))
r(h(`))

(
B(n−1)(h(`))

)α
.

Letting w(`) := r(`)
(
B(n−1)(`)

)α
, we find

w′(`) + Q(`)
λα
(
hn−1(`)

)α

((n− 1)!)αr(h(`))
w(h(`)) ≤ 0. (51)

This is a contradiction because condition (48) guarantees that (51) has no positive
solution according to Theorem 2.1.1 in [24].

Assume that case N2 holds. The proof of the N2 is the same as that of Theorem 9.

Assume that N3 holds. Since r(`)
(
B(n−1)(`)

)α
is decreasing, we have

r1/α(a)B(n−1)(a) ≤ r1/α(`)B(n−1)(`),

for a ≥ ` ≥ `1. By dividing the last inequality by r1/α(a) and integrating it from ` to ∞,
we have

0 ≤ B(n−2)(`) + r1/α(`)B(n−1)(`)
∫ ∞

`

1
r1/α(a)

da,

and so
0 ≤ B(n−2)(`) + r1/α(`)B(n−1)(`)R0(`),

which leads to
B(n−2)(`) ≥ −r1/α(`)B(n−1)(`)R0(`). (52)
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Integrating (52) from ` to ∞ yields

−B(n−3)(`) ≥ −
∫ ∞

`
r1/α(a)B(n−1)(a)R0(a)da ≥ −r1/α(`)B(n−1)(`)

∫ ∞

`
R0(a)da

≥ −r1/α(`)B(n−1)(`)R1(`). (53)

Similarly, Integrating (53) from ` to ∞ a total of (n− 4) times, we have

−B′(`) ≥ −r1/α(`)B(n−1)(`)Rn−3(`). (54)

Integrating (54) from ` to ∞ provides

B(`) ≥ −r1/α(`)B(n−1)(`)Rn−2(`). (55)

Now, define the function w by

w(`) =
r(`)

(
B(n−1)(`)

)α

Bα(`)
, ` ≥ `1. (56)

Then w(`) < 0 for ` ≤ `1. Differentiating (56), we obtain

w′(`) =

(
r(`)

(
B(n−1)(`)

)α)′
Bα(`)

− α
r(`)

(
B(n−1)(`)

)α
B′(`)

Bα+1(`)
.

It follows from (8) and (56) that

w′(`) ≤ −∑J
i=1 qi(`)xα(hi(`))

Bα(`)
− α

r(`)
(
B(n−1)(`)

)α

Bα(`)

r1/α(`)B(n−1)(`)

B(`) Rn−3(`). (57)

Since
x(`) = B(`)− p(`)x(ϑ(`)) ≥ B(`)− p(`)B(ϑ(`)), (58)

from (33), we see that B(`)/Rn−2(`) is increasing, consequently

B(`)
Rn−2(`)

≥ B(ϑ(`))
Rn−2(ϑ(`))

,

for ϑ(`) ≤ `. From (58), we have

x(`) ≥
(

1− p(`)
Rn−2(ϑ(`))

Rn−2(`)

)
B(`),

and

x(hi(`)) ≥
(

1− p(hi(`))
Rn−2(ϑ(hi(`)))

Rn−2(hi(`))

)
B(hi(`))

also

J

∑
i=1

qi(`)xα(hi(`)) ≥
J

∑
i=1

qi(`)

(
1− p(hi(`))

Rn−2(ϑ(hi(`)))

Rn−2(hi(`))

)α

Bα(hi(`))

≥ Bα(h(`))
J

∑
i=1

qi(`)

(
1− p(hi(`))

Rn−2(ϑ(hi(`)))

Rn−2(hi(`))

)α

= Q∗(`)Bα(h(`)).

Now, we see that (57) becomes
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w′(`) ≤ −Q∗(`)
Bα(h(`))
Bα(`)

− α
r(`)

(
B(n−1)(`)

)α

Bα(`)

r1/α(`)B(n−1)(`)

B(`) Rn−3(`). (59)

Multiplying (59) by Rα
n−2(`) and integrating it from `1 to `, we have

Rα
n−2(`)w(`)− Rα

n−2(`1)w(`1) + α
∫ `

`1

Rα−1
n−2(a)Rn−3(a)w(a)da

+
∫ `

`1

Q∗(a)Rα
n−2(a)da+ α

∫ `

`1

Rn−3(a)Rα
n−2(a)w

(α+1)/α(a)da ≤ 0.

Using (11) with

$1 := Rn−3(a)Rα
n−2(a), $2 := Rα−1

n−2(a)Rn−3(a) and u := −w(a),

we get ∫ `

`1

[
Q∗(a)Rα

n−2(a)−
αα+1

(α + 1)α+1
Rn−3(a)

Rn−2(a)

]
da ≤ Rα

n−2(`1)w(`1) + 1,

due to (55), which contradicts (49). Therefore, every solution of (8) is oscillatory.

Theorem 11. Let (16) and (29) hold. Assume that (42), (48) and (49) hold for some constant
λ ∈ (0, 1), then, every solution of (8) is oscillatory.

