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Abstract: A direct application of autoregressive (AR) models with independent and identically
distributed (iid) errors is sometimes inadequate to fit the time series data well. A natural alternative
is further to assume the model errors following an AR process, whose structure however has essential
impacts on the statistical inferences related to the autoregressive models. In this paper, we construct
a new unified test for checking the AR error structure based on the empirical likelihood method. The
proposed test is desirable because its limit distribution is always chi-squared regardless of whether
the autoregressive model is stationary or non-stationary, with or without an intercept term. Some
simulations are also provided to illustrate the finite sample performance of this test. Finally, we apply
the proposed test to a financial real data set.
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1. Introduction

When auxiliary variables are not available, autoregressive models are widely used to
model this kind of time series data. Typically, the response is often assumed to depend
linearly on its previous values. Among all autoregressive models, the autoregressive model
of the first order, i.e., AR(1), is the simplest, which takes the following form:

Xt = µ + φXt−1 + εt, t = 1, 2, · · · , n, (1)

where µ and φ are unknown parameters with µ being the intercept item and φ the autore-
gression coefficient, and {εt} denotes the sequence of random errors or innovations having
means of zero.

In many previous studies, a considerable amount of work has been provided on
statistical inferences [1–6] and related applications [7–9] for AR models. In terms of prac-
tical applications, AR models are commonly used to describe the behavior of inflation or
logarithmic exchange rate, where people are interested in whether there is a unit root or
persistence of related variables. However, a precondition for an accurate unit root test or
persistence test is that the model is properly fitted so that the parameters can be reasonably
estimated. To guarantee this, it is important to perform predefined tests, e.g., the unit root
test and serial correlation test, on the rationality of using the AR model before conducting
a relevant economic analysis.

Among them, the unit root test is the most commonly mentioned. Note that the limit
distributions of the estimators of µ and φ depend on whether the process {Xt} is stationary
or non-stationary, i.e., Case (i) |φ| < 1 (stationary), Case (ii) µ = 0 and φ = 1 + c

n for
some nonzero constant c (nearly integrated if c 6= 0, and unit root if c = 0), and Case (iii)
µ 6= 0 and φ = 1 + c

n for some nonzero constant c (nearly integrated if c 6= 0). It is well
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known that when the AR process has a unit root, its many statistical procedures have quite
complex limit distributions, differing from that for the stationary case. Hence, various
testing methods have been developed in the past decades to address the issue of unit root,
including the augmented Dickey–Fuller (ADF) test [10], the Phillips–Perron (PP) test [11],
the DF–GLS test [3], and the KPSS test [12], etc.

It is worth mentioning that if the true underlying innovations are correlated, the finite
sample performance of the tests above may be greatly affected. To improve the efficiency
of the estimation, a natural idea is to take into account the special structure of the errors if
available. Note that it is common to assume that the errors further follow an AR process
when they are correlated, while the performance of some testing procedures can be greatly
improved once the AR structure has been addressed sufficiently, as shown in [13,14].

In detail, Ref. [13] considered the following autoregressive model with AR errors:{
Xt = µ + φXt−1 + εt,
et = εt + ∑

p
i=1 ψiεt−i.

(2)

where ψ = (ψ1, ψ2, · · · , ψp)> denotes the vector of unknown parameters involved in
the AR errors, and et denotes the random error involved in εt. Compared to Model (1),
Ref. [13] here further assumed that εt follows an AR process. Note that (2) implies
εt = ∑

p
i=1(−ψi)εt−i + et. A unified unit root test was developed by considering the special

structure in {et}. Their test has been shown to have desirable properties, as the related
statistic converges in distribution to a standard chi-squared distributed variable. However,
their test depends on preconditions such that the AR structure of {εt} has been well speci-
fied, and p is properly predefined. The violation of these conditions may result in power
loss in this method, as shown in our simulations.

To this end, we are interested in producing statistics to test whether ψ is equal to
some given constant vector ψ0 under Cases (i)–(iii), which has not been considered in the
literature to the best of our knowledge. Note that although many tests have been developed
for testing the possible serial correlation in {εt}, including the Lagrangian multiplier (LM)
test [15], Box–Pierce (BP) test [16], and Ljung–Box (LB) test [17], etc., they cannot be used
directly to test the hypothesis above. In view of this, we propose an empirical likelihood-
based statistic for testing this issue by taking into account the AR structure. Note that the
setting in Case (ii) causes issues in the derivation of the asymptotic distribution, as well
as the related applications. A new data-splitting idea is also employed in order to unify
Cases (i)–(iii). It turns out that the proposed statistic converges in distribution to a standard
chi-squared distributed variable regardless of {Xt} being stationary or non-stationary,
due to the special block structure of the asymptotic covariance matrix. The simulations
show that our method has a good size, as well as nontrivial power performance in finite
sample cases.

As a nonparametric method, empirical likelihood (EL) was firstly proposed by [18].
Because of its many excellent properties, i.e., no need to assume the parameter distribution
in advance, it has been widely used in the literature when parametric methods do not
work well to produce satisfactory results. Many authors have devoted themselves to
extending this method. To name but a few, Ref. [19] obtained confidence regions for vector-
valued statistical functions, which is a multivariate generalization of the work of [18].
Refs. [20,21] extended the empirical likelihood method to the setting of regression models
and general estimation equations, respectively. Recently, Ref. [22] discussed the possibility
of constructing unified tests by using empirical likelihood based on a weighted technique
for time series models. Ref. [13] further extended this weighted technique to AR models
with AR errors. Further, Ref. [23] applied the empirical likelihood method to test the
heteroscedasticity for errors of single-index model. Ref. [6] developed a unified empirical
likelihood inference method to test the predictability regardless of the properties of the
predicting variable. Ref. [24] considered the unified test problem in a predictive regression
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model. To move the effect of the possible existence of an intercept, the idea of data-splitting
has also been developed in [24]. The literature above inspired the current research.

We organize the rest of this paper as follows. Section 2 develops the unified test for
the AR structure of the AR models. Section 3 reports the finite-sample simulation results.
Section 4 applies the proposed test to the exchange rates between the U.S. dollar and
eight countries. Section 5 concludes this paper. The detailed proof of the main theorem is
specified in Appendix A.

2. Methodologies and Asymptotic Results

Supposing the random observations {Xt}n
t=1 are generated from the model (2) with

possible AR errors. Formulate ψ = (ψ>1 , ψ>2 )> and let ψ0 = (ψ>1,0, ψ>2,0)
> be its true value.

Note that when θ = θ0, {et(θ)} is a sequence of iid variables, it is more efficient
to construct a statistical procedure on ∑n

t=p+1 e2
t (θ) than on ∑n

t=p+1(Xt − µ− φXt−1)
2, as

discussed in [13], where

et(θ) =
(

Xt − µ− φXt−1 +
p

∑
i=1

ψi(Xt−i − µ− φXt−i−1)
)

, and

εt(θ) = Xt − µ− φXt−1,

for a given θ = (µ, φ, ψ>)>. However, their method depends on an assumption that the
structure of the AR errors has been correctly specified, which needs to be pretested in
practice. This motivates us to consider the following hypothesis:

H0 : ψ2 = ψ2,0 versus H1 : ψ2 6= ψ2,0.

Remarkably, when ψ2,0 = 0, {εt} is a sequence of iid errors.
Note that when θ takes the true underlying value θ0, we have

E(Z∗t (θ)|Ft−1) = 0, for t = p + 1, · · · , n,

where Z∗t (θ) = (Z∗t,1(θ), . . . , Z∗t,2+p(θ))
>, Ft denotes the sigma field generated by {es : t ≤

t}, and 
Z∗t,1(θ) = et(θ)

Z∗t,2(θ) = et(θ)(Xt−1 + ∑
p
i=1 ψiXt+m−i−1)

Z∗t,2+i(θ) = et(θ)(Xt−i − µ− φXt−i−1), i = 1, . . . , p,

which can be obtained by taking the partial differential to the sum of least squares, i.e.,

n

∑
t=p+1

(
Xt − µ− φXt−1 +

p

∑
j=1

ψj(Xt−j − µ− φXt−j−1)

)2

,

with respect to ψ. Then, similar to [21], one can use the profile empirical likelihood method
to construct a test for hypothesisH0 based on {Z∗t (θ)}.

However, following [22], it is easy to verify that the resulting test does not converge in dis-
tribution to a standard chi-squared variable because the quantity 1√

n ∑n
t=p+1 Z∗t (θ0)Z∗t (θ0)

>

does not converge in probability for Case (ii), i.e., µ = 0 and φ = 1 + c
n for some nonzero

constant c (nearly integrated if c 6= 0, and unit root if c = 0). As an improvement, one may
use the weighted technique developed in [22] to construct a weighted empirical likelihood-
based test. Unfortunately, the resulting testing statistic still faces a similar problem in the
optimization step during the process of profiling the redundant parameters; see a similar
discussion in [25].
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To overcome this problem, we propose the construction of the following empirical
likelihood function for θ:

L(θ) = sup

{
m

∏
t=p+1

mδt : δ1 ≥ 0, · · · , δm ≥ 0,
m

∑
t=p+1

δt = 1,
m

∑
t=p+1

δtZt(θ) = 0

}
,

based on the data-splitting idea, where Zt(θ) = (Zt,1(θ), . . . , Zt,2+p(θ))
> with

Zt,1(θ) = et(θ)

Zt,2(θ) = et+m(θ)

(
Xt+m−1√

1+X2
t+m−p−1

+ ∑
p
i=1 ψi

Xt+m−i−1√
1+Xt+m−p−i−1

)
Zt,2+i(θ) = et(θ)(Xt−i − µ− φXt−i−1), i = 1, . . . , p,

(3)

where m = [n/2] with [·] is the floor function. That is, we use the second half of the
data to handle φ, and the first half of the data to handle the rest of the parameters. Here,√

1 + Xt+m−p−i−1 is mainly used for technical consideration, which can relieve the cor-
relation among {Zt(θ)}, and consequently improve the finite sample performance of the
EL test.

Since our aim is to testH0 related to ψ, we are only interested in the parameter ψ. To
this end, we treat the other parameters as redundant parameters, as in [21], and obtain the
profile empirical likelihood ratio as `p(ψ) := minµ,φ `(µ, φ, ψ).

To derive the asymptotic result for `p(ψ), we need the following regular conditions:

• (C1) Suppose {Xt} follows one of the following cases:

– (i) (Stationary) |φ| < 1, independent of n;
– (ii) (Non-stationary without an intercept) φ = 1− c

n for some constant c indepen-
dent of n with µ = 0;

– (iii) (Non-stationary with an intercept) φ = 1− c
n for some constant c independent

of n with µ 6= 0;

• (C2) ψ(z) = 1− ∑
p
j=1 ψjzj 6= 0 when |z| < 1, and ψ(z) has no common root with

ψp 6= 0.
• (C3) {et} are iid random errors, and satisfy E(|et|2+δ) < ∞ for some constant δ > 0.

These conditions are quite common, and can be found in studies such as [13]. Here,
(C2) is assumed to guarantee the stationarity of {εt}.

Under these conditions, we have the following result.

Theorem 1. Suppose Conditions (C1)–(C3) hold. Then, under the null hypothesisH0,

`p(ψ0)
d−→ χ2

p,

as n→ ∞, where χ2
p denotes a chi-squared random variable with p degrees of freedom, and ‘ d−→’

denotes the convergence in distribution.

Remark 1. Using a similar proof to that of Theorem 1, we can show that

˜̀ p(ψ0,2)
d−→ χ2

r , as n→ ∞,

where ˜̀ p(ψ0,2) = minµ,φ,ψ1 `(µ, φ, (ψ>1 , ψ>0,2)
>) with r being the dimension of ψ0,2, which is the

true value.

Theorem 1 is desirable because it shows that the proposed test has a standard chi-squared
distribution asymptotically, regardless of which one of the Cases (i)–(iii) is followed by {Xt}.
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Based on Theorem 1, we may reject the null hypothesisH0 once `p(ψ0) > χ2
r (1− a) at the

significance level a ∈ (0, 1), where χ2
r (1− a) denotes the (1− a)-th quantile of χ2

r .

3. Simulation Results

In this section, we conduct some simulations to investigate the finite sample perfor-
mance of the proposed test in terms of both size and power. The simulations consist of
three parts. In the first part, we investigate the finite sample performance of the proposed
profile empirical likelihood, and compare it with a combination of the LB test and the
Akaike information criterion (AIC), i.e., using firstly the LB test to detect whether there
exists a serial correlation in the residuals, and then by employing the AIC to determine the
order of the AR structure in residuals. In the second part, we investigate the possibility
of using the proposed method to test whether or not ψ is equal to some given ψ0, which
may be useful when verifying the extent of the stationarity of the AR errors. Note that the
combination of the LB and AIC cannot be used to fulfill this type of task. In the last part,
we study the impact of misdetermining the AR structure of the errors on the finite sample
performance of the unit root test developed in [13]. The LB test is computed with the R
function Box.test.R, while for the computing of the profile empirical likelihood, we first use
R package emplik to obtain the log-empirical likelihood ratio, and then optimize this log
ratio by using the nlm.R function. All of these R functions are well-documented, and are
currently available from the CRAN of the R-project.

In the first part, the random observations {Xt} are generated from the model (2) with
µ ∈ {0, 0.01}, which indicates that the model has no intercept and an intercept item,
respectively. We take φ from {0.5, 1, 1− 1

n}, where 0.5 indicates that Xt is a stationary
process, and 1 indicates that it is a unit root process, while 1− 1

n indicates a near unit root
process. {et} is a sequence of iid random variables with means of zero and variances of
one. {εt} follows the three different scenarios listed below.

• S1: The null hypothesisH(1)
0 : ψ = (0, 0, 0)>, i.e., εt has no serial correlation. The local

alternative hypothesis: ψ = ψ0 = (d/
√

n, 0, 0)> for some d > 0.
• S2: The null hypothesisH(2)

0 : ψ = (0.1, 0, 0)>, i.e., εt has first-order serial correlation.
The local alternative hypothesis: ψ = ψ0 = (0.1, d/

√
n, 0)> for some d > 0.

• S3: The null hypothesis H(3)
0 : ψ = (0.1, 0.1, 0)>, i.e., εt has second-order serial

correlation. The local alternative hypothesis: ψ = ψ0 = (0.1, 0.1, d/
√

n)> for some
d > 0.

In all Scenarios S1–S3, d is taken from {1, 3, 5, 7}. All computations are carried out
10,000 times with n ranging from 300 to 1200.

Table 1 reports the size performance of the proposed method with different settings at
the significance levels τ = 0.05. We also report the ratios of determining the order of the
AR error incorrectly by using the AIC of Scenarios S1–S3 under the condition of H0 for
comparison. The EL method has a good performance in all Scenarios S1–S3. The results
show that the size values of the EL method gradually converge to the significance level as
the sample size n increases, no matter whether Xt is a stationary process, a near unit root
process, or a unit root process, and regardless of whether µ is 0 or not. Conversely, for the
AIC method, when Xt follows a stationary process, the ratios of determining the order of
the AR error incorrectly are only closer to 5% in S1. Note that it performs poorly for the
rest of the settings, meaning that it is affected greatly by the stationarity of {Xt}.

Figure 1 shows the power performance of the EL method. We can see that in S1 and
S2, when Xt follows a stationary process, the convergence rate is the slowest. When Xt
follows a near unit root process or a unit root process, as the value of d increases, the
power converges quickly to 1. In S3, when Xt follows a near unit root process or a unit
root process, as the value of d increases to 7, the power values have a slightly descending
tendency. This implies that although the stationarity of {Xt} does not impact on the order
of the local alternative hypothesis, it does affect the power function of the EL method.
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Figure 1. The power performance of EL method at τ = 0.05.
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Table 1. Empirical reject probabilities at τ = 0.05.

EL AIC

Scenarios µ φ 300 600 900 1200 300 600 900 1200

S1

0
0.5 0.0601 0.0518 0.0541 0.0554 0.0715 0.0693 0.0762 0.0768

1− 1
n 0.0721 0.0659 0.0609 0.0600 0.2285 0.2308 0.2337 0.2404

1 0.0733 0.0657 0.0596 0.0597 0.2328 0.2337 0.2357 0.2396

0.01
0.5 0.0699 0.0575 0.0509 0.0509 0.0760 0.0719 0.0732 0.0698

1− 1
n 0.0710 0.0611 0.0608 0.0588 0.2301 0.2323 0.2407 0.2301

1 0.0733 0.0578 0.0612 0.0581 0.2267 0.2330 0.2300 0.2406

S2

0
0.5 0.0587 0.0464 0.0469 0.0517 1.0000 1.0000 1.0000 1.0000

1− 1
n 0.0652 0.0620 0.0629 0.0570 0.5531 0.3458 0.2635 0.2243

1 0.0689 0.0587 0.0630 0.0563 0.5505 0.3450 0.2574 0.2246

0.01
0.5 0.0591 0.0454 0.0481 0.0514 0.9999 1.0000 1.0000 1.0000

1− 1
n 0.0691 0.0546 0.0586 0.0607 0.5481 0.3394 0.2665 0.2339

1 0.0694 0.0589 0.0587 0.0578 0.5454 0.3463 0.2661 0.2254

S3

0
0.5 0.0557 0.0498 0.0474 0.0463 0.8969 0.8466 0.8131 0.7832

1− 1
n 0.0778 0.0613 0.0621 0.0590 0.5963 0.3284 0.2238 0.1732

1 0.0862 0.0635 0.0604 0.0601 0.5978 0.3318 0.2252 0.1789

0.01
0.5 0.0550 0.0496 0.0483 0.0461 0.9005 0.8445 0.8195 0.7848

1− 1
n 0.0859 0.0692 0.0601 0.0587 0.6041 0.3332 0.2173 0.1832

1 0.0834 0.0646 0.0578 0.0585 0.5971 0.3318 0.2201 0.1812

In the second part, we consider testing whether or not ψ is equal to some given ψ0.
We simulate two settings, i.e.,

• (I): The null hypothesis H̃(1)
0 : ψ = (ψ1, ψ2) = (0.1, 0.3)> against the local alternative

hypothesis: ψ = ψ0 = (0.1 + d√
n , 0.3 + d√

n )
>, for some d > 0.

• (II): The null hypothesis H̃(2)
0 : ψ2 = 0.3, against the local alternative hypothesis:

ψ2 = 0.3 + d√
n , for some d > 0.

The other parameters are the same as those in the first part. The size (d = 0) and power
(d ∈ {3, 5, 10}) performances are shown in Figure 2. As expected, similar observations can
be found in Figure 3 as in the first part of simulations.

The simulation results in the first and second parts show that the proposed EL method
has a good performance in specifying the AR error structure and testing whether or not ψ is
equal to some given ψ0, thereby confirming the theoretical result obtained in Theorem 1. It
is worth noting that when taking the AR error structure into account, accurate identification
is crucial, because it will affect the unit root test of the AR model. Therefore, in the third part,
we conduct the following simulation to show the benefit of conducting a predefined test.
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Figure 2. Empirical reject probabilities at τ = 0.05.

Step 1: We generate an AR model with an AR(1) error structure, and the parameters are
µ = 0, φ = 1− 1

n , ψ = 10√
n . Then, we use the EL and AIC methods to determine the order of

the AR error. We consider sample sizes of 600 and 1200, repeat the tests 10,000 times, and
record the order determination counts under the two methods. The results are shown in
Figure 3. The abscissa represents the order of the AR error, and the ordinate is the number
of each order. It can be seen from Figure 3 that under all sample sizes, the two methods
show that the residuals have a serial correlation. For the EL test, in 10,000 experiments,
9398 of them are correctly ordered, and the error rate is only 6.02%. When the sample size
increases to 1200, the error rate decreases to 5.84%. For the AIC, when the sample size is
600, the error rate is 34.21%, and when the sample size is 1200, the error rate is 22.75%. It is
obvious that compared with the AIC method, the EL test has advantages in identifying the
order of the correlated errors, which is consistent with the above simulation results.

Step 2: We use the method proposed in [13] to test the unit root of an AR (1) model
when the AR error order is correctly and incorrectly determined. Table 2 records the
probability of identifying a unit root when the real data are a near unit root. The results
show that when the true underlying structure of the AR error is incorrectly specified, the
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power of the test proposed in [13] suffers from a loss compared to the case when the true
underlying structure of the AR error is correctly specified. This shows the necessity of
correctly testing the AR error structure before conducting the unit root test if one wants to
obtain a more reliable unit root test result.

To summarize, the EL method proposed in this paper has obvious advantages in
identifying the AR error structure, and these two methods are crucial in the subsequent
real data analysis.
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Figure 3. The results of the test for AR error structure between EL and AIC.

Table 2. The power performance of unit root test at τ = 0.05.

Right Order Wrong Order

φ 300 600 900 1200 300 600 900 1200

1− 1
n 0.0474 0.0455 0.0422 0.0437 0.0438 0.0453 0.0419 0.0425

1− 3
n 0.1029 0.0941 0.0923 0.0862 0.0998 0.0918 0.0897 0.0851

1− 5
n 0.1795 0.1730 0.1718 0.1678 0.1747 0.1716 0.1666 0.1664

1− 10
n 0.4748 0.4596 0.4455 0.4367 0.4491 0.4496 0.4354 0.4307

1− 15
n 0.7620 0.7343 0.7159 0.6983 0.7276 0.7168 0.7028 0.6864

4. A Financial Real Data Application

In this section, we provide a real financial data example. The purpose of this section is
to explore the error structure of different exchange rate markets. We collected the exchange
rates of eight countries, including developed and developing countries, against the U.S.
dollar. Currencies from developed countries include the Canadian dollar (CAD), Norwe-
gian Kroner (NKR), Singapore dollar (SGD), Swedish Kronor (SKR) and Japanese yen (JPY).
Currencies from developing countries include Chinese yuan (CNY), Thai baht (THB) and
Sri Lanka Rupees (SRE). All data are downloaded from FRED database (fred.stlouisfed.org).
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The sample period is the daily data from 2 January 2017 to 31 December 2020 (n = 1044).
Their time series graphs are provide in Figure 4.

1.25

1.30

1.35

1.40

1.45

2017 2018 2019 2020 2021

Canada

6.25

6.50

6.75

7.00

2017 2018 2019 2020 2021

China

8

9

10

11

2017 2018 2019 2020 2021

Norway

1.30

1.35

1.40

1.45

2017 2018 2019 2020 2021

Singapore

30.00

32.00

34.00

36.00

2017 2018 2019 2020 2021

Thailand

8.00

8.50

9.00

9.50

10.00

10.50

2017 2018 2019 2020 2021

Sweden

105

110

115

2017 2018 2019 2020 2021

Japan

150

160

170

180

190

2017 2018 2019 2020 2021

Sri Lanka

Figure 4. Time series graphs of 8 countries.

We report the least squares estimation of the unknown parameters µ and φ, and the
testing results of the EL, LB, and AIC methods, where the LB and AIC tests were conducted
on residuals obtained from the least squares method. All results are listed in Table 3,
in which the second and third columns are the estimated intercept and autoregressive
coefficients, respectively; the fourth column is the order determination result of the EL test;
the fifth column is the p-values of the EL test; and the last two columns are the p-values of
LB test and the order determination result of AIC, respectively. The AIC test shows that
most sequences have a serial correlation, except for CNY and JPY, while the EL method
indicates that only one country’s data has an AR error of up to an order of 2. Note that the
AIC tends to determine the correlated errors with a higher order than for Cases (ii)–(iii),
while for most cases, the estimated φ̂ is very close to 1, i.e., a near unit root. It seems that the
testing results for this dataset coincide roughly with the observations in the simulations.

Table 3. Test results of 8 countries.

Coutry µ̂ φ̂ EL p-Values LB-Test AIC

Canada 0.0340 0.9992 AR(0) 0.2122 7.7250× 10−3 *** AR(3)
China 0.0169 0.9975 AR(0) 0.8572 0.1391 AR(0)
Norway 0.0462 0.9947 AR(0) 0.4315 1.9450× 10−6 *** AR(2)
Singapore 0.0146 0.9893 AR(0) 0.8393 0.0238 ** AR(3)
Thailand 0.1453 0.9953 AR(0) 0.1666 4.0220× 10−3 *** AR(1)
Sweden 0.0274 0.9968 AR(0) 0.2165 5.6510× 10−3 *** AR(3)
Japan 1.9372 0.9822 AR(0) 0.2392 0.8896 AR(0)
Sri Lanka 0.1738 0.9992 AR(2) 0.2622 7.2230× 10−6 *** AR(2)

Significance levels: * p ≤ 0.1, ** p ≤ 0.05, *** p ≤ 0.01.

5. Conclusions

The AR model is widely used in time series data modeling. However, the direct
application of AR models with iid errors is inadequate sometimes. A common practice
is to further assume that AR models have errors of AR structure. Note that the relevant
structure of the error affects the statistical inference of the AR model. Therefore, it is
important to test the error structure of the model in both theoretical and practical analyses,
which is not considered in the literature to the best of our knowledge. Motivated by this,
this paper proposed a consistency empirical likelihood test method based on the idea
of data splitting. The limit distribution of the EL statistic was proved to be chi-squared
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asymptotically regardless of the process {Xt} being stationary or non-stationary, and with
or without an intercept term. The proof is challenging and different from that of the
traditional profile empirical likelihood in [21], as the quantity 1√

n ∑n
t=p+1 Zt(θ0) does not

converge in distribution to a normally distributed vector. Fortunately, the limit distribution
of the profile empirical likelihood-based test is still chi-squared because of the special block
structure of the asymptotic covariance matrix. The simulation results illustrated that the
proposed method could not only have a good performance in specifying the AR error
structure, but also could sufficiently test whether the coefficients of the error item are equal
to some given values, which can not be achieved by some existing serial correlation tests
in the literature. The technique in the proof of Theorem 1 is challenging as in Case (ii)
the theoretical proof involves handling the convergence in space, and the special block
structure of the asymptotic covariance matrix. Hopefully, it is of potential usage in practice
as it is difficult to detect whether the process {Xt} is a unit root or near unit root process.
Note that it is not necessary to make clear which case of (i)–(iii) the {Xt} follows when
using our proposed test in practice.

As noted by an an anonymous reviewer, an issue of interest is whether the current
result can be extended to the case when εt follows a autoregressive moving average
model. Note that the discussion in this paper involves nonstationary Cases (ii) and (iii); it
seems challenging to derive the related theoretical results. We will further consider this in
the future.
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Appendix A. Proof of the Main Result

In this appendix, we provide the detailed proofs for the main results. Before proceed-
ing further, we need to first provide some necessary lemmas. For convenience, denote µ0,
φ0, and ψ0 := (ψ1,0, ψ2,0, · · · , ψp,0)

> as the true values of µ, φ, and ψ := (ψ1, ψ2, · · · , ψp)>,
respectively. Write θ0 := (µ0, φ0, ψ>0 )>, and let Ft be the sigma field generated by
{es : 1 ≤ s ≤ t, m + 1 ≤ s ≤ m + t}.
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For convenience, write St := (St,1, S̃>t )> = (St,1, St,2, · · · , St,p+1)
>, where

St,1 =
1√
m

t

∑
i=1

ei, St,2 =
1√
m

t

∑
i=1

eiεi−1, · · · , St,p+1 =
1√
m

t

∑
i=1

eiεi−p,

for t = 1, 2, · · · , n. By following [2], it is easy to check for any s ∈ (0, 2] that

S[ns] ⇒W(s) := (We(s), W̃(s)>)> = (We(s), W̃1(s), · · · , W̃p(s))>, (A1)

under Case (ii) as n→ ∞, where ‘⇒’ denotes the convergence in space D(0, 2] which is the
space of real-valued functions of the interval (0, 2] that are right continuous and have finite
left limits, [·] denotes the floor function, and W(s) is a vector of Gaussian processes with
covariance matrix diag{σ2

e , Σ22} with σ2
e = E(e2

1) and

Σ22 =

 σ2
e E(ε2

1) · · · σ2
e E(ε1εp)

...
. . .

...
σ2

e E(εpε1) · · · σ2
e E(ε2

p)

.

Lemma A1. Under the same conditions of Theorem 1, as n→ ∞, we obtain

• For Case (i),

1√
m

m

∑
t=p+1

Zt(θ0)
d−→ N(0, Σ), (A2)

where ‘
p−→’ denotes the convergence in probability, and Σ = diag{Σ11, Σ22} and

Σ11 =

σ2
e 0

0 σ2
e · lim

t→∞
E

(
Xt+m−1√

1+X2
t+m−p−1

+ ∑
p
i=1 ψi

Xt+m−i−1√
1+Xt+m−p−i−1

)2

.

• For Case (ii),

1√
m

m

∑
t=p+1

Zt(θ0) (A3)

= (We(1), ω∗2mWe(2)−ω∗mWe(1), W̃1(1), · · · , W̃p(1))> + op(1),

where, for k = m, 2m,

ω∗k =

 Xk−p−1√
1 + X2

k−p−1

+
p

∑
i=1

ψi
Xk−p−i−1√

1 + Xk−p−i−1

.

• For Case (iii),

1√
m

m

∑
t=p+1

Zt(θ0)
d−→ N(0, Σ̃), (A4)

where Σ̃ = diag{σ2
e , σ2

e , Σ22}.
for Case (i), or Σ11 = diag{σ2

e , σ2
e } for Cases (ii) and (iii). Note that σ2

e = E(e2
t ).

Proof of Lemma A1. Put et = et(θ0) and εt = (Xt−i − µ0 − φ0Xt−i−1) for i = 1, 2, · · · , p
when θ = θ0. Then, it is easy to check that {Zt(θ0)} is a martingale difference sequence
(MDS) with respect to the filter {Ft}.
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Next, for Case (i), under the conditions of Theorem 1, both {Xt} and {εt} are strictly
stationary. Hence, for any a := (a1, a2, · · · , ap+2)

> ∈ Rp+2, we obtain

1
m

m

∑
t=p+1

E
(
(a>Zt(θ0))

2|Ft−1

)
(A5)

= a>
(

1
m

m

∑
t=p+1

E
(

Zt(θ0)Z>t (θ0)|Ft−1

))
a

p−→ a>Σa,

as n → ∞ by using the law of large number for MDS [26]. Similarly, for any arbitrarily
small ε > 0, we obtain

1
m

m

∑
t=p+1

E
(
|a>Zt(θ0)|2 I(|a>Zt(θ0)| ≥ ε

√
m)|Ft−1

)
(A6)

≤ 1
εδ1 nδ1/2

1
m

m

∑
t=p+1

E
(
|a>Zt(θ0)|2+δ1 |Ft−1

)

≤ (p + 2)1+δ1‖a‖2+δ1

εδ1 nδ1/2
1
m

m

∑
t=p+1

E

(
p+2

∑
i=1
|Zt,i(θ0)|2+δ1 |Ft−1

)
p−→ 0,

by noting that E(|et|2+δ1) < ∞, which implies E(|εt|2+δ1) < ∞ and in turn E(|Xt|2+δ1) < ∞
when {εt} and {Xt} are strictly stationary. (A5) and (A6) together show the normality for
Case (i) by using the central limit theorem for MDS [26].

For Case (ii), note that

Xt+m−i−1 =
p

∑
k=1

φk−1εt+m−i−k+1 + φpXt+m−i−p−1, i = 1, 2, . . . , p,

and by [2,27], it holds that for any s ∈ (0, 1]

X[ns]√
n
⇒ Jc(s) :=

∫ s

0
e−c(s−r)dW(r) in the space D((0, 1]), (A7)

as n→ ∞. Using these, it is easy to check that, as n→ ∞,

1√
m

m

∑
t=p+1

et+m

 Xt+m−1√
1 + X2

t+m−p−1

+
p

∑
i=1

ψi
Xt+m−i−1√

1 + Xt+m−p−i−1


=

1√
m

m

∑
t=p+1

et+m

 Xt+m−p−1√
1 + X2

t+m−p−1

+
p

∑
i=1

ψi
Xt+m−p−i−1√

1 + Xt+m−p−i−1

+ op(1).

Note that
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1√
m

m

∑
t=p+1

et+m

 Xt+m−p−1√
1 + X2

t+m−p−1

+
p

∑
i=1

ψi
Xt+m−p−i−1√

1 + Xt+m−p−i−1


:=

1√
m

m

∑
t=p+1

et+mω∗t+m

=
m

∑
t=p+1

(St+m,1 − St+m−1,1)ω
∗
t+m

= S2m,1ω∗2m − Sp+m,1ω∗p+m+1 +
m−1

∑
t=p+1

St+m,1(ω
∗
t+m −ω∗t+m+1).

Using (A7), we obtain w2m
p→ sgn(Jc(2)), where sgn(·) denotes the sign function. As

X[ns] = Op(
√

m) and n → ∞ for Case (ii), it is easy to check that there exists some
d ∈ (0, 1

2 ), for i = 0, 1, · · · , p, such that∣∣∣∣∣ m−1

∑
t=p+1

St+m,1

(
Xt+m−p−i−1√

1 + Xt+m−p−i−1
−

Xt+m−p−i√
1 + Xt+m−p−i

)∣∣∣∣∣
=

∣∣∣∣∣∣
m−1

∑
t=p+1

St+m,1
Xt+m−p−i − Xt+m−p−i−1

(1 + ξ2
t,i,∗)

3
2

∣∣∣∣∣∣
≤ Op(m−d)× 1

m

m−1

∑
t=p+1

{|St+m,1||Xt+m−p−i − Xt+m−p−i−1|} = op(1),

where ξt,i,∗ lies between Xt+m−p−i and Xt+m−p−i−1. This shows

1√
m

m

∑
t=p+1

Zt(θ0)

= (Sm,1, S2m,1ω∗2m − Sp+m,1ω∗p+m+1, Sm,2, · · · , Sm,p+1)
> + op(1), as n→ ∞.

Then, the asymptotic result for Case (ii) follows immediately based on (A1).
Case (iii) can be proved similarly as Cases (i) and (ii). We omit the details.

Lemma A2. Under the same conditions of Theorem 1, as n→ ∞, we find that

• (a) 1√
m ∑m

t=p+1 Zt(θ∗) =
1√
m ∑m

t=p+1 Zt(θ0) + Op(1), uniformly for (µ, φ) ∈ B,

• (b) 1
m ∑m

t=p+1 Zt(θ∗)Z>t (θ∗) = 1
m ∑m

t=p+1 Zt(θ0)Z>t (θ0) + op(1) = Σ0 + op(1), uni-
formly for (µ, φ) ∈ B,

• (c) maxp+1≤t≤m supB ‖Zt(θ∗)‖ = op(
√

m),

where θ∗ = (µ, φ, ψ>0 )>,

B =


{(µ, φ) : |µ− µ0|+ |φ− φ0| < C/

√
m} for Case (i),

{(µ, φ) : |µ− µ0|+
√

m|φ− φ0| < C/
√

m} for Case (ii),
{(µ, φ) : |µ− µ0|+ m|φ− φ0| < C/

√
m} for Case (iii),

for some positive constant C, Σ0 = diag{Σ11, Σ22} for Case (i), and diag{σ2
e , σ2

e , Σ22} for Cases
(ii) and (iii).

Proof of Lemma A2. We only prove Parts (a) and (c), as the proof of (b) is trivial based on
those of (a) and (c).
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For Part (a), note that

et(θ∗)− et = Xt − µ− φXt−1 +
p

∑
i=1

ψi,0(Xt−i − µ− φXt−i−1)

−{Xt − µ0 − φ0Xt−1 +
p

∑
i=1

ψi,0(Xt−i − µ0 − φ0Xt−i−1)}

= −(µ− µ0)(1 +
p

∑
i=1

ψi,0)− (φ− φ0){Xt−1 +
p

∑
i=1

ψi,0Xt−i−1},

and (Xt−i − µ− φXt−i−1)− εt−i = (µ− µ0) + (φ− φ0)Xt−i−1 for any t = p + 1, · · · , 2m
and i = 0, 1, · · · , p. Hence, we have

sup
B

∣∣∣∣∣ 1√
m

m

∑
t=p+1

(Zt,1(θ∗)− Zt,1(θ0))

∣∣∣∣∣
≤ sup

B

∣∣∣∣∣−√m(µ− µ0)(1 +
p

∑
i=1

ψi,0)

∣∣∣∣∣
sup
B

∣∣∣∣∣−m(φ− φ0)
1

m
√

m

m

∑
t=p+1

{Xt−1 +
p

∑
i=1

ψi,0Xt−i−1}
∣∣∣∣∣

= C ·
∣∣∣∣∣(1 + p

∑
i=1

ψi,0)

∣∣∣∣∣ ·
{

1 +
∣∣∣∣∫ 1

0
Jc(s)ds

∣∣∣∣}
= Op(1), as n→ ∞.

The proofs of supB
∣∣∣ 1√

m ∑m
t=p+1(Zt,k(θ∗)− Zt,k(θ0))

∣∣∣, for k = 2, · · · , p + 2, follow a similar
fashion. This shows Part (a).

For Part (c), based on the decomposition of et(θ∗) given in Part (a), we similarly have

max
p+1≤t≤m

sup
B
|Zt,1(θ∗)| ≤ max

p+1≤t≤m
|et|+ |1 +

p

∑
i=1

ψi,0| · sup
B
|µ− µ0|

+ sup
B
|φ− φ0| · max

p+1≤t≤m
|Xt−1 +

p

∑
i=1

ψi,0Xt−i−1|

= op(
√

m),

by using the Markov inequality based on the conditions of Theorem 1 as n → ∞.
maxp+1≤t≤m supB |Zt,k(θ∗)| = op(

√
m), k = 2, · · · , p + 2, can be proved similarly. We

omit the details. This shows Part (c).

Proof of Theorem 1. In the following, we only prove Case (ii), as Cases (i) and (iii) follow
a similar fashion.

Based on Lemmas A1 and A2, we can show by using similar techniques as in Theorem 1
of [28] that

`(µ, φ, ψ0) =

(
1√
m

m

∑
t=p+1

Zt(θ∗)

)>
Σ−1

0

(
1√
m

m

∑
t=p+1

Zt(θ∗)

)
+ op(1), (A8)

uniformly for (µ, φ) ∈ B. Note that (µ0, φ0) ∈ B. Trivially, with (A9), it follows

`(µ0, φ0, ψ0) =

(
1√
m

m

∑
t=p+1

Zt(θ0)

)>
Σ−1

0

(
1√
m

m

∑
t=p+1

Zt(θ0)

)
+ op(1), (A9)
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as n→ ∞.
εt(µ, φ) = Xt − µ − φXt−1, X̃t−1 = Xt−1 + ∑

p
i=1 ψi,0Xt−i−1 and γ0 = 1 + ∑

p
i=1 ψi,0.

Note that, with (A7), we have

1
m

m

∑
t=p+1

{ 1√
m

X̃t−1}
d−→ γ0

∫ 1

0
Jc(s)ds,

1
m

m

∑
t=p+1

{ 1√
m

X̃t+m−1ω∗t+m}
d−→ γ0

∫ 2

1
sgn(Jc(s))ds, as n→ ∞.

Next, since εt = Φ−1(B)et, where Φ(B) = 1 + ∑
p
i=1 ψi,0Bi with B being the lag operator

satisfying Bjet = et−j, which is a linear process of {et}, we may show that

1√
m

m

∑
t=p+1

{ 1√
m

Xt−1et} = Op(1), and
1√
m

m

∑
t=p+1

{ 1√
m

Xt−1εt} = Op(1), as n→ ∞,

based on the martingale decomposition as those maintained in [29,30]; see the proof of
Theorem 3.1 of [31] for similar discussions. Then, we have

1√
m

m

∑
t=p+1

{Zt(θ∗)− Zt(θ0)}

= − 1√
m

m

∑
t=p+1


(µ− µ0)γ0 + (φ− φ0)X̃t−1

{(µ− µ0)γ0 + (φ− φ0)X̃t+m−1}ω∗t+m
{(µ− µ0)γ0 + (φ− φ0)X̃t−1}εt−1(µ, φ)

. . .
{(µ− µ0)γ0 + (φ− φ0)X̃t−1}εt−p(µ, φ)



− 1√
m

m

∑
t=p+1


0
0

et((µ− µ0) + (φ− φ0)Xt−2)
. . .

et((µ− µ0) + (φ− φ0)Xt−p−1)



= −


γ0 γ0

∫ 1
0 Jc(s)ds

γ0 γ0
∫ 2

1 sgn(Jc(s))ds
0 0
. . . . . .
0 0


(√

m(µ− µ0)
m(φ− φ0)

)
+ op(1)

:= Γ
(√

m(µ− µ0)
m(φ− φ0)

)
+ op(1), (A10)

uniformly for (µ, φ) ∈ B as n→ ∞.
Based on (A10), it is then easy to check that the minimizer, say (µ̂, φ̂), of `(µ, φ, ψ0)−

`(µ0, φ0, ψ0) must be in B, and satisfies(√
m(µ̂− µ0)

m(φ̂− φ0)

)
= −(Γ>Σ−1

0 Γ)−1Γ>Σ−1
0 ·

1√
m

m

∑
t=p+1

Zt(θ0) + op(1), as n→ ∞.

Then, it follows

`(µ̂, φ̂, ψ0)

=

(
1√
m

m

∑
t=p+1

Zt(θ0)

)>(
Σ−1

0 − Σ−1
0 Γ(Γ>Σ−1

0 Γ)−1Γ>Σ−1
0

) 1√
m

m

∑
t=p+1

Zt(θ0) + op(1).
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Further note that

Γ(Γ>Σ−1
0 Γ)−1Γ> = Γ(Γ>1 Σ−1

11 Γ1)
−1Γ =

(
Σ−1

11
0

)
,

where Γ1 =

(
γ0 γ0

∫ 1
0 Jc(s)ds

γ0 γ0
∫ 2

1 sgn(Jc(s))ds

)
. Then, we have

Σ−1
0 − Σ−1

0 Γ(Γ>Σ−1
0 Γ)−1Γ>Σ−1

0 = Σ−1
0 − Σ−1

0

(
Σ−1

11
0

)
Σ−1

0 =

(
0

Σ−1
22

)
.

Hence,

`p(ψ0) = `(µ̂, φ̂, ψ0)

=

(
1√
m

m

∑
t=p+1

Zt(θ0)

)>(
0

Σ−1
22

)
1√
m

m

∑
t=p+1

Zt(θ0) + op(1)

= W̃(1)>Σ−1
22 W̃(1) + op(1)

d−→ χ2
p, as n→ ∞.

This completes the proof of this Theorem.

References
1. Chan, N.H.; Wei, C.Z. Asymptotic inference for nearly nonstationary AR (1) processes. Ann. Stat. 1987, 15, 1050–1063. [CrossRef]
2. Phillips, P.C. Towards a unified asymptotic theory for autoregression. Biometrika 1987, 74, 535–547. [CrossRef]
3. Elliott, G.; Rothenberg, T.J.; Stock, J.H. Efficient Tests for an Autoregressive Unit Root; National Bureau of Economic Research:

Cambridge, MA, USA, 1992.
4. Mikusheva, A. Uniform inference in autoregressive models. Econometrica 2007, 75, 1411–1452. [CrossRef]
5. Zhang, R.; Li, C.; Peng, L. Inference for the tail index of a GARCH(1,1) model and an AR(1) model with ARCH(1) errors. Econom.

Rev. 2019, 38, 151–169. [CrossRef]
6. Liu, X.; Yang, B.; Cai, Z.; Peng, L. A unified test for predictability of asset returns regardless of properties of predicting variables.

J. Econom. 2019, 208, 141–159. [CrossRef]
7. Murray, C.J.; Papell, D.H. The purchasing power parity persistence paradigm. J. Int. Econ. 2002, 56, 1–19. [CrossRef]
8. Rapach, D.E.; Wohar, M.E. The persistence in international real interest rates. Int. J. Financ. Econ. 2004, 9, 339–346. [CrossRef]
9. Datteo, A.; Luca, F.; Busca, G. Statistical pattern recognition approach for long-time monitoring of the G.Meazza stadium by

means of AR models and PCA. Eng. Struct. 2017, 153, 317–333. [CrossRef]
10. Said, S.E.; Dickey, D.A. Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 1984,

71, 599–607. [CrossRef]
11. Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [CrossRef]
12. Kwiatkowski, D.; Phillips, P.C.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit

root: How sure are we that economic time series have a unit root? J. Econom. 1992, 54, 159–178. [CrossRef]
13. Hill, J.; Li, D.; Peng, L. Uniform interval estimation for an AR (1) process with AR errors. Stat. Sin. 2016, 26 , 119–136. [CrossRef]
14. Li, C.; Li, D.; Peng, L. Uniform test for predictive regression with AR errors. J. Bus. Econ. Stat. 2017, 35, 29–39. [CrossRef]
15. Silvey, S.D. The Lagrangian multiplier test. Ann. Math. Stat. 1959, 30, 389–407. [CrossRef]
16. Box, G.E.; Pierce, D.A. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models.

J. Am. Stat. Assoc. 1970, 65, 1509–1526. [CrossRef]
17. Ljung, G.M.; Box, G.E. On a measure of lack of fit in time series models. Biometrika 1978, 65, 297–303. [CrossRef]
18. Owen, A.B. Empirical likelihood ratio confidence intervals for a single functional. Biometrika 1988, 75, 237–249. [CrossRef]
19. Owen, A. Empirical likelihood ratio confidence regions. Ann. Stat. 1990, 18, 90–120. [CrossRef]
20. Owen, A. Empirical likelihood for linear models. Ann. Stat. 1991, 19, 1725–1747. [CrossRef]
21. Qin, J.; Lawless, J. Empirical likelihood and general estimating equations. Ann. Stat. 1994, 22, 300–325. [CrossRef]
22. Chan, N.H.; Li, D.; Peng, L. Toward a unified interval estimation of autoregressions. Econom. Theory 2012, 28, 705–717. [CrossRef]
23. Liu, F.; Wang, P.F.; Chun-Yan, L.I.; Kang, X.M.; Statistics, D.O. Empirical Likelihood Based Diagnostics for Heteroscedasticity in

Single-index Model. J. Chongqing Technol. Bus. Univ. (Nat. Sci. Ed.) 2018, 81, 255–281.
24. Zhu, F.; Cai, Z.; Peng, L. Predictive regressions for macroeconomic data. Ann. Appl. Stat. 2014, 8, 577–594. [CrossRef]
25. Liu, X.; Liu, Y.; Lu, F. Empirical likelihood-based unified confidence region for a predictive regression model. Commun. Stat.

Simul. Comput. 2019, 51, 2122–2139. [CrossRef]

http://doi.org/10.1214/aos/1176350492
http://dx.doi.org/10.1093/biomet/74.3.535
http://dx.doi.org/10.1111/j.1468-0262.2007.00798.x
http://dx.doi.org/10.1080/07474938.2016.1224024
http://dx.doi.org/10.1016/j.jeconom.2018.09.009
http://dx.doi.org/10.1016/S0022-1996(01)00107-6
http://dx.doi.org/10.1002/ijfe.254
http://dx.doi.org/10.1016/j.engstruct.2017.10.022
http://dx.doi.org/10.1093/biomet/71.3.599
http://dx.doi.org/10.1093/biomet/75.2.335
http://dx.doi.org/10.1016/0304-4076(92)90104-Y
http://dx.doi.org/10.5705/ss.2014.252
http://dx.doi.org/10.1080/07350015.2015.1052460
http://dx.doi.org/10.1214/aoms/1177706259
http://dx.doi.org/10.1080/01621459.1970.10481180
http://dx.doi.org/10.1093/biomet/65.2.297
http://dx.doi.org/10.1093/biomet/75.2.237
http://dx.doi.org/10.1214/aos/1176347494
http://dx.doi.org/10.1214/aos/1176348368
http://dx.doi.org/10.1214/aos/1176325370
http://dx.doi.org/10.1017/S0266466611000727
http://dx.doi.org/10.1214/13-AOAS708
http://dx.doi.org/10.1080/03610918.2019.1670841


Axioms 2022, 11, 690 18 of 18

26. Hall, P.; Heyde, C.C. Martingale Limit Theory and Its Application; Academic Press: Cambridge, MA, USA, 1981.
27. Phillips, P.C. Time series regression with a unit root. Econom. J. Econom. Soc. 1987, 55, 277–301. [CrossRef]
28. Ma, Y.; Zhou, M.; Peng, L.; Zhang, R. Test for zero median of errors in an arma–garch model. Econom. Theory 2022, 38, 536–561.

[CrossRef]
29. Phillips, P.C.; Solo, V. Asymptotics for linear processes. Ann. Stat. 1992, 20, 971–1001. [CrossRef]
30. Phillips, P.C.; Magdalinos, T. Limit theory for moderate deviations from a unit root. J. Econom. 2007, 136, 115–130. [CrossRef]
31. Guo, G.; Sun, Y.; Wang, S. Testing for moderate explosiveness. Econom. J. 2019, 22, 73–95. [CrossRef]

http://dx.doi.org/10.2307/1913237
http://dx.doi.org/10.1017/S0266466621000244
http://dx.doi.org/10.1214/aos/1176348666
http://dx.doi.org/10.1016/j.jeconom.2005.08.002
http://dx.doi.org/10.1111/ectj.12120

	Introduction
	Methodologies and Asymptotic Results
	Simulation Results
	A Financial Real Data Application
	Conclusions
	Proof of the Main Result
	References

