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Abstract: A new one parameter distribution recently was proposed for modelling lifetime data called
half logistic-geometric (HLG) distribution. In this paper, appropriate transformation is considered
for HLG distribution and a new distribution is derived called unit half logistic-geometric (UHLG)
distribution for modelling bounded data in the interval (0, 1). Some important statistical properties
are investigated with a closed form quantile function. Some methods of parameter estimation are
introduced to evaluate the distribution parameter and a simulation study is introduced to compare
these different methods. A real data application in the insurance field is introduced to show the
flexibility of the new distribution modelling such data comparing with other distributions.

Keywords: half logistic-geometric distribution; unit distributions; parameter estimation methods;
regression models; risk survey data

1. Introduction

Modelling data sets bounded in the interval (0, 1) has become very important in
recent times and is used in many fields to deal with survival and failure rates of products,
see [1,2]. Therefore, many unit distributions bounded in the interval (0, 1) arise because
of its flexibility dealing with such probabilistic models. In addition, many fields such
as medical, actuarial and finance sciences are in desperate need of these kinds of distri-
butions. As a result, many researchers have proposed unit distributions. For instance,
Abd El-Monsef et al. [3] proposed a new two-parameter unit-omega distribution with flex-
ible probability density function (pdf) and hazard function. Moreover, Altun et al. [4]
studied a distribution called unit-improved second-degree Lindley distribution modelling
data in the interval (0, 1). Moreover, Altun et al. [5] proposed a more flexible model,
log-Bilal distribution, as an alternative to beta and unit-Lindley regression models. Ad-
ditionally, Bayes et al. [6] proposed a new regression model for the relationship between
one or more covariates and a response beta variable conditional mean. Cordeiro et al. [7]
recently offered some statistical methods of lifetime and survival models.

Both beta [8] and Kumaraswamy [9] are common distributions for modelling such
data in the unit interval (0, 1) and as a result, beta and Kumaraswamy [10] regression
models have been extended to study the behaviour of variables in the presence of covari-
ance. As an alternative to the beta regression model, Gómez-Déniz et al. [11] proposed a
new Log–Lindley distribution model with useful applications in econometric analysis and
actuarial settings. In addition, Korkmaz et al. [12] modified the Burr-XII distribution and
obtained a new two-parameter distribution on the unit interval called the unit Burr-XII dis-
tribution and showed that it had better modelling capabilities than other competing models.
Moreover, Mazucheli et al. [13] not only proposed a unit-Weibull two-parameter distribu-
tion, modelling data on the unit interval (0, 1), and proposed some useful statistics for this
distribution, but also they recently (in 2020) considered the unit-Weibull distribution [14]
as an alternative to the Kumaraswamy distribution for the modelling of quantiles and
demonstrated the suitability for modelling quantiles in accounting, health and other social
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sciences. Moreover, [15] discussed modelling the COVID-19 mortality rate with a new ver-
satile modification of the log-logistic distribution and [16] introduced an extended Cosine
generalized family of distributions for reliability modelling: characteristics and applications
with simulation study. Moreover, Mazucheli et al. [17] introduced the unit-Lindley distri-
bution and investigated some of important statistical properties. In addition, Mitnik and
Baek [10] presented two median-dispersion re-parameterizations of the Kumaraswamy dis-
tribution to facilitate its use in regression models. Furthermore, Mousa et al. [18] presented
a new regression model named as the unit gamma distribution as an alternative to the beta
regression model; [19,20] presented the competing risks models and regression competing
risks models with Weibull lifetime distributions. Tadikamalla [21] proposed more flexible
unit-gamma distribution aimed at modelling data in the unit interval (0, 1) too.

Recently (in 2020), Liu and Balakrishnan [22] proposed a new simple one-parameter
half logistic-geometric (HLG) distribution useful for analyzing lifetime data with some
interesting properties. The probability density function (pdf) and cumulative distribution
function (cdf) of HLG distribution are defined, respectively, as

g(y) =
θ

θ + (2− θ)e−y , y > 0, 0 < θ < 1, (1)

G(y) =
θ(1− e−y)

θ + (2− θ)e−y , y > 0, 0 < θ < 1. (2)

The aim of this paper is to derive a new flexible distribution modelling data in the
unit interval (0, 1). The negative exponential function transformation was used to derive
the new distribution named unit half logistic-geometric (UHLG) distribution with some
attractive properties: (i) statistical functions of the UHLG distribution have closed form
expressions; (ii) statistical properties of the UHLG distribution were derived in simple
expressions; (iii) the UHLG distribution presents more flexibility, dealing with bounded
unit interval data more than other distributions, as shown later in Section 6; (iv) because
of its flexibility, a new regression model was introduced considering parameterizing the
UHLG distribution in terms of its quantile function in a closed form expression.

The remainder of this paper is summarized as follows: In Section 2, the UHLG
distribution is introduced with some important statistical properties. Some methods of
parameter estimations are introduced in Section 3 to evaluate the unknown parameter
and a simulation study is introduced to compare these different methods in Section 4.
In addition, a regression model is introduced as an alternative to some other regression
models in Section 5. Finally, an application with real data about risk survey is given in
Section 6.

2. Unit Half Logistic-Geometry Distribution

In this section, the UHLG distribution is derived and some important functions
are illustrated.

2.1. Cumulative and Density Functions of UHLG Distribution

In Equation (2), replacing e−y with x, we obtain a new random variable X following
the UHLG distribution with cdf as follows

F(x) = 1− θ(1− x)
θ + (2− θ)x

, 0 < x < 1, θ > 0. (3)

As a result, the quantile function Q(u|θ) of UHLG distribution can be given as

Q(u|θ) = uθ

2− 2u + uθ
, 0 < u < 1, θ > 0. (4)
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Taking the first derivative of the cdf given in Equation (3) with respect to x, the pdf is
obtained as follows

f (x) =
2θ

(θ + (2− θ)x)2 , 0 < x < 1, θ > 0. (5)

Theorem 1. The pdf of the UHLG distribution is

(i) decreasing function if 0 < θ < 2,
(ii) increasing function if θ > 2,
(iii) constant when θ = 2.

Proof. The first derivative of the pdf with respect to x is given by

d f
dx

= − 4θ(θ − 2)
(x(θ − 2)− θ)3 ,

and it is clear that

(i) When 0 < θ < 2, the first derivative is negative, which implies that the pdf of the
UHLG distribution is decreasing;

(ii) When θ > 2, the first derivative is positive, which implies that the pdf of the UHLG
distribution is increasing;

(iii) Lastly, when θ = 2, the pdf of the UHLG distribution is constant and equal to 1.

Figures 1 and 2 show the cdf and pdf functions, respectively, of the UHLG distribution
at different values of θ.

Figure 1. cdf of UHLG distribution at different values of θ.



Axioms 2022, 11, 676 4 of 18

Figure 2. pdf of UHLG distribution at different values of θ.

2.2. Survival and Hazard Functions of the UHLG Distribution

The survival and the hazard rate functions of the UHLG distribution can take the next
formulas, respectively,

S(x) = 1− F(x) =
θ(1− x)

θ + (2− θ)x
, 0 < x < 1, θ > 0, (6)

H(x) =
f (x)
S(x)

=
2

(x− 1)((θ − 2)x− θ)
, 0 < x < 1, θ > 0. (7)

The next theorem shows the different shapes of the UHLG hazard function with
respect to θ.

Theorem 2. The hazard rate function of the UHLG distribution is

(i) bathtub (U-shaped) function if 0 < θ < 1,
(ii) increasing function if θ ≥ 1.

Proof. The first derivative of the hazard function with respect to x is given by

dH
dx

=
4θ(1− x)− 4(1− 2x)
(x− 1)2((2− θ)x + θ)2 .

Clearly, dH
dx and ψ(θ) = 4θ(1− x)− 4(1− 2x) have the same signs.

The function ψ(θ) has a root equal to 1−θ
2−θ . Then:

(i) When 0 < θ < 1, the sign of ψ(θ) changes from negative to positive, which implies
that the function H(x) is decreasing first and increasing second (bathtub shape) with
minimum value equal to 1−θ

2−θ ;
(ii) When θ ≥ 1, the sign of ψ(θ) is always positive, which implies that the function H(x)

is increasing.

This completes the proof.

Figures 3 and 4 show the cdf and pdf functions respectively of the UHLG distribution
at different values of θ.
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Figure 3. Survival function of UHLG distribution at different values of θ.

Figure 4. Hazard rate function of UHLG distribution at different values of θ.

2.3. Moments

Consider X as a random variable following the UHLG distribution with pdf given in
Equation (5). Then, the rth moment about zero, µ

′
r, can be given as

µ
′
r =

∫ 1

0
xr f (x)dx =

∫ 1

0
xr 2θ

(θ + (2− θ)x)2 dx

=
2
θ

∫ 1

0

xr

(1 +
(

2−θ
θ

)
x)2

dx.
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Using Equation (3.194.1) in [23], where u = 1, µ = r + 1, β = 2−θ
θ , and ν = 2, the final

form of µ
′
r is given by

µ
′
r =

2
θ(r + 1) 2F1

(
2, r + 1; r + 2;

θ − 2
θ

)
, (8)

where 2F1(a, b; c; z) = Γ(c)
Γ(a)Γ(b) ∑∞

s=0
Γ(a+s)Γ(b+s)

Γ(c+s)s! zs is the hypergeometric function.
The first four moments about zero can be given by putting r = 1, 2, 3, and 4 in

Equation (8).
Coefficients of skewness and kurtosis can be derived from moments about zero

as follows

skewness =
µ
′
3 − 3µ

′
1µ
′
2 + 2(µ

′
1)

3

(
√

µ
′
2 − (µ

′
1)

2)3
,

kurtosis =
µ
′
4 − 4µ

′
1µ
′
3 + 6(µ

′
1)

2µ
′
2 − 3(µ

′
1)

4

(µ
′
2 − (µ

′
1)

2)2
.

Figure 5 shows the mean and the variance plots and it is clear that the mean is always
increasing but the variance is increasing when 0 ≤ θ < 2 and decreasing otherwise.

Figure 5. The mean and the variance plots for UHLG distribution.

Moreover, Figure 6 shows the skewness and the kurtosis plots and it is clear that the
skewness is positive when 0 ≤ θ < 2 and negative otherwise and the kurtosis is positive
when 0 ≤ θ < 0.1 and negative otherwise.

Figure 6. The skewness and the kurtosis plots for UHLG distribution.

2.4. Incomplete Moments and Related Measures

In this subsection, the rth incomplete moment, mr(y), is introduced with some related
measures, for instance, mean deviation about mean and median and Bonferroni and
Lorenz curves.
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The rth incomplete moment of the UHLG distribution is given by

mr(y) =
∫ y

0
xr f (x)dx =

∫ y

0
xr 2θ

(θ + (2− θ)x)2 dx

=
2
θ

∫ y

0

xr

(1 +
(

2−θ
θ

)
x)2

dx.

Using Equation (3.194.1) in [23], where u = 1, µ = r + 1, β = 2−θ
θ , and ν = 2, the final

form of mr(y) is given by

mr(y) =
2yr+1

θ(r + 1) 2F1

(
2, r + 1; r + 2;

(θ − 2)y
θ

)
, (9)

where 0 < y < 1.
Some important statistical measures are defined based on the moments and the incom-

plete moments, such as the mean deviation about the mean D(µ′1) and about the median
D(M). These measures can be expressed as

D(µ′1) = 2µ′1F(µ′1)− 2m1(µ
′
1),

and
D(M) = µ′1 − 2m1(M),

where M = Q(0.5).
Another related measure is the mean residual life (MRL), which is defined as the

expected value of the remaining lifetimes after a fixed time point t. It can be defined in
terms of the moments and incomplete moments as

mrl(t) =
µ′1 −m1(t)

F̄(t)
− t.

Moreover, the mean inactivity time which represents the waiting time elapsed since
the failure of an item on condition that this failure had occurred in (0, t) is given by

mit(t) = t− m1(t)
F(t)

.

Other important applications of the moments and incomplete moments are related to
Bonferroni and Lorenz curves of X, which can be defined by

B(π) =
m1(q)
πµ′1

,

and

L(π) =
m1(q)

µ′1
,

respectively, where q = Q(π) follows from Equation (4) for a given probability π. The
importance of Bonferroni and Lorenz curves is due to the wide variety of the potential
applications of these curves. These curves can be applied in financial studies, medicine and
insurance.

Other measure can be defined based on the moments and incomplete moments. For a
complete list of these measures see [7].

2.5. Stress Strength Parameter

According to [24,25], the reliability, R, of a component arises when its strength is
greater than its stress. Let X ∼ UHLG(θ1) represent the strength of the component and
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Y ∼ UHLG(θ2) represent its stress. It is said that the component is functioning when the
condition Y < X is held and then its reliability is given by

R = P(Y < X) =
∫ 1

0
fX(x|θ1)FY(x|θ2)dx

=
∫ 1

0

2
θ1

1(
1 + 2−θ1

θ1
x
)2

(
1− 1− x

1 + 2−θ2
θ2

x

)
dx

= 1− 2
θ1

∫ 1

0
(1− x)

(
1− θ1 − 2

θ1
x
)−2(

1− θ2 − 2
θ2

x
)−1

dx.

Using Equation (3.211) in [23], where λ = 1, µ = 2, u = θ1−2
θ1

, e = 2, ν = θ2−2
θ2

and
σ = 1, the integral is given by

R =
θ1 − 1

θ1
F1(1, 2, 1, 3;

θ1 − 2
θ1

,
θ2 − 2

θ2
), (10)

where F1(a, b, c, d; x, y) = Γ(d)
Γ(a)Γ(d−a)

∫ 1
0

ua−1(1−u)d−a−1

(1−ux)b(1−uy)c du is the Appell hypergeometric func-
tion (see [26]).

2.6. Stochastic Ordering

The stochastic order arises when we have two independent continuous random vari-
ables, X1, X2, such that X1 < X2; we say that X2 is stochastically smaller than X1, X2 <lr X1

if f1(x)
f2(x) is a non-decreasing function of x. For more details see ([22,27,28]).

Proposition 1. Let X1, X2 be two independent random variables such that X1 ∼ UHLG(θ1),
X2 ∼ UHLG(θ2). If θ1 ≥ θ2, then X2 <lr X1.

Proof. The first derivative of f1(x)
f2(x) is given by

d
dx

(
f1(x)
f2(x)

)
=

4θ1(θ1 − θ2)((θ2 − 2)x− θ2)

θ2((θ1 − 2)x− θ1)3 .

It is obvious that if θ1 ≥ θ2, then d
dx

(
f1(x)
f2(x)

)
is non-negative and as a sequence, f1(x)

f2(x) is
a non-decreasing function of x and this completes the proof.

3. Parameter Estimation

In this section, six methods of estimations are used to estimate θ, the parameter of
UHLG distribution. These methods are maximum likelihood estimation method (MLE),
Bayesian estimation method (BE), Cramer–Von-Mises method (CVME), least squares
method (LSE), method of moments (MME), weighted least squares method (WLSE).

3.1. Maximum Likelihood Estimation Method (MLE)

Given a random sample (x1, x2, . . . , xn) from the UHLG distribution, the likelihood
estimation function, L, can be given as follows

L =
n

∏
i=1

f (xi; θ)

=
(2θ)n

∏n
i=1(θ + (2− θ)xi)2 ,

(11)
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and the logarithmic likelihood function is

l = log[L] = n log[2θ]− 2
n

∑
i=1

(log[θ + (2− θ)xi]), (12)

and the first derivatives of l with respect to θ are given by

dl
dθ

=
n
θ
− 2

n

∑
i=1

1− xi
θ + (2− θ)xi

. (13)

3.2. Bayesian Estimation Method

The Bayesian estimation (BE) method is used to fit the probability model to a set of
data and summarize the results by the probability distribution of the model parameters.
The data come from the prior distribution and the likelihood, L, function and give the
posterior distribution.

Suppose that we have a non-informative prior distribution u(θ) = 1
θ .

Therefore, the posterior distribution function, g(θ), is given by

g(θ) =
u(θ) L∫ 1

0 u(θ) L dθ

=

1
θ

(
(2θ)n

∏n
i=1(θ+(2−θ)xi)2

)
∫ 1

0
1
θ

(
(2θ)n

∏n
i=1(θ+(2−θ)xi)2

)
dθ

.

(14)

According to the squared error loss function, Bayes estimate, θ̂, is the posterior mean
of θ with pdf given in Equation (14) as follows

θ̂ =
∫ 1

0
θ g(θ) dθ

=
∫ 1

0

(2θ)n

∏n
i=1(θ+(2−θ)xi)2∫ 1

0
1
θ

(
(2θ)n

∏n
i=1(θ+(2−θ)xi)2

)
dθ

dθ.
(15)

Since these integrals cannot be obtained analytically, alternative methods are assumed
to obtain the estimate. For this purpose, the Markov Chain Monte Carlo (MCMC) method
is used. The Metropolis Hastings algorithm [29] is a modification version of the MCMC
technique and can be used for this purpose.

The posterior distribution of θ can be written as

π(θ) ∝ θn−1
n

∏
i=1

(θ + (2− θ)xi)
−2.

The following algorithm uses Metropolis Hastings steps with a normal proposal for
updating the parameter θ and then obtains the Bayesian estimate of θ.

• Step 1: Start with an arbitrary initial value θ(0) where g(θ(0)|x) > 0 and set k = 1.
• Step 2: Generate a proposal θ∗ from normal distribution, i.e., q(θ) = N(θ(k−1),

var(θ(k−1))).
• Step 3: Calculate the acceptance probability function

ρ = Min

(
1,

π(θ∗)q(θ(k−1))

π(θ(k−1))q(θ∗)

)
.

• Step 4: Generate U ∼ uni f orm(0, 1).
• Step 5: If U ≤ ρ put θ(k) = θ∗; otherwise put θ(k) = θ(k−1).
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• Step 6: Repeat steps (2) and (5) N times to have θ(k), k = 1, . . . , N.

Using the simulated posterior sample, the Bayesian estimate of θ is given as:
θ̂ = 1

N−N0
∑N

k=N0+1 θ(k) where N0 represents the number of burn-in periods of Markov
chain discarded to remove the effect of the selected initial value of θ. For more details,
see [30].

3.3. Cramer-Von-Mises Method

In the CVME method the distance between the cumulative distribution function and
the experimental distribution function is reduced, which can be summarized as follows

CMV(θ) =
1

12n
+

n

∑
i=1

(
F(x(i), θ)− 2i− 1

2n

)2
, (16)

and the first derivative with respect to θ is given by

∂CMV(θ)

∂θ
= 2

n

∑
i=1

(
F(x(i), θ)− 2i− 1

2n

)
F
′
θ(x(i), θ) = 0

= 2
n

∑
i=1

(
1−

θ(1− x(i))
θ + (2− θ)x(i)

− 2i− 1
2n

)
(

θ + (2− θ)x(i)(x(i) − 1)− 2θx(i)(x(i) − 1)(1− θ)

(θ + (2− θ)x(i))2

)
= 0.

(17)

θ̂ is the value of θ that minimizes Equation (17).

3.4. Least Squares Method

In this method, the sum of the offsets or residuals of points from the plotted curve is
minimized which can be summarized as follows

LS(θ) =
n

∑
i=1

(
F(x(i), θ)− i

n + 1

)2
, (18)

and the first derivative with respect to θ is given by

∂LS(θ)
∂θ

= 2
n

∑
i=1

(
F(x(i), θ)− i

n + 1

)
F
′
θ(x(i), θ) = 0

= 2
n

∑
i=1

(
1−

θ(1− x(i))
θ + (2− θ)x(i)

− i
n + 1

)
(

θ + (2− θ)x(i)(x(i) − 1)− 2θx(i)(x(i) − 1)(1− θ)

(θ + (2− θ)x(i))2

)
= 0.

(19)

θ̂ is the value of θ that minimizes Equation (19).

3.5. Method of Moments

This method can be obtained by equating the population moments with the sample
moments as follows

∑n
i=1 xi

n
= µ

′
1

=
1
θ

2F1

(
2, 2; 3;

θ − 2
θ

)
.

(20)
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3.6. Weighted Least Squares Method

This method is assumed to be a generalization to the LSE method and is given as
follows

WLS(θ) =
n

∑
i=1

(n + 2)(n + 1)2

i(n− i + 1)

(
F(x(i), θ)− i

n + 1

)2
, (21)

and the first derivative with respect to θ is given by

∂WLS(θ)
∂θ

= 2
n

∑
i=1

(n + 2)(n + 1)2

i(n− i + 1)

(
F(x(i), θ)− i

n + 1

)
F
′
θ(x(i), θ) = 0

= 2
n

∑
i=1

(n + 2)(n + 1)2

i(n− i + 1)

(
1−

θ(1− x(i))
θ + (2− θ)x(i)

− i
n + 1

)
(

θ + (2− θ)x(i)(x(i) − 1)− 2θx(i)(x(i) − 1)(1− θ)

(θ + (2− θ)x(i))2

)
= 0.

(22)

θ̂ is the value of θ that minimizes Equation (22).
Equations (13), (15), (17), (19), (20) and (22) have no analytic closed form when equat-

ing by zero, so numerical methods are used to give solutions.

4. Simulation Study

In this section, a simulation study is performed to show the effectiveness of the
previous estimation methods of θ̂. All observations follow UHLG distribution. In this
study, some statistics of θ̂ including mean estimated (ME), average bias (AB) and mean
squared error (MSE) using previous estimation methods are calculated. Different values of
θ are assumed here and the study is performed 2000 times at samples sizes 20, 70, 100, 150
and 200.

The statistical measurements ME, AB and MSE can be given, respectively, as follows

ME =
1

2000

2000

∑
i=1

θ̂i, AB =
1

2000

2000

∑
i=1

(θ − θ̂i), and MSE =
1

2000

2000

∑
i=1

(θ − θ̂i)
2.

Tables 1 and 2 show some statistics of θ̂ including ME, AB and MSE using the previous
estimation methods.

Tables 1 and 2 show the following notes in general:

• ME converges to θ when the sample size, n, increases;
• AB tends to zero when the sample size, n, increases;
• MSE decreases when the sample size, n, increases;
• In general, MLE and BE methods are the best estimation methods compared with the

previous methods.
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Table 1. Some statistics of θ̂ including ME, AB and MSE using MLE, BE and CVME methods.

θ n
MLEθ̂ BEθ̂ CVMEs

ME AB MSE ME AB MSE ME AB MSE

0.1

20 0.115 0.015 0.002 0.109 0.009 0.004 0.148 0.049 0.058
70 0.103 0.003 0.001 0.106 0.006 0.001 0.150 0.050 0.048
100 0.102 0.002 0.001 0.101 0.001 0.000 0.147 0.047 0.046
150 0.101 0.001 0.001 0.102 0.002 0.000 0.162 0.062 0.042
200 0.101 0.001 0.001 0.103 0.003 0.000 0.150 0.050 0.036

0.5

20 0.573 0.073 0.052 0.539 0.039 0.065 0.535 0.035 0.075
70 0.516 0.016 0.011 0.532 0.032 0.020 0.549 0.049 0.065
100 0.509 0.009 0.008 0.507 0.007 0.009 0.525 0.025 0.051
150 0.503 0.003 0.005 0.509 0.009 0.007 0.531 0.031 0.044
200 0.504 0.004 0.004 0.515 0.015 0.006 0.543 0.043 0.034

0.9

20 1.031 0.131 0.168 0.967 0.067 0.215 0.911 0.011 0.096
70 0.929 0.029 0.037 0.951 0.051 0.067 0.932 0.032 0.087
100 0.916 0.016 0.026 0.911 0.011 0.035 0.927 0.027 0.074
150 0.905 0.005 0.016 0.914 0.014 0.027 0.942 0.042 0.062
200 0.907 0.007 0.013 0.924 0.024 0.019 0.922 0.022 0.055

Table 2. Some statistics of θ̂ including ME, AB and MSE using LSE, MME and WLSE methods.

θ n
LSEs MMEs WLSEs

ME AB MSE ME AB MSE ME AB MSE

0.1

20 0.149 0.049 0.107 0.294 0.194 0.352 0.144 0.044 0.116
70 0.155 0.055 0.088 0.295 0.195 0.327 0.146 0.046 0.089
100 0.163 0.063 0.076 0.256 0.156 0.297 0.161 0.061 0.089
150 0.151 0.051 0.069 0.245 0.145 0.237 0.161 0.061 0.066
200 0.150 0.050 0.053 0.271 0.171 0.211 0.161 0.061 0.042

0.5

20 0.524 0.024 0.074 0.979 0.479 1.724 0.625 0.125 0.312
70 0.538 0.038 0.067 0.890 0.390 1.702 0.616 0.116 0.302
100 0.537 0.037 0.061 0.938 0.438 1.664 0.625 0.125 0.291
150 0.540 0.040 0.059 0.859 0.359 1.568 0.621 0.121 0.285
200 0.542 0.042 0.056 0.915 0.415 1.497 0.614 0.114 0.264

0.9

20 0.909 0.009 0.083 1.225 0.325 2.049 1.065 0.165 0.608
70 0.930 0.030 0.082 1.131 0.231 2.049 1.084 0.184 0.582
100 0.920 0.020 0.079 1.164 0.264 1.962 1.064 0.164 0.571
150 0.935 0.035 0.074 1.098 0.198 1.924 1.080 0.180 0.554
200 0.900 0.000 0.063 1.085 0.185 1.852 1.084 0.184 0.521

5. Unit Half Logistic-Geometry Quantile Regression Model

In this section, a new regression model for bounded unit intervals is introduced as an
alternative to some other regression models such as log Bilal, beta and Kumarswammy
regression models.

Consider the re-parameterization,

θ =
2µ(τ − 1)
τ(µ− 1)

, (23)

where µ = Q(τ|θ).
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Substituting from Equation (23) into Equations (3) and (5), we obtain

F(x) = 1−
2µ(τ−1)
τ(µ−1) (1− x)

2µ(τ−1)
τ(µ−1) +

(
2− 2µ(τ−1)

τ(µ−1)

)
x

, (24)

and

f (x) =
4µ(τ−1)
τ(µ−1)(

2µ(τ−1)
τ(µ−1) +

(
2− 2µ(τ−1)

τ(µ−1)

)
x
)2 , (25)

where 0 < x < 1 and 0 < µ < 1.
Let Xi, i = 1, 2, . . . , n be n independent random variables such that Xi ∼ UHLG(µi; τ).

The UHLG quantile regression is given as

g(µi) = δTti, (26)

where ti = (1, t1i, t2i, . . . , tpi) is the vector of covariates and δ = (δ0, δ1, . . . , δp)T is the
regression coefficients vector.

The logit link function used to link the covariates to the mean of response variable can
be given as follows

g(µi) = log
[

µi
1− µi

]
. (27)

From Equations (26) and (27), we have

µi =
eδT ti

1 + eδT ti
, i = 1, 2, . . . , n. (28)

5.1. Maximum Likelihood Estimates Method

The unknown parameter δ = (δ0, δ1, . . . , δp)T is estimated under the classical approach
MLE method, expressed as

l(δ) = n log[4µ] + n log[τ − 1]− n log[τ]− n log[µ− 1]−

2
n

∑
i=1

(
log
[

2µ(τ − 1)
τ(µ− 1)

+

(
2− 2µ(τ − 1)

τ(µ− 1)

)
xi

])
,

(29)

where δ is the vector of unknown parameters. By maximization of l given in Equation (29),
we obtain δ̂, the MLEs of δ. Maximization can be obtained with the R program using the
functions (optim and Maxlik), see [31,32].

5.2. Residual Analysis

To check the suitability of the regression model, a residual analysis is needed. To do
that, Cox–Snell, êi [33] and the randomized quantile residuals, r̂i [34], are given, respectively,
as follows

êi = − log[Ḡ(xi, µi, θ)],

r̂i = Φ−1[G(xi, µi, θ)],

where Ḡ(xi, µi, θ) = 1− G(xi, µi, θ) is the survival function of the UHLG regression model,
and Φ−1[.] is the inverse cumulative function of the standard normal distribution.

6. Application

In this section, a real data set is used to show the ability of the UHLG distribution in
modelling bounded data sets. It is compared with other unit distributions. These distri-
butions are log Bilal regression model (LB), beta regression model (B) and Kumaraswamy
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regression model (K). The pdfs of these models are given, respectively, as follows

fLB(x) =
3τ(µ− 1)
µ(τ − 1)

x
τ(µ−1)
µ(τ−1)−1

(
1− x

τ(µ−1)
2µ(τ−1)

)
, (30)

fB(x) =
Γ(α)

Γ(αµ)Γ(α(1− µ))
xαµ−1(1− x)(1−µ)α−1, (31)

and

fK(x) =
α log[0.5]

log[1− µα]
xα−1(1− xα)

log[0.5]
log[1−µα ]

−1. (32)

where α > 0, x ∈ (0, 1), and µ ∈ (0, 1) represent the mean in Equation (31) and the median
in Equations (30) and (32).

To show the differences between these models and the UHLG regression model, some
statistics such as Akaike information criterion (AIC), corrected Akaike information criterion
(AICC), Bayesian information criterion (BIC), Kolmogorov–Smirnov (K-S) and p-value
are calculated.

Risk Survey Data

Insurance can be defined as a contract, represented by a policy in which those insured
by an insurance company receive protection against potential losses. The company aggre-
gates the risk of the largest number of customers to make payments more at discounted
rates for the insured. Insurance policies are used to protect against the risk of financial
losses, whether large or small, which may result from damage to the insured or what he
owns, or from civil liability for damage to another party. Some of the most prevalent types
of insurance are life, death and property insurance.

Risk management is an important and necessary aspect of insurance. Risk surveys are
an effective way to identify, quantify and therefore manage risk by collecting information,
perceptions and insights from managers across an organization.

The data set represents a questionnaire sent to 374 risk managers in large U.S.-based
organizations. Seventy-three of the managers returned the completed survey. The data
were used before by Mazucheli et al. [13]. Four important topics were solicited including
captive insurance, decision making, organizational data and evaluating and identifying
exposures. The data were described as follows:

• Firm cost (y) is the mean variable and represents the cost of the firm’s cost management
effectiveness;

• Assume (x1) represents the firm’s retention strategy;
• Cap (x2) represents the indicator with value 1 if the firm uses a captive insurer and

the value 0 otherwise;
• Sizelog (x3) represents the log of firm’s size;
• Indcost (x4) represents the risk in the firm’s industry;
• Central (x5) represents the strategy of the firm’s centralization;
• Analy (x6) represents the degree of importance of using analytical tools.

First, a univariate regression model was used to model the risk survey data to test the
goodness of fit of UHLG distribution over some other distributions such as log Bilal, beta
and Kumaraswamy distributions with pdfs given, respectively, as

f1(x) =
6
θ

x
2
θ−1(1− x

1
θ ), (33)

f2(x) =
Γ(θ + α)

Γ(α)Γ(α)
xθ−1(1− x)α−1, (34)

and
f3(x) = θαxθ−1(1− xθ)α, (35)

where θ, α > 0, x ∈ (0, 1).
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A comparison of ML estimates between some various unit distributions and some
statistics for the previous data is given in Table 3 and it is obvious that unit half logistic
gives the best fit to data.

Table 3. ML estimates and some statistics for the risk survey data.

Model θ̂ α̂ AIC AICC BIC K-S p-Value

unit half logistic 0.132 - −177.02 −177.01 −174.78 0.1191 0.2515
log Bilal 3.464 - −149.388 −149.332 −147.098 0.2241 0.0013

beta 0.613 3.799 −148.24 −148.06 −143.65 0.1805 0.0172
Kumaraswamy 7.350 2.300 −150.01 −149.84 −144.59 0.9586 0.0000

Now, a multivariate regression model is used to show the impact of assume, cap,
sizelog, indcost, central and analy components on the firm cost component.

The logit link function for µi is assumed for all fitted regression models as it ensures
that the estimated mean lies between 0 and 1 as follows

logit(µi) = δ0 + δ1xi1 + δ2xi2 + δ3xi3 + δ4xi4 + δ5xi5 + δ6xi6, i = 1, . . . , 73. (36)

Tables 4 and 5 give the results of fitting data. The ML estimates of parameters θ, α
and δi, i = 0, 1, . . . , 6 are listed in these tables. In addition, the corresponding standard
error (SE) and p-value are also given. Moreover, AIC and BIC statistics are given for each
regression model.

Table 4. ML estimates for the regression model parameters with some other statistics fitting risk
survey data (comparison between UHLG, Beta and Kumaraswamy regression models).

coeffs.
UHLG Beta Kumaraswamy

Est. SE p-Value Est. SE p-Value Est. SE p-Value

δ0 4.128 1.438 <0.0000 1.888 0.944 <0.0000 −1.866 2.55 <0.0000
δ1 −0.012 0.149 <0.0000 −0.012 0.120 <0.0000 0.429 0.447 <0.0000
δ2 0.018 0.635 <0.0000 0.178 0.472 <0.0000 0.026 1.174 <0.0000
δ3 −0.918 0.456 <0.0000 −0.511 0.334 <0.0000 −0.090 0.788 <0.0000
δ4 2.145 0.953 <0.0000 1.236 0.513 <0.0000 −1.028 1.711 <0.0000
δ5 −0.092 0.389 <0.0000 −0.012 0.204 <0.0000 0.088 0.722 <0.0000
δ6 0.005 0.189 <0.0000 −0.004 0.085 <0.0000 −0.056 0.356 <0.0000
α - - - 6.33 0.436 <0.0000 0.241 0.204 <0.0000

AIC −192.34 −159.4 −190.1
BIC −176.31 −141.1 −171.8

Table 5. ML estimates for the regression model parameters with some other statistics fitting risk
survey data (comparison between UHLG, Unit Weibull and Unit Omega regression models).

coeffs.
UHLG log Bilal

Est. SE p-Value Est. SE p-Value

δ0 4.128 1.438 <0.0000 −1.704 0.963 <0.0000
δ1 −0.012 0.149 <0.0000 0.005 0.011 <0.0000
δ2 0.018 0.635 <0.0000 −0.061 0.189 <0.0000
δ3 −0.918 0.456 <0.0000 0.298 0.100 <0.0000
δ4 2.145 0.953 <0.0000 −0.727 0.400 <0.0000
δ5 −0.092 0.389 <0.0000 0.020 0.070 <0.0000
δ6 0.005 0.189 <0.0000 −0.001 0.017 <0.0000

AIC −192.34 −151.46
BIC −176.31 −135.42
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Based on Tables 4 and 5, we can notice the following:

• All covariates have an impact on the firm’s cost management effectiveness;
• The UHLG regression model explains the greatest difference by using fewer parame-

ters (-AIC = 192.34 and -BIC = 176.31);
• UHLG regression model gives the best fit to the data compared to the other models.

Figure 7 shows the PP plots of the theoretical and empirical probabilities of the
Cox–Snell residuals for different regression models fitting the risk survey data.

Figure 7. PP plots of the theoretical and empirical probabilities of the Cox–Snell residuals fitting the
risk survey data.

7. Conclusions

A new unit distribution is proposed to deal with data lying in the unit interval (0, 1). This
distribution is called unit half-logistic geometric distribution with some flexible statistical
properties. The new distribution is assumed to be alternative to some other distributions
including beta, Kumaraswamy and log Bilal distributions. Some important statistical prop-
erties like moments, mean inactivity, mean residual, stress strength, stochastic ordering and
other properties are given. In addition, different estimation methods are used estimating
the parameter. Moreover, a new quantile regression model is introduced using UHLG
distribution. Finally, an application on a real data set is performed to clarify the usefulness
of this distribution and its regression model. The data come from a questionnaire sent to
some large organizations in the united states. The p-value of the UHLG distribution was
the biggest among other distributions. Moreover, the UHLG regression model explained
the greatest difference by using fewer parameters.
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Modelling bounded data sets lying in the (0, 1) interval became very important recently.
Therefore, we are in desperate need of new unit distributions modelling such data. In the
future, more unit distributions are needed to give the best fit of data from medical, actuarial
and finance science fields.
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