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Abstract: Integral inequalities have accumulated a comprehensive and prolific field of research
within mathematical interpretations. In recent times, strategies of fractional calculus have become the
subject of intensive research in historical and contemporary generations because of their applications
in various branches of science. In this paper, we concentrate on establishing Hermite–Hadamard and
Pachpatte-type integral inequalities with the aid of two different fractional operators. In particular, we
acknowledge the critical Hermite–Hadamard and related inequalities for n-polynomial s-type convex
functions and n-polynomial s-type harmonically convex functions. We practice these inequalities
to consider the Caputo–Fabrizio and the k-Riemann–Liouville fractional integrals. Several special
cases of our main results are also presented in the form of corollaries and remarks. Our study offers a
better perception of integral inequalities involving fractional operators.

Keywords: Hermite–Hadamard inequality; convex function; harmonically convex function;
Caputo–Fabrizio fractional operator; fractional integral inequality

1. Introduction

The convex function is a class of significant functions popularly accepted in mathemat-
ical analysis. This class represents prominent parts of the theory of inequality. Moreover,
convex functions have been widely used in many research fields such as optimization,
engineering, physics, financial activities, etc. In optimization, the concept of generalized
convexity along with inequality theory is often used. Hermite–Hadamard integral inequali-
ties containing convex functions are an intense research topic for many mathematicians
because of their relevance and efficiency in use.

Convex functions have a very strong association with integral inequalities. Recently,
several mathematicians have explored the close relationship and correlated work on sym-
metry and convexity. It is also explained that while working on any one of the concepts,
work tends to be applied to the other one too. Many familiar and relevant inequalities are
modifications of convex functions. In the literature, there are some well-known inequalities
such as the Hermite–Hadamard inequality and the Jensen inequality that interpret the
geometrical meaning of convex functions. In this paper, we concentrate on presenting new
versions of fractional integral inequalities through n-polynomial s-type convex functions
and n-polynomial s-type harmonically convex functions. To begin the discussion, let us
recall the definition of a convex function.

In 1905, Jensen presented the meaning of convex function as follows:
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Definition 1 ([1,2]). A function Φ : [a1, a2]→ R is called convex if

Φ(`x + (1− `)y) ≤ `Φ(x) + (1− `)Φ(y),

holds for every x, y ∈ [a1, a2] and ` ∈ [0, 1].

The well-known Hermite–Hadamard inequality is given as follows:

Theorem 1 (see [3]). Consider Φ : T ⊆ R → R to be a convex function with a1 < a2 and
a1, a2 ∈ T. Then, the following inequality holds:

Φ
(
a1 + a2

2

)
≤ 1

a2 − a1

∫ a2

a1
Φ(x)dx ≤ Φ(a1) + Φ(a2)

2
. (1)

Definition 2 (see [4]). A function Φ : T→ R is said to be a harmonically convex function if

Φ
(

a1a2
`a1 + (1− `)a2

)
≤ `Φ(a2) + (1− `)Φ(a2), (2)

holds for all a1, a2 ∈ T and ` ∈ [0, 1].

2. Preliminaries

The set T ⊆ R \ {0} is called convex if `x + (1− `)y ∈ T for x, y ∈ T and ` ∈ [0, 1] and
the set S ⊆ R \ {0} as harmonically convex if xy

`x+(1−`)y ∈ S for all x, y ∈ S and ` ∈ [o, 1].
From now on, we always assume T to be a convex set and S as a harmonically convex set.

Many researchers have generalized and extended the Hermite–Hadamard inequality
using different convexities. For example, Dragomir et al. [5], Qi et al. [6] and Kirmaci et al. [7]
proved some refinements of Hermite–Hadamard inequality for differentiable functions and
presented some applications of the main results for special means and trapezoidal rules.
Furthermore, the related inequalities for s-convex functions were investigated in articles [8,9].
Özcan et al. [10] improved the refinements of Hermite–Hadamard type inequalities using
improved Holder’s inequality. Moreover, this inequality was also improved for interval-
valued preinvex functions in [11]. Recently, a group of mathematicians, namely Toplu, Kadakal
and İşcan [12], presented a very important class of convex function, i.e., the n-polynomial
convex function, which is given as:

Let n ∈ N. A function Φ : T→ R is said to be an n-polynomial convex function on T, if

Φ(`x + (1− `)y) ≤ 1
n

n

∑
℘=1

[
1− (1− `)℘

]
Φ(x) +

1
n

n

∑
℘=1

[
1− `℘

]
Φ(y),

for all x, y ∈ T and ` ∈ [0, 1].
In the same paper, they also proved the following Hermite–Hadamard inequality

employing this new generalized notion of convexity.

Theorem 2 (see [12]). Suppose Φ : T → R is an n-polynomial convex function, a1, a2 ∈
T with a1 < a2 and Φ is a Lebesgue integrable function on [a1, a2]. Then the following
integral inequality holds:

2−1n
n + 2−n − 1

Φ
(
a1 + a2

2

)
≤ 1

a2 − a1

∫ a2

a1
Φ(x)dx ≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

℘

℘+ 1
. (3)

If we set n = 1 in the inequality (3), then the classical Hermite–Hadamard inequality (1) for a
convex function is recovered.
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Inspired by the above-mentioned article, Awan et al. [13], extended the concept of
n-polynomial convexity and presented a generalized version of a harmonically convex
function, i.e., an n-polynomial harmonically convex function, given as:

A function Φ : S→ R+ is said to be an n-polynomial harmonically convex if for all
x, y ∈ S, n ∈ N and ` ∈ [0, 1], the following inequality holds.

Φ
(

a1a2
`a1 + (1− `)a2

)
≤ 1

n

n

∑
℘=1

(1− (1− `)℘)Φ(a2) +
1
n

n

∑
℘=1

[
1− `℘

]
Φ(a1).

In the same paper, the following new version of Hermite–Hadamard inequality
was established.

Theorem 3 (see [13]). Suppose Φ : S → R+ is an n-polynomial harmonically convex function.
If a1, a2 ∈ S with 0 < a1 < a2 and Φ ∈ L[a1, a2], then the following integral inequality holds.

2−1n
n + 2−n − 1

Φ
(

2a1a2
a1 + a2

)
≤ a1a2

a2 − a1

∫ a2

a1

Φ(x)
x2 dx ≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

℘

℘+ 1
.

Definition 3 ([14]). A function Φ : T→ R is said to be an n-polynomial s-type convex function
for n ∈ N. If for a1, a2 ∈ T with `, s ∈ [0, 1], the following inequality satisfies.

Φ(`x + (1− `)y) ≤ 1
n

n

∑
℘=1

[
1− (s(1− `))℘

]
Φ(x) +

1
n

n

∑
℘=1

[
1− (s`)℘

]
Φ(y). (4)

Theorem 4 (see [14]). Let Φ : S→ R be an n-polynomial s-type convex function. If a1, a2 ∈ T
with a1, a2 ∈ T with a1 < a2. If Φ ∈ L[a1, a2], then the following integral inequality holds.

2−1

n
∑
℘=1

[
1−

( s
2

)℘]
Φ
(
a1 + a2

2

)
≤ 1

a2 − a1

∫ a2

a1
Φ(x)dx ≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

[
℘+ 1− s℘

℘+ 1

]
. (5)

Integral inequalities have been indispensable in establishing the uniqueness of so-
lutions for certain fractional differential equations. Sarikaya et al. [15] introduced the
fractional version of Hermite–Hadamard inequality employing a Riemann–Liouville frac-
tional operator. Motivated by this article many mathematicians used different notions
of fractional operators to generalize inequalities such as Hermite–Hadamard, Ostrowski,
Simpson, Opial, Jensen-Mercer, etc. To carry forward our investigation about fractional
calculus, we start with the notion of the Caputo–Fabrizio fractional operator.

Note: From now on, we will useM(λ) > 0 as a normalization function satisfying
M(0) =M(1) = 1.

Let L2(a1, a2) be the space of square integrable function on the interval (a1, a2) and

H′(a1, a2) =
{

g/g ∈ L2(a1, a2) and g′ ∈ L2(a1, a2)
}

.

If Φ ∈ H′(a1, a2), a1 < a2 and λ) ∈ [0, 1], then the left- and right-sided Caputo–Fabrizio
fractional integral operator CFIλ

a1 and CFIλ
a2 are defined as:

Definition 4 (see [16,17]). Let Φ ∈ H′(a1, a2), a1 < a2, λ ∈ [0, 1], then the definition of the left
fractional integral in the sense of Caputo and Fabrizio becomes(

CF
a1 IλΦ

)
(ϕ) =

(1− λ)

M(λ)
Φ(ϕ) +

λ

M(λ)

∫ ϕ

a1
Φ(x)dx, (6)

(
CF Iλ

a2Φ
)
(ϕ) =

(1− λ)

M(λ)
Φ(ϕ) +

λ

M(λ)

∫ a2

ϕ
Φ(x)dx, (7)

whereM : [0, 1]→ (0, ∞) is a normalization function satisfyingM(0) =M(1) = 1.
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Gürbüz et al. [16] used Caputo–Fabrizio fractional integrals to establish the following
Hermite–Hadamard inequality.

Theorem 5 (see [16]). Let Φ : T→ R be a convex function onT. If a1, a2 ∈ Twith a1 < a2 and Φ
is a Lebesgue integral function on [a1, a2], then the following double inequality holds:

Φ
(
a1 + a2

2

)
≤ M(λ)

λ(a2 − a1)

[(
CF Iλ

a1Φ
)
(k) +

(
CF Iλ

a2Φ
)
(k)− 2(1− λ)

M(λ)
Φ(k)

]
≤ Φ(a1) + Φ(a2)

2
,

where λ ∈ [0, 1], k ∈ [a1, a2].

Theorem 6. Let Φ : T → R be a Lebesgue integrable function on [a1, a2] with a1 < a2 and
a1, a2 ∈ T. If Φ is an n-polynomial convex function then,

2−1n
n + 2−n − 1

Φ
(
a1 + a2

2

)
≤ M(λ)

λ(a2 − a1)

[
CFIλ

a1Φ(r) +CF Iλ
a2Φ(r)− 2(1− λ)

M(λ)
Φ(r)

]
≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

℘

℘+ 1
,

where λ ∈ [0, 1], r ∈ [a1, a2] andM(λ) > 0, is a normalization function.

Fractional derivatives and integral operators have recently been used to generalize
existing kernels. Nwaeze et al. [18] proved fractional versions of Hermite–Hadamard
inequality for n-polynomial convex and n-polynomial harmonically convex functions. Sa-
hoo et al. [19] established some new Hermite–Hadamard type fractional inequalities for
(h-m) convex functions. Abdeljawad et al. [20] used local fractional integrals to present
inequalities for generalized (s, m)-convex functions. Ostrowski-type inequalities are also in-
vestigated using fractional operators in [21,22]. Further refinements of Hermite–Hadamard
inequalities are done for Wright-generalized Bessel functions [23], polynomial convex
functions [24] and for strongly convexity via Atangana–Baleanu operators [25].

The Caputo–Fabrizio fractional derivative was introduced by Caputo and Fabrizio [26]
in 2015. The advantage of this proposition was due to the necessity of accepting a
model that describes structures with various scales. Recently, it has been seen that many
mathematicians are showing their interest in using the Caputo fractional derivative and
Caputo–Fabrizio fractional integral to establish fractional integral inequalities such as
Hermite–Hadamard, Ostrowski, etc. The persistence of this article is to employ the Ca-
puto–Fabrizio fractional integral operator and k-Riemann–Liouville fractional operator to
investigate some new types of integral inequalities involving n-polynomial convex and
n-polynomial harmonically convex functions, which have been presented earlier using
various fractional operators such as Riemann–Liouville, Atangana–Baleanu, Katugampola,
generalized fractional operators, etc. The results presented could be remedial to prove the
existence and uniqueness of some fractional differential equations.

Now we recall that the left- and right-side k-Riemann–Liouville fractional operator kIλ
a1+

and kIλ
a2−

of order λ > 0 for a real valued continuous function Φ(x) are defined by (see [27,28]).

kIλ
a1+

Φ(x) =
1

kΓ(λ)

∫ x

a1
(x− t)

λ
k −1Φ(`)dt x > a1,

and

kIλ
a2−

Φ(x) =
1

kΓ(λ)

∫ a2

x
(t− x)

λ
k −1Φ(`)dt x < a2.

When k > 0 and Γk is the k-gamma function given by

Γk(x) =
∫ x

0
`x−1 exp

−`k
k d` Re(x) > 0,
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with the properties Γk(x + k) = xΓk(x) and Γk(k) = 1 if k = 1 we simply write 1Iλ
a1+

Φ =

Iλ
a1+

Φ and 1Iλ
a1+

Φ = Iλ
a1+

Φ. The beta function is defined by

β(u, v) =
∫ 1

0
`u−1(1− `)v−1d` f or Re(u) > 0, Re(v) > 0. (8)

The novelty of this article is that it deals with inequalities of Hermite–Hadamard and
Pachpatte type for higher-order convexity, i.e., n-polynomial s-type convex and n-polynomial
s-type harmonically convex functions employing two different types of fractional integral
operators. The rest of the article has the following structure: after studying some necessary
concepts about fractional calculus and Hermite–Hadamard type inequalities, in Section 3, we
present new variants of Hermite–Hadamard-type inequality via Caputo–Fabrizio fractional
operators for n-polynomial s-type convex functions. Next, Section 4 is dedicated to establish-
ing Hermite–Hadamard inequalities for n-polynomial s-type harmonically convex functions
via k-Riemann–Liouville fractional operators. A brief conclusion and future scopes of the
present work is given in the last Section 5.

3. Main Results

Theorem 7. Let Φ : T→ R be an n-polynomial s-type convex function on T with a1 < a2 and
a1, a2 ∈ T. If Φ is a Lebesgue integrable function on [a1, a2], then

2−1n
n
∑
℘=1

[
1−

( s
2
)℘]Φ

(
a1 + a2

2

)
≤ M(λ)

λ(a2 − a1)

[
CFIλ

a1Φ(r) +CF Iλ
a2Φ(r)− 2(1− λ)

M(λ)
Φ(r)

]

≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

℘+ 1− s℘

℘+ 1
,

where λ ∈ [0, 1], s ∈ [0, 1], r ∈ [0, 1] andM(λ) > 0 is a normalization function.

Proof. Given that Φ is n-polynomial s-type convex function. It follows from Equation (5) that

n
n
∑
℘=1

[
1−

( s
2
)℘]Φ

(
a1 + a2

2

)
≤ 2

a2 − a1

∫ a2

a1
Φ(x)dx

=
2

a2 − a1

[∫ r

a1
Φ(x)dx +

∫ a2

r
Φ(x)dx

]
. (9)

Multiplying both sides of Equation (9) by λ(a2−a1)
2M(λ)

gives

λ(a2 − a1)

2M(λ)

n
n
∑
℘=1

[
1−

( s
2
)℘]Φ

(
a1 + a2

2

)
≤ λ

M(λ)

[∫ r

a1
Φ(x)dx +

∫ a2

r
Φ(x)dx

]
. (10)

By adding 2(1−λ)
M(λ)

Φ(r) to both sides of Equation (10), we obtain

2(1− λ)

M(λ)
Φ(r) +

λ(a2 − a1)

2M(λ)

n
∑n
℘=1

[
1−

( s
2
)℘]Φ

(
a1 + a2

2

)
≤ 2(1− λ)

M(λ)
Φ(r)

+
λ

M(λ)

[∫ r

a1
Φ(x)dx +

∫ a2

r
Φ(x)dx

]
=

[
(1− λ)

M(λ)
Φ(r) +

λ

M(λ)

∫ r

a1
Φ(x)dx

]
+

[
(1− λ)

M(λ)
Φ(r) +

λ

M(λ)

∫ a2

r
Φ(x)dx

]
= CFIλ

a1Φ(r) +CF Iλ
a2Φ(r).

This implies that
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2(1− λ)

M(λ)
Φ(r) +

λ(a2 − a1)

2M(λ)

n
∑n
℘=1

[
1−

( s
2
)℘]Φ

(
a1 + a2

2

)
≤CF Iλ

a1Φ(r) +CF Iλ
a2Φ(r). (11)

On the other hand from Equation (5), we also obtain

2
a2 − a1

∫ a2

a1
Φ(x)dx ≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

[
℘+ 1− s℘

℘+ 1

]
. (12)

If we multiply Equation (12) by λ(a2−a1)
2M(λ)

and then add 2(1−λ)
M(λ)

Φ(r) to the resulting
inequality, we obtain

CFIλ
a1Φ(r) +CF Iλ

a2Φ(r) ≤ λ(a2 − a1)

M(λ)

Φ(a1) + Φ(a2)

n

n

∑
℘=1

[
℘+ 1− s℘

℘+ 1

]
+

2(1− λ)

M(λ)
Φ(r). (13)

Hence, the desired result is obtained by combining Equations (11) and (13).

Remark 1. By taking s = 1, Theorem 7 becomes Theorem 6.

Corollary 1. By taking n = 1, Theorem 7 becomes the following inequality,

Φ
(
a1 + a2

2

)
≤ 2− s

λ

M(λ)

a2 − a1

[
CF
a1 IλΦ(r) +CF Iλ

a2Φ(r)− 2(1− λ)

M(λ)
Φ(r)

]
≤ (2− s)2

2
[Φ(a1) + Φ(a2)].

Remark 2. By taking n = s = 1, then Theorem 7 becomes Theorem 5.

Theorem 8. Suppose Φ, Υ : T → R is functions such that Φ Υ is integrable on [a1, a2] with
a1 < a2 and a1, a2 ∈ T. If Φ is n1-polynomial s-type convex function and Φ is an n2-polynomial
s-type convex function, then the following inequality holds:

M(λ)

λ(a2 − a1)

[
CF
a1 IλΦ(r)Υ(r) +CF Iλ

a2Φ(r)Υ(r)− 2(1− λ)

M(λ)
Φ(r)Υ(r)

]
≤
∫ 1

0
[∆1(`)Φ(a1)Υ(a1) + ∆2(`)Φ(a2)Υ(a2) + ∆3(`)Φ(a2)Υ(a1) + ∆4(`)Φ(a1)Υ(a2)]d`,

where λ ∈ [0, 1] and r ∈ [a1, a2] andM(λ) > 0 is a normalization function and

∆1(`) =
1
n1

1
n2

n1

∑
℘=1

[1− (s(1− `))℘]
n2

∑
℘=1

[1− (s(1− `))℘],

∆2(`) =
1
n1

1
n2

n1

∑
℘=1

[1− (s`)℘]
n2

∑
℘=1

[1− (s`)℘],

∆3(`) =
1
n1

1
n2

n1

∑
℘=1

[1− (s`)℘]
n2

∑
℘=1

[1− (s(1− `))℘],

∆4(`) =
1
n1

1
n2

n1

∑
℘=1

[1− (s(1− `))℘]
n2

∑
℘=1

[1− (s`)℘].

Proof. Let Φ be n1-polynomial s-type convex function and Υ is n2-polynomial s-type
convex function

Φ
(
`a1 + (1− `)a2

)
≤ 1

n1

n1

∑
℘=1

[
1−

(
s(1− `)

)℘]Φ(a1) +
1
n1

n1

∑
℘=1

[
1−

(
s`
)℘]Φ(a2). (14)
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Υ
(
`a1 + (1− `)a2

)
≤ 1

n2

n2

∑
℘=1

[
1−

(
s(1− `)

)℘]Υ(a1) +
1
n2

n2

∑
℘=1

[
1−

(
s`
)℘]Υ(a2). (15)

Multiplying (14) and (15).

Φ
(
`a1 + (1− `)a2

)
Υ
(
`a1 + (1− `)a2

)
≤ 1

n1

1
n2

n2

∑
℘=1

[
1−

(
s(1− `)

)℘] n1

∑
℘=1

[
1−

(
s(1− `)

)℘]Φ(a1)Υ(a1)

+
1
n1

1
n2

n2

∑
℘=1

[
1−

(
s`
)℘] n1

∑
℘=1

[
1−

(
s`
)℘]Φ(a1)Υ(a2)

+
1
n1

1
n2

n1

∑
℘=1

[
1−

(
s`
)℘] n2

∑
℘=1

[
1−

(
s(1− `)

)℘]Φ(a2)Υ(a1)

+
1
n1

1
n2

n1

∑
℘=1

[
1−

(
s`
)℘] n2

∑
℘=1

[
1−

(
s(1− `)

)℘]Φ(a2)Υ(a1). (16)

= ∆1(`)Φ(a1)Υ(a1) + ∆2(`)Φ(a2)Υ(a2) + ∆3(`)Φ(a2)Υ(a1) + ∆4(`)Φ(a1)Υ(a2).

This implies that

Φ
(
`a1 + (1− `)a2

)
Υ
(
`a1 + (1− `)a2

)
≤ ∆1(`)Φ(a1)Υ(a1) + ∆2(`)Φ(a2)Υ(a2) + ∆3(`)Φ(a2)Υ(a1) + ∆4(`)Φ(a1)Υ(a2).

Integrating both sides of (16) with respect to over [0, 1] results to

2
a2 − a1

∫ a2

a1
Φ(x)Υ(x)dx ≤ 2

∫ 1

0

[
∆1(`)Φ(a1)Υ(a1) + ∆2(`)Φ(a2)Υ(a2)

+ ∆3(`)Φ(a2)Υ(a1) + ∆4(`)Φ(a1)Υ(a2)
]

d`

= N
(
a1, a2

)
.

Consequently,

2
a2 − a1

[ ∫ r

a1
Φ(x)Υ(x)dx +

∫ a2

r
Φ(x)Υ(x)dx

]
≤ N(a1, a2). (17)

Now, multiplying (17) by λ(a2−a1)
2M(λ)

and then adding 2(1−λ)
M(λ)

Φ(r) to the result, we obtain

λ

M(λ)

[ ∫ r

a1
Φ(x)Υ(x)dx +

∫ a2

r
Φ(x)Υ(x)dx

]
+

2(1− λ)

M(λ)
Φ(r)Υ(r)

≤ λ(a2 − a1)

2M(λ)
N(a1, a2) +

2(1− λ)

M(λ)
Φ(r)Υ(r).

Hence,

CF
a1 IλΦ(r)Υ(r) +CF Iλ

a2Φ(r)Υ(r) ≤ λ(a2 − a1)

2M(λ)
N(a1, a2) +

2(1− λ)

M(λ)
Φ(r)Υ(r).

From which we obtain the intended inequality.

Remark 3. If we put s = 1 in Theorem 8, we get Theorem 6.

Remark 4. If we put n1 = n2 = 1, s = 1 in Theorem 8, we obtain Theorem 4.
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Corollary 2. If we put n1 = n2 = 1, in Theorem 8, then

2M(λ)

λ(a2 − a1)

[
CF
a1 IλΦ(r)Υ(r) +CF Iλ

a2Φ(r)Υ(r)− 2(1− λ)

M(λ)
Φ(r)Υ(r)

]
≤ 2

3
(3(1− s) + s3)[Φ(a1)Υ(a1) + Φ(a2)Υ(a2)]

+
1
3
(6(1− s) + s2)[Φ(a1)Υ(a2) + Φ(a2)Υ(a1)].

4. Further Estimations via n-Polynomial Harmonically s-Type Convex Function

Theorem 9. Suppose Φ : S → R+ be an n-polynomial harmonically s-type convex function on
S with a1 < a2 and Φ ∈ L[a1, a2] and a1, a2 > 0, s ∈ [0, 1]. Then, the following fractional
inequality holds:

1
n
∑
℘=1

[
1−

(
s
2

)℘]

≤ Φ
(

2a1a2
a1 + a2

)
Γk(λ) + k)

n

(
a1a2

a2 − a1

) λ
k
[

k
Iλ

1
a2+

Φ ◦Ψ
(

1
a1

)
+k Iλ

1
a1−

Φ ◦Ψ
(

1
a2

)]
≤ Φ(a1) + Φ(a2)

n2

n

∑
℘=1

[
2− s℘λ

λ + ik
− s℘λ

k
β

(
λ

k
,℘+ 1

)]
,

where Ψ(r) = 1
r and β is the beta function.

Proof. Given that Φ is n-polynomial s-type convex function,

Φ
(

2xy
x + y

)
≤ 1

n

n

∑
℘=1

[
1−

( s
2

)℘]
[Φ(x) + Φ(y)]. (18)

Now, let x = a1a2
`a1+(1−`)a2 and y = a1a2

`a2+(1−`)a1 then (18) becomes,

Φ
(

2a1a2
a1 + a2

)
≤ 1

n

n

∑
℘=1

[
1−

( s
2

)℘]{
Φ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)}
. (19)

Multiplying both sides of Equation (19) by `
λ
k −1 and integrating with respect to ` over

[0, 1], we obtain∫ 1

0
`

λ
k −1Φ

(
2a1a2
a1 + a2

)
d`

≤ 1
n

n

∑
℘=1

[
1−

( s
2

)℘] ∫ 1

0
`

λ
k −1
{

Φ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)}
d`

=
1
n

n

∑
℘=1

[
1−

( s
2

)℘]{ ∫ 1

0
`

λ
k −1Φ

(
a1a2

`a1 + (1− `)a2

)
+
∫ 1

0
`

λ
k −1Φ

(
a1a2

`a2 + (1− `)a1

)
d`
}

=
1
n

n

∑
℘=1

[
1−

( s
2

)℘]

×
[(

a1a2
a2 − a1

) λ
k
∫ 1

a1

1
a2

(
1
a1
− r
) λ

k −1
Φ
(

1
r

)
dr +

(
a1a2

a2 − a1

) λ
k
∫ 1

a1

1
a2

(
r− 1

a2

) λ
k −1

Φ
(

1
r

)
dr

]
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=
kΓk(λ)

n

n

∑
℘=1

[
1−

( s
2

)℘]( a1a2
a2 − a1

) λ
k

×
[

1
kΓk(λ)

∫ 1
a1

1
a2

(
1
a1
− r
) λ

k −1
Φ
(

1
r

)
dr +

1
kΓk

(λ)
∫ 1

a1

1
a2

(
r− 1

a2

) λ
k −1

Φ
(

1
r

)
dr

]

=
kΓk(λ)

n

n

∑
℘=1

[
1−

( s
2

)℘]( a1a2
a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(Φ ◦Ψ)(

1
a1

) +k Iλ
( 1
a1

)−
(Φ ◦Ψ)(

1
a2

)

]
,

where Ψ(r) = 1
r , this implies that

1

∑n
℘=1

[
1−

( s
2
)℘]Φ

(
2a1a2
a1 + a2

)

≤ Γk(λ + k)
n

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(Φ ◦Ψ)(

1
a1

) +k Iλ
( 1
a1

)−
(Φ ◦Ψ)(

1
a2

)

]
. (20)

Next, substituting x = a1, y = a2 in (4) gives

Φ
(

a1a2
`a1 + (1− `)a2

)
≤ 1

n

n

∑
℘=1

[1− s(1− `)℘]Φ(a2) +
1
n

n

∑
℘=1

[1− (s`)℘]Φ(a1). (21)

Reversing the role of a1 and a2 in (21)

Φ
(

a1a2
`a2 + (1− `)a1

)
≤ 1

n

n

∑
℘=1

[1− (s(1− `)℘)]Φ(a1) +
1
n

n

∑
℘=1

[1− (s`)℘]Φ(a2). (22)

Adding (20) and (21) and multiplying the resulting inequality by `
λ
k −1, then integrating

with respect to ` ∈ [0, 1], we obtain

∫ 1

0
`

λ
k −1
{

Φ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)}
d`

≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

∫ 1

0

[
2`

λ
k −1 − `

λ
k −1(s(1− `))℘ − (s`)℘`

λ
k −1
]
d`

≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

[
2

k
λ
− s℘k

λ + ik
− s℘β

(
λ

k
,℘+ 1

)]
. (23)

Again from (23), one has

Γk(λ + k)
n

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(Φ ◦Ψ)(

1
a1

) +k Iλ
( 1
a1

)−
(Φ ◦Ψ)(

1
a2

)

]
≤ Φ(a1) + Φ(a2)

n2

n

∑
℘=1

[
2− s℘λ

λ + ik
− s℘λ

k
β

(
λ

k
,℘+ 1

)]
.

Combining (20) and (22) leads us to the desired result.

Remark 5. If we take s = 1 and λ = k = 1, then Theorem 9 reduces to Theorem 3.

Remark 6. If we take λ = k = 1, then Theorem 9 reduces to Theorem 4.

Remark 7. If we take n = 1 , s = 1 λ = k = 1 in Theorem 9, then the classical Hermite–Hadamard
type inequality for harmonic convex function is recovered.
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Remark 8. If we take n = λ = k = 1 in Theorem 9, then the classical Hermite–Hadamard
inequality for harmonic s-type convex function is recovered.

Corollary 3. If we set n = 1 in Theorem 9, then we have the following inequality.

1[
1−

( s
2
)]Φ

(
a1a2

a1 + a2

)

≤ Γk(λ + k)
n

(
a1a2

a2 − a1

) λ
k
[

kIλ
( 1
a2

)+
(Φ ◦Ψ)(

1
a1

) +k Iλ
( 1
a1

)−
(Φ ◦Ψ)(

1
a2

)

]
≤ [Φ(a1) + Φ(a2)]

[
2− sλ

λ + k
− sλ

k
β

(
λ

k
, 2
)]

.

Theorem 10. Suppose Φ, Ψ : S→ R+ be two functions such that ΦΨ ∈ L[a1, a2] and a1, a2 >
0, a1, a2 ∈ S. If Φ is an n1-polynomial harmonically s-type convex function and Ψ is an n2-
polynomial harmonically s-type convex function with λ, k > 0, then the following inequality holds:(

a1a2
a2 − a1

) λ
k
[

kIλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−
(ΦΨ ◦ h)(

1
a2

)

]
≤ D(a1, a2)

kΓk(λ)

∫ 1

0
`

λ
k −1[∆1(`) + ∆4(`)]d`+

F(a1, a2)
kΓk(λ)

∫ 1

0
`

λ
k −1[∆2(`) + ∆4(`)]d`,

where D(a1, a2) = Φ(a1)Ψ(a1) + Φ(a2)Ψ(a2), F(a1, a2) = Φ(a1)Ψ(a2) + Φ(a2)Ψ(a1),
h(r) = 1

r and ∆1(`), ∆2(`), ∆3(`) and ∆4(`) are defined in Theorem 8.

Proof. Since Φ is an n1-polynomial harmonically s-type convex function and Ψ is an
n2-polynomial harmonically s-type convex function, we have

Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)
≤ 1

n1

1
n2

n1

∑
℘=1

[
1− (s(1− `))℘

] n2

∑
℘=1

[
1−

(
s(1− `)

)℘]Φ(a2)Ψ(a2)

+
1
n1

1
n2

n1

∑
℘=1

[
1− (s(1− `))℘

] n2

∑
℘=1

[
1−

(
s`
)℘]Φ(a2)Ψ(a1)

+
1
n1

1
n2

n2

∑
℘=1

[
1−

(
s`
)℘] n1

∑
℘=1

[
1−

(
s(1− `)

)℘]Φ(a1)Ψ(a2)

+
1
n1

1
n2

n1

∑
℘=1

[
1−

(
s`
)℘] n2

∑
℘=1

[
1−

(
s`
)℘]Φ(a1)Ψ(a1)

= ∆1(`)Φ(a2)Ψ(a2) + ∆2(`)Φ(a2)Ψ(a1) + ∆3(`)Φ(a1)Ψ(a2) + ∆4(`)Φ(a1)Ψ(a1).

This gives

Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)
≤ ∆1(`)Φ(a2)Ψ(a2) + ∆2(`)Φ(a2)Ψ(a1) + ∆3(`)Φ(a1)Ψ(a2) + ∆4(`)Φ(a1)Ψ(a1). (24)

Similarly, we also have

Φ
(

a1a2
`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)
≤ ∆1(`)Φ(a1)Ψ(a1) + ∆2(`)Φ(a1)Ψ(a2) + ∆3(`)Φ(a2)Ψ(a1) + ∆4(`)Φ(a2)Ψ(a2). (25)
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Adding (24) and (25)

Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)
≤ (Φ(a1)Ψ(a1) + Φ(a2)Ψ(a2))[∆1(`) + ∆4(`)]

+ (Φ(a1)Ψ(a2) + Φ(a2)Ψ(a1))[∆2(`) + ∆3(`)].

Multiplying both sides of (17) by `
λ
k −1 and then integrating with respect to ` over [0,1],

one obtains

kΓk(λ)

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−
(ΦΨ ◦ h)(

1
a2

)

]
∫ 1

0
`

λ
k −1Φ

(
a1a2

`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)
d`

+
∫ 1

0
`

λ
k −1Φ

(
a1a2

`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)
d`

≤ (Φ(a1)Ψ(a1) + Φ(a2)Ψ(a2))
∫ 1

0
`

λ
k −1[∆1(`) + ∆4(`)]d`

+ (Φ(a1)Ψ(a2) + Φ(a2)Ψ(a1))
∫ 1

0
`

λ
k −1[∆2(`) + ∆3(`)]d`

= D(a1, a2)
∫ 1

0
`

λ
k −1[∆1(`) + ∆4(`)]d`+ F(a1, a2)

∫ 1

0
`

λ
k −1[∆2(`) + ∆3(`)]d`.

Hence, the proof is completed.

Corollary 4. Suppose Φ, Ψ : S → R+ are functions such that ΦΨ ∈ L[a1, a2] and a1, a2 > 0,
a1, a2 ∈ S. If Φ and Ψ are n1-polynomial harmonically s-type convex functions, then the following
fractional inequality holds:

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−
(ΦΨ ◦ h)(

1
a2

)

]
≤ D(a1, a2)

Γk(λ)

[
1 + (1− s)2

λ
+

2s2

λ + 2k
− 2s2

λ + k

]
+

F(a1, a2)
Γk(λ)

[
2(1− s)

λ
+

2s2

λ + k
− 2s2

λ + 2k

]
.

Proof. Let n1 = n2 = 1 ∆1(`) = [1− s(1− `)]2 , ∆4(`) = [1− s`]2 and ∆3(`) = ∆4(`) =
[(1− s) + s2(`− `2)].

The result follows using Theorem 10.

Remark 9. If we put s = 1 in Corollary 4, then Corollary 2 [18] is recovered.

Theorem 11. Suppose Φ, Ψ : S → R+ be functions such that ΦΨ ∈ L[a1, a2] with a1, a2 > 0
and a1, a2 ∈ S. If Φ is n1-polynomial harmonically s-type convex function, Ψ is n2-polynomial
harmonically s-type convex function and λ, k > 0. Then the following fractional inequality holds:

n1n2

∑n1
℘=1

[
1−

( 2
s
)]

∑n2
℘=1

[
1−

( 2
s
)]Φ

(
2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)

≤ Γk(λ + k)
(

a1a2
a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−
(ΦΨ ◦ h)(

1
a2

)

]
+

λ

k

∫
01
`

λ
k −1
{
[Λn1(`)Λ̄n2(`) + Λ̄n1(`)Λn2(`)]D(a1, a2)

+ [Λn1(`)Λn2(`) + Λ̄n1(`)Λ̄n2(`)]F(a1, a2)
}

d`,
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where h is defined as in Theorem 9, Λn = 1
n ∑n

℘=1[1− (s(1− `))℘] and Λ̄n = 1
n ∑n

℘=1[1− (s`)℘].

Proof. Please note that Λ̄n

(
1
2

)
= Λn

(
1
2

)
= En =

∑n
℘=1[1−(

s
2 )

℘
]

n .
Now, let ` ∈ [0, 1], hence from (10), one obtains

Φ
(

2a1a2
a1 + a2

)
≤ En1

{
Φ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)}
,

and

Ψ
(

2a1a2
a1 + a2

)
≤ En2

{
Ψ
(

a1a2
`a1 + (1− `)a2

)
+ Ψ

(
a1a2

`a2 + (1− `)a1

)}
.

Now,

Φ
(

2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)
≤ En1 En2

{
Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)}
+ En1 En2

{
Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a2 + (1− `)a1

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)
Ψ
(

a1a2
`a1 + (1− `)a2

)}
≤ En1 En2

{
Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)}
+ En1 En2

{
[Λn1(`)Φ(a2) + Λ̄n1(`)Φ(a2)][Λn2(`)Ψ(a1) + Λ̄n2(`)Ψ(a2)]

+ [Λn1(`)Φ(a1) + Λ̄n1(`)Φ(a2)][Λn2(`)Ψ(a2) + Λ̄n2(`)Ψ(a1)]

}
= En1 En2

{
Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a

)}
+ En1 En2

{
[Λn1(`)Λ̄n2(`) + Λ̄n1(`)Λn2(`)]D(a1, a2)

+ [Λn1(`)Λn2(`) + Λ̄n1(`)Λ̄n2(`)]F(a1, a2)
}

.

Consequently, we have

Φ
(

2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)
≤ En1 En2

{
Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)}
+ En1 En2

{
[Λn1(`)Λ̄n2(`) + Λ̄n1(`)Λn2(`)]D(a1, a2)

+ [Λn1(`)Λn2(`) + Λ̄n1(`)Λ̄n2(`)]F(a1, a2)
}

. (26)
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Multiplying both sides of (26) by `
λ
k −1 and integrating the resulting inequality with

respect to ` over [0, 1] one has

k
λ

Φ
(

2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)
=
∫ 1

0
`

λ
k −1Φ

(
2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)
≤ En1 En2

∫ 1

0
`

λ
k −1
{

Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)}
+ En1 En2

∫ 1

0
`

λ
k −1
{
[Λn1(`)Λ̄n2(`) + Λ̄n1(`)Λn2(`)]D(a1, a2)

+ [Λn1(`)Λn2(`) + Λ̄n1(`)Λ̄n2(`)]F(a1, a2)
}

.

= En1 En2

{
kΓk(λ)

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−
(ΦΨ ◦ h)(

1
a2

)

]}
+ En1 En2

∫
01
`

λ
k −1
{
[Λn1(`)Λ̄n2(`) + Λ̄n1(`)Λn2(`)]D(a1, a2)

+ [Λn1(`)Λn2(`) + Λ̄n1(`)Λ̄n2(`)]F(a1, a2)
}

d`.

The required result follows.

Corollary 5. Let Φ, Ψ : S → R+ be two functions such that ΦΨ ∈ L[a1, a2] and a1, a2 > 0,
a1, a2 ∈ S. If Φ and Ψ are n1-polynomial harmonically s-type convex functions with λ, k > 0, then

Φ
(

2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)
≤
(

1− s
2

)
Γk(λ + k)

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−
(ΦΨ ◦ h)(

1
a2

)

]
+
(

1− s
2

)2
{[

2(1− s) +
2s2λ

λ + k
− 2s2λ

λ + 2k

]
D(a1, a2)

+

[
(1 + (1− s))2 − 2s2λ

λ + k
+

2s2λ

λ + 2k

]
F(a1, a2)

}
.

Proof. Let n1 = n2 = 1, then Λn1(`) = Λn2(`) = 1− s(1− `) and Λ̄n1(`) = Λ̄n2(`) =
1− s`. The intended result follows using Theorem 11.

Remark 10. If we put s = 1 in Corollary 5, then we obtain Corollary 3 [18].

5. Conclusions and Future Scope

As per recent trends, incorporating different fractional operators into the theory of
inequalities is a new area of interest among several researchers. Several mathematicians
have worked on the generalizations of some well-known inequalities to offer new bounds
and new applications using new methods. In this manuscript:

(1) We presented and concentrated several fractional inequalities of the Caputo–Fabrizio
operator for an n-polynomial s-type convex function and k-Riemann–Liouville frac-
tional integral operator for an n-polynomial harmonically s-type convex function.

(2) New version of Hermite–Hadamard inequality and Pachpatte-type inequality are
obtained via Caputo–Fabrizio fractional integral operators.
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(3) Some special cases of the presented results have been in the form of corollaries
and remarks.

In the future, we intend to generalize the theory of inequality for concepts such as interval-
valued analysis, quantum calculus, fuzzy interval-valued calculus and time-scale calculus.
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