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Abstract: The purpose of this study is to propose a novel, general, tractable, fully parametric class
for hazard-based and odds-based models of survival regression for the analysis of censored lifetime
data, named as the “Amoud class (AM)” of models. This generality was attained using a structure
resembling the general class of hazard-based regression models, with the addition that the baseline
odds function is multiplied by a link function. The class is broad enough to cover a number of widely
used models, including the proportional hazard model, the general hazard model, the proportional
odds model, the general odds model, the accelerated hazards model, the accelerated odds model, and
the accelerated failure time model, as well as combinations of these. The proposed class incorporates
the analysis of crossing survival curves. Based on a versatile parametric distribution (generalized log-
logistic) for the baseline hazard, we introduced a technique for applying these various hazard-based
and odds-based regression models. This distribution allows us to cover the most common hazard rate
shapes in practice (decreasing, constant, increasing, unimodal, and reversible unimodal), and various
common survival distributions (Weibull, Burr-XII, log-logistic, exponential) are its special cases.
The proposed model has good inferential features, and it performs well when different information
criteria and likelihood ratio tests are used to select hazard-based and odds-based regression models.
The proposed model’s utility is demonstrated by an application to a right-censored lifetime dataset
with crossing survival curves.

Keywords: Bayesian analysis; survival models; general odds model; general hazard model;
accelerated odds model; accelerated failure time model; Amoud class; proportional odds model;
accelerated hazard model; survival analysis; generalized log-logistic distribution; proportional hazard
model; censored data
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1. Introduction

During the last few decades, the semi-parametric Cox proportional hazard (PH) model
has dominated survival data analysis. While Cox’s original research paper discussed
extensions to remove the assumption of PH [1], much work has been carried out to improve
the flexibility of survival regression frameworks by using tractable functions for both the
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baseline and the inclusion of covariates, primarily using probability distributions, splines,
or fractional polynomials [2].

As a matter of fact, the hazard rate and odds functions are two probabilistic functions
with significant practical value in survival analysis. They both take into account the hazard
rate or odds for a reference level associated with a link function of the covariates, which
is often represented by a log-linear or a multiplicative term exp(x′i β). Each covariate’s
associated parameters are represented by the vector β. Given a design matrix X and a
subject i, i ∈ {1, . . . , n}, the vector xi represents covariate values. The subject i with all of its
covariate values equal to zero (xi = 0) represents the reference level.

So, based upon the type of probabilistic function utilized as a baseline function,
the survival regression model classes can be divided into two primary groups: hazard-
based regression models and odds-based regression models. However, the general design
of those models did not change; the hazard or odds function was expressed as a baseline
function multiplied by the link function of the covariates to either the baseline function,
the time scale, or both of them.

Because of the most well-known Cox PH model, hazard-based regression models are
the most prevalent survival regression model classes in the field of survival analysis. