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Abstract: We introduce a new class of Bazilevic¢ functions involving the Srivastava-Tomovski gener-
alization of the Mittag-Leffler function. The family of functions introduced here is superordinated by
a conic domain, which is impacted by the Janowski function. We obtain coefficient estimates and
subordination conditions for starlikeness and Fekete-Szeg6 functional for functions belonging to
the class.
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1. Introduction

Researchers have successfully applied the Mittag-Leffler function and its multi-parameter
extensions to several problems in physics, engineering and other applied sciences. However,
the real importance of this function arose from the role it plays in Fractional Calculus [1]. The
familiar Mittag-Leffler function E,(z) and its two-parameter version E, 4(z) are defined,
respectively, by

n o n

Ea(z):gm and Ea,ﬁ(z)zzm

n=0

(z, &, B, € C,Re(a) > 0),

where z € IT = {z : | z |< 1}, C denotes the sets of complex numbers and (x), denotes the
Pochhammer symbol defined by

[(x+n) |1

B ifn=0
() = T(x)  |x(x4+1)(x+2) ...

(x+n—-1) ifneN.

The Mittag-Leffler function E,(z) and its two-parameter version E, g(z) were first
considered by Gosta Mittag-Leffler in 1903 and A. Wiman in 1905. Refer to Ayub et al. [2],
Gorenflo [3], Srivastava [4—6] and Srivastava et al. [7-18] for detailed studies that involve
the Mittag-Leffler function.

The Mittag-Leffler function E, 4(z) coincides with well-known elementary functions
and some special functions. For example,

e —1

1
Ei2(z) = o E31(z) = 3

1,1/3 \@ 1/3
2
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Srivastava et al. [13] considered the following family of the multi-index Mittag-Leffler
functions as a kernel of some fractional-calculus operators

(o i) T Ty + Bj) m!”

E'y,k 5,e (Z - i (’Y)kn (5) en z" )

(zxj, Bj, v, k 6,e € C;Re(aj) >0,(j=1,...,m); Re(th]) > Re(k+¢€) — 1).

=

Some Higher Transcendental Functions and Related Mittag-Leffler Functions

The well-known Meijer G-function and Fox’s H-function have almost all elementary and
special functions as their special cases. Here we will restrict with a brief overview of the
Fox—Wright function and Hurwitz—Lerch type zeta functions unification with the Mittag-Leffler
function and its multi-parameter extensions.

Forn; e C(j=1,...,r)andv; € C\ Z; ={0, —1,...} (j =1, ...,s), the Fox-Wright
function ¥, which is defined by (see ([19], Equation (1.6)), ([20], p. 21) and ([21], p. 19))

) T T(n:+ An) n
r\{,s{(m,Al) SRR I L S (j ])zi" @
(1/1, Bl) (I/s, BS) =0 Hj:l F(v]+B]n) n
where Re(4;) > 0,(j = 1,...,r)and Re(B;)) > 0 € C(j = 1,...,s) with 1+

Re( i—1 B; 2] 1Aj ) > 0. Refer to Srivastava ([5], Definition 2) for a detailed discussion

on the convergence of the series (2).
Lin and Srivastava [22] introduced and investigated an interesting generalization of
the well-known Hurwitz—Lerch zeta function ¢(z, s,a) in the following form

n

ke o (1K z
4)’7 z,m,a) ;v (n+a)m”

In order to derive a direct relationship with the Fox-Wright function, the function
(plé’, v (z,m,a) was further generalized to (see Srivastava et al. [23])

o TTi—1 (1) n, "
ky, .. rkhel/ / J=1N1]7nK; Z
z,m,a E
P v e )= =0 M 11 (V)ne; (n +a)™

wheren; € C(j=1,...,r)andv; € C\ Zy ={0, —1,...} (j =1, ...,s). Refer to [24-26],
for a detailed discussion on the convergence.
When A; =1, (j=1,...,r)and B =1, (j=1,...,5)in (2), then
(m,1) . (1) ] {171, e T } o (1) - (7r)n 2"
Y ;2| = +F ;z| = —_—
oln,1) L (1) CF T, o O ;) (V1)n -~ (V) 1!
The function , F; is the well-known generalized hypergeometric function (see [27,28]).
Similarly, we observe from (1) and (2) that

rkoe oy 1 (vk), (e
(w7 B ) rw)r(a)ﬂm[(ﬁl,al) oo (Bt }
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A special case of the multi-index Mittag-Leffler function defined by (1), when m = 2
corresponding to the Srivastava—Tomovski generalization of the Mittag-Leffler function [29],
is given by

nkz
Z I (xn—i—ﬁ n" z, &, B, v, k€ C,Re(a) >0, Re(k) >0,

n=0
1 (k)
=t h [w)' } )

In [29], the authors established that Ezg(z) defined by (3) is an entire function in the
complex z-plane. The function EZE (z) is called the Srivastava—Tomovski generalization of

the Mittag-Leffler function. The function EV’ ﬁ( z) is popularly known as Prabhakar function
or generalized Mittag-Leffler three-parameter function.

In geometric function theory, several researchers have studied the properties of
the Srivastava—Tomovski generalization of the Mittag-Leffler function. The most promi-
nent studies pertaining to the Srivastava—Tomovski generalization were by Aouf and
Mostafa [30], Attiya [31], Liu [32] and Tomovski et al. [33].

2. Definitions and Preliminaries

Let #(d,n) be the class of analytic functions having a series of the form ¢(z) =
d+dpz" +dyz2"H L
Let
Ap={9eH, ¢(z) =z+dy12"" +dy22"+ ..}

and let A = A;. For ¢ € A, Cang and Liu in [34] introduced an operator using the
Srivastava—Tomovski generalization of the Mittag-Leffler function ([29]), which, explicitly
for p =1, is given by

, o Ly +nk)T@a+p) , 4
H7 Z T(y+k)T zxn—l—,B)n!d”Z @

Motivated by [35,36], we now define an operator J}"(«, B, 7)¢(z) : A — A is defined by

Tl B melz) =2+ iz[l A A rr(yjk;lﬁzi;(fjﬁ?i! dnz". ©®)

Remark 1. We note that operator Jj', (a, B, v)(2) is closely related to the operators studied

by Breaz et al. [37], Cang and Liu [34] and Elhaddad et al. [38]. Now here we list some of the

special cases:

1. 31,(0, B, 1)¢(z) = D"¢(z), where D™ ¢(z) is the Al-Oboudi operator (see [39])

2. Ifweleta =0,k =v=1and A = 1in (5), then 3}, (a, B, v)p(z) reduces to the
well-known Siliigean operator.

3. Ifweletm=0and A =1in (5), then 3", (&, B, 7v) ¢(z) reduces to the operator defined and
studied by Cang & Liu [34].

Let Y denote the class of functions having series
[e0]
z) =1+ )Y rz" (z€ll),
n=1

which satisfies the condition Re(r(z)) > 0. We denote by $*(17), C(1) and K(7,7) (0 <
1, T < 1) the familiar subclasses of A consisting of functions that are, respectively, starlike
of order 7, convex of order 7 and close-to-convex of order # and type T in IT.
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Recently, Breaz et al. [40] defined and studied the following function

[(1+Q)p+0(R=Q)¥(z) +[(1=Q)p — (R = Q)]

INQR p; 5 ¥) = , 6
(@R pret) R+ 1¥(z) + (1K) ©

where ¥(z) € Y and has a series representation of the form
Y(z) =1+ Liz+ Loz +---. )

A detailed geometric interpretation of I'(Q, R; p; 0;'¥) was discussed by Karthikeyan
etal. in [41]. The function T'(Q, R; p; 0;'¥) was mainly motivated by the study of Noor and
Malik [42] and Srivastava et al. [43—49].

By making use of the function I'(Q, R; p; 0;'¥), we now define the following.

Definition 1. For 0 < 6 < oo, a function ¢(z) € A is said to be in B} («, B,7; 6; Q,R; ¥) if
and only if for all 3i* , (&, B, ) x € S*(0) it satisfies the condition

2[3p, (a B, Mo(2)]
37w, B, V) @(2)' 2[5 (&, B, 1) X (2)]

where 3¢ (a, B, 7)x(z) # 0 for all z € T1.

s <TQR LY) (zell) 8)

Ifweletm=0c=a=0,k=1,0Q=1R=—-1and x € §*(1+z/1—z), then
B (a0, B,7; Q,R; ¥) reduces to the class

.y — : z¢/(z) , )
560 = {o € A il <Y, xeS O}

The function B(J; ¥) was studied by Goyal and Goswami in [50] but with ¢ and x
belonging to Ay,.
Ifwelet x(z) =z 0=0,%(z) = 122, Q = 1 —2and R = —1 we get the class B(J, 1)

z7/

223 (e, B Me(2)]

16
(3@, B, 7)9(2)]
Further, on letting m = 0 =« = 0 and k = 1 in B(, 1), it reduces to the well-known class
1-6 1
B(6) (see [51]), which satisfies the condition Re Z(;D)l(i)s > 0,z € I, where ¢ € A. For
¢(z

recent developments pertaining to the study of Bazilevi¢ functions, refer to [52,53].
Throughout this paper, we let

1+Q)+0(R-Q)¥(2) +[(1-Q) —o(R— Q)]

which satisfies the condition Re

> 1,z € 11, where ¢ € A.

O Re o g — L

R QR; 03 ¥32) = [(R+ 1)¥(z) + (1_R)] -0
From ([40], Theorem 2), with
w(z) = ;mz+;<pz - ;p%)zhr;(ps —p1p2 + ipi'>z3+ e, zell
we can get
R(1; Q,R; o3 w(z)) = 14 22£1Q _4R)(1 —9)
_ _ (R+1)L; +2(1- &
(Q R)S )L {Pz-ﬁ%( 14 ( Ll)) 24 (10)
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Now we will state some results, which we will be using to establish the coefficient
inequalities.

Lemma 1 ([54]). Let p(z) = 1+ Y p12" be analytic in the unit disc satisfying Re p(z) > 0.
n=1
Then, for each complex number ¢, we have
lo2 — 003| <2 max{1, |20 — 1|},
the result is sharp for functions given by

1+ 22 14z
p(z) = 1_2 p(z) = 1_z2

Lemma 2 ([55]). If R(z) = z+ Y pcnz" € S*, then |c,| < n. Further, for each complex
number & we have | ¢z — 9c3 |< max (1,| 3 — 48 |) and the result is sharp for the Koebe functon

and for

1 2 Z . 3
= —_ = <—.
”<Z> =2 U olemgl=g

3. Fekete-Szego Inequalities for the Class B} («, B,7v; 6; Q,R; Y)

In this section, we obtain the solution to the Fekete-Szeg6 problem for functions in
class By (, B,7; 6; Q,R; ¥).

Theorem 1. If ¢(z) € BY(a, B,v; 6; Q,R; ¥), then we have

(Q—R)(1—-0)|L4] 26
o] < 2[My|(1+6) (6+1) (11)
and
|ds| < (Q=R){ =o)L max{1, [2T —1|}+Lmax{1 |3 — 4T}
3= "2M;|(6+ 2) s1e (6+42) ’ 2
(Q—R)o(1 —0o)|L1 My
M+ 0 +2) (12)
where I'y and Ty are given by
1 L, (Q—R)(1—0)L1(8% +5 —2)
r1_4[L1(R+1)+2(1—L1>— T ]
M3 5(62+6—2) 26
rzm{(aﬂw 140y +(5+1)]'
Further, for all ¢ € C we have
2| _ (Q—=R)(1—0)|L4]
‘d3—l9d2‘ < 3Ms| (6 5 2) max{1, |2H; — 1|}
2(Q — R)é6(1 —0)|Ly My| 1 o 26
CESY) MGG 12) M2(1+5)‘+ 12 Ml 347l (13)
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where H1 and Hy are given by

L1(R+1)+2<1L2) +{191\/13(5+2) - (52+5—2)}(Q—R)(1—0)L1]

1
=3 L, M2 2 (1+0)2

Ho

M3 (5+1)_2195(5+2)M3 5(52+5—2)+ 26
- 2M; M2(6+1)2 (1+0)2 (6+1)

The inequality is sharp for each ¢ € C.
Proof. By the definition of BY' (0, B,7;0; Q R; ¥), we have

[ (@ B, M)
S B 9@ [ B AP

’

=X(1;, Q,R; osw(z)), (14)

where R(1; Q, R; o;w(z)) is defined as in (9). The left-hand side of (14) is given by

=1+ [dz(l +9) — 562]M22 +

1
2

224 (15)

M
—dyM32écy 4+ M3d <03 - ﬁcg((s + 1)>

From (15) and (10), the coefficients of z and z? are given by

_(Q=R)(1-0)Lip; 5
o2 = 4M;(1+9) (5+1)C2 (16)
and
_(Q-R)(1-0)L, 02 L
dz = 4M3(6 +2) [P2—£<L1(R+1)+2<1_L1>

Cz(Q — R)5(1 — O')Lllez
AM3(6+1)(6 + 2)

) M3 5(824+6—2) 25
_(5+z){63‘zz\423[(‘5“)+ L +(5+1)}C%}' a7)

(Q—R)(1—0)L1(6*+6—2)
B 2(1+4)2

Using |px| < 2(n > 1) in (16), we can obtain (11). Using (17) together with Lemma 1,
(Q—-R)(1—0)|Ly]

we have
2
P17 Ly
—— | Li{(R+1)+2(1- =
MG +2) |2 4(1( O+ ( L1>

(Q—R)(1—0)L1 (6% +6—2)
2(1+496)?

|d3| <

1)
5+2)

. M3 5(6*+5-2) 26 }2
3

2M, 1102 T2
|c2|(Q = R)6(1 — o) |L1p1 My |
ACEI e

M

[(5+1)+
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Hence the proof of (1).
To establish (1), we consider

‘ds_ﬂd%‘:’<g—za><1_g>u[p p%<L1(R+1)+2<1_Lz)

4M3(6 +2) vy

+{191\/13((5+2) (32 +0-2) } (Q—R)(l—a)Llﬂ

M3 2 (144)2
CZ(Q_R)‘S(l—U)Lllez{ 1 B 0 }_ 5 .
2(0+1) 2M3(6+2)  My(1+0)f (6+2)'7°
M3 206(6 +2)Ms  8(0%+5-2) 25 |,
“ont (6+1)— VECESE TR CESY cz}‘. (18)

Applying Lemmas 1 and 2 in (18), we can establish inequality (1). [

We denote by S(77,7) (0 <5 <1 < T) (see [56]) the class of functions ¢ € A satisfying
the inequality

z¢'(2)
¢(z)

Corollary 1 ([57], Theorem 5). Let 0 < n < 1 < T and let the function ¢ € S(n,T). Then, for
all ¢ € C we have

1
. 1|2
max{ 3

Proof. From [56], (19) can be rewritten in the form

z¢'(z) n—t. (1-em-n/-0) 7\
o) T ”"g< =2 =T(2).

Further, it is known that Re{7 (z)} > 0 (z € IT) and has a series of the form

77 < Re <7t zell (19)

dy — 03| < = sin ”(Tl__:)

_ B L
+(17219)T7t17i+ (;(1219)771'71')8”’73

}

T(z) =1+ Z L,z", z 1],

n=1

where L, = /A

i (1 - eznﬂi((l’ﬂ)/(”’T))), n > 1. Substituting the values of m = ¢ =

0=a0=0,k=1,Q=1,R = —1, L] and L, in Theorem 1 we obtain assertion of our
theorem. [

Ifwetakem =0c=6=a=0,k=1,Q =1and R = —1 in Theorem 1, then we have
the following corollary.

Corollary 2 ([58]). Suppose ¢(z) = z +doz? +d3z3 + - -+ € S*(¥) (z € IT). Then

]dg, - ﬁd%’ < Lzlmax{l,' L+ % — 281, } (9 € C).
1
Equality is attained if
) zexp [y [¥(t) —1]3dt,  if [Li + % —20L,| > 1
zZ) =
zexp [[¥(2) —1]1dt, if|Ly+ P —20Ly| < 1.
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4. Subordination Results

In general, we note that I'(Q, R; 1; o;'¥) need not be convex univalent in IT. However,
the function T'(Q, R; 1; o; ¥) is convex depending on the choice of ¥ (z) (see [41,59]).

Lemma 3. Let ¢ be convex in I'l, with £(0) = d, v # 0and Rev > 0. Ifr € H(d, n) and

(z) + Z’V(Z) < ((2),
then

r(z) < q(z) < L(z),
where

v z
(v/n)—1
q(z) = T /0 t £(t)dt.

The function q is convex and is the best (d, n)-dominant.

Theorem 2. Let ¢, x € A with ¢(z), ¢'(z) and x(z) # 0 forall z € 11\ {0}. Further, let
I'(Q,R; 1; 0;'Y) be convex univalent in ITwith [['(Q,R; 1; 0;¥)],_y = 1andRe T(Q,R; 1; o; ¥)
> 0. Further, suppose that x € S*(0) and

2 "

3+2{z{a“< B 1)e <>}

z[apa@ B o] 2] (@ B X))
(1-96) 3@ B e - 5 B X }1 <T(QR; 1, ;¥).  (20)
Then { }/
2[37 (B, 1)9(2)
i@ B 9@ B, @ B x@p VO @)
where

Qz) = %/OZF(Q,R; 1; 0, ) dt

and K is convex and is the best dominant.

Proof. Let

A& B, 1e()]
O B B AP

thenr(z) € H(1, 1) withr(z) # 0.
By assumption, I'(Q,R; 1; 0;¥) is convex univalent in I'T, which, in turn, implies () is
convex and univalent in IT. Suppose T(z) = r?(z), then T(z) € H with T(z) # 0in I1.
Using logarithmic differentiation, we have

z {3}?
)¢
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Thus by (2), we have
T(z)+2T (z) < {(z) (z €TI). (22)
Now, by Lemma 3, we deduce that
T(z) < Q(z) < £(z).

Since Re /(z) > 0 and Q(z) < ¢(z), we also have Re Q)(z) > 0. 1/€)(z) is univalent by
virtue of Q) being univalent and 7?(z) < Q(z) implies that r(z) < 1/Q(z), which establishes
the assertion. [

Corollary 3. Let ¢, x € A with ¢(z), ¢ (z) and x(z) # 0 forall z € IT\ {0}. If x € S*(0) and

. (3w B, Me()] , {zmm B o)
37 B 1)o@ b7, @ B NP D e, prg(a)]
Z[S,’("A a, ,'y)qo(z)}/ Z[S;’S,\(“r B V)X(Z)T
O @B e 3@ B A }” ”¢
then

where w(¢) = \/[2(1 —¢) -log2 + (2¢ — 1)], (0 < ¢ < 1). The inequality is sharp.

Proof. Letc =0,Q =1,R = —Tand ¥(z) = “%-12 0 < ¢ < 1 in Theorem 2, we can
easily get the desired result. O

If weletm = § = a« = 0 and k = 1 in Corollary 3, then we have the following

Corollary 4. Let ¢ € A with ¢ (z) and ¢(z) # 0 forall z € 11\ {0}. If
! 2 " !
(=@, 220’0 22 )
R{<<p(z)> 3+ 1}>§,

¢'(z) ¢(z)
Re zqo/(z) > w(f),

then

where w(¢) = \/[2(1 —¢) -log2 + (2¢ — 1)], (0 < ¢ < 1). This inequality is sharp.
Ifweleté =1, m = a = 0and k = 1 in Corollary 3, then we have the following

Corollary 5. If ¢, x € A satisfies
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with x € §*(0) and x(z) # 0 forall z € IT\ {0}, then

ReZ? (2) > w(f),

where w(¢) = \/[2(1 —¢) -log2 + (2¢ — 1)], (0 < ¢ < 1). The inequality is sharp.

5. Conclusions

The main purpose of this present study is to obtain the coefficient inequality for the
class of Bazilevi¢ functions, which is computationally cumbersome. To add more versatility
to our study, we have studied a class of Bazilevi¢ functions involving the Mittag-Leffler
functions. Coefficient inequality, solutions to the Fekete-Szegt problem and sufficient
conditions for starlikeness are the primary results of this paper. We have pointed out appro-
priate connections that we investigated here, together with those in several interconnected
earlier works.

We note that this study can be extended by taking a trigonometric function, exponential
function, Legendre polynomial, Chebyshev polynomial, Fibonacci sequence or g-Hermite
polynomial instead of considering (z) as in (7).
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