Example 1. Consider the NDE

(
`4α
(
(x(`) + p0x(ϑ0`))

′′′
)α)′

+
J

∑
i=1

q0`
α−1xα(hi`) = 0, ` ≥ 1, (60)

where 0 ≤ p0 < 1, ϑ0, h0 ∈ (0, 1) and q0 > 0. By comparing (8) and (60) we see that n = 4,
r(`) = `4α, qi(`) = q0`

α−1, p(`) = p0, ϑ(`) = ϑ0`, hi(`) = hi`. It is easy to find that

R0(`) =
1

3`3 , R1(`) =
1

6`2 , R2(`) =
1
6`

and
Q(`) = Jq0`

α−1(1− p0)
α.

For (16), we set

γ =
J
α

h2α
0 q0

2α3α+1 (1− p0)
α,

where h0` = min{hi`, i = 1, . . . , J}. From (29), we get

δ =
1
h3

0
.

Now, we define the sequence {βr}m
r=1 as

βr = β0
1

(1− βr−1)
1/α

(
1
h0

)3βr−1

,

with

β0 =
J1/αµ0q1/α

0
6α1/α31/α

h2
0(1− p0).

Then, condition (36) reduces to
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q0 >
3α+1α(

Jµ0h2
0(1− p0)

)α , (61)

and condition (42) becomes

lim inf
`→∞

∫ `

h(`)

1
α

R0(`)
(
hn−2(a)

)αQ(a)

R1−α
0 (h(`))

da

= lim inf
`→∞

∫ `

h0`

1
α

1
3a3 h2α

0 a2α31−αa3−3αh3−3α
0 Jq0a

α−1(1− p0)
αda

=
1
α

J
3α

h3−α
0 q0(1− p0)

α ln
1
h0

,

which leads to
1
α

J
6α

h3−α
0 q0(1− p0)

α ln
1
h0

>
βα−1

m (1− βm)

e
, (62)

while condition (43) becomes

lim sup
`→∞

∫ `

`0

[(
λhn−2(a)

(n− 2)!

)α Rαβm
0 (h(a))

R−α(1−βm)
0 (a)

Q(a)− αα+1

(1 + α)1+α

1
R0(a)r1/α(a)

]
da

= lim sup
`→∞

∫ `

`0

[
λα

2α
h2α

0 a2α 1
3αa3α

1

h3αβm
0

Jq0a
α−1(1− p0)

α − αα+1

(1 + α)1+α
3a3 1

a4

]
da

=

[
λα

6α

J

h3αβm−2α
0

q0(1− p0)
α − 3αα+1

(1 + α)1+α

]
lim sup
`→∞

ln
`

`0
=∞,

which is achieved if
λα

6α

J

h3αβm−2α
0

q0(1− p0)
α >

3αα+1

(1 + α)1+α
. (63)

Using Theorem 7, Corollary 1 and Theorem 9, we note that the class Ω is empty if either (61),
(62) or (63) holds, respectively.

Example 2. Consider the NDE (60) where α = 1, p0 = 1/2, 2ϑ0 > 1 and J = 3, then
(60) becomes(

`4

((
x(`) +

1
2

x(ϑ0`)

)′′′))′
+ q0(x(h1u) + x(h2u) + x(h3u)) = 0, ` ≥ 1. (64)

Clearly
h(`) = min{hi(`), i = 1, 2, 3} = h0`

and
Q(`) =

3
2

q0.

For (16), we set

γ =
1
12

h2
0q0.

Form (29), we have δ = 1/h3
0. Now, we define the sequence {βr}m

r=1 as

βr = β0
1

(1− βr−1)
1/α

(
1
h0

)3βr−1

,

with
β0 =

1
12

µ0h2
0q0.
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Then, condition (36) reduces to

q0 >
6

µ0h2
0

, (65)

and condition (48) becomes

lim inf
`→∞

1
(n− 1)!

∫ `

h(`)
Q(a)

hn−1(a)

r(h(a))
da = lim inf

`→∞

1
6

∫ `

h0`

3
2

q0
h3

0a
3

h4
0a

4
da

=
1
4

q0

h0
ln

1
h0

,

which leads to
1
4

q0

h0
ln

1
h0

>
1
e

, (66)

while condition (49) is abbreviated to

lim sup
`→∞

∫ `

`1

[
Q∗(a)Rα

n−2(a)−
αα+1

(α + 1)α+1
Rn−3(a)

Rn−2(a)

]
da

= lim sup
`→∞

∫ `

`1

[
3q0

(
1− 1

2
1
ϑ0

)
1
6
− 1

4

]
1
a

da

=

[
1
2

q0

(
1− 1

2
1
ϑ0

)
− 1

4

]
lim sup
`→∞

ln
`

`1
= ∞,

which is achieved when

q0

(
1− 1

2
1
ϑ0

)
>

1
2

. (67)

From Theorem 10 we see that every solution of (64) is oscillatory if (65), (66) and (67) holds.

5. Conclusions

In this paper, we have investigated the asymptotic properties of positive solutions
of even-order neutral differential equations in the non-canonical case. We introduced
several auxiliaries and important results on which our results depend. We used different
techniques, including the Recati technique, and the comparison method to create the
oscillation criteria for the studied equation. Finally, we provided some examples as special
cases of the studied equation to illustrate the possibility of applying the results we obtained.
Our obtained theorems not only generalize the existing results in the literature but also can
be used to plan future research papers in a variety of directions. For example:

(1) One can consider Equation (8) with

B := x + p1 · (x ◦ ϑ) + p2 · (x ◦ τ)

where τ(`) ≤ `.
(2) It would be of interest to extend the results of this paper for higher order equations

of type (8), where n ≥ 3 is an odd natural number.
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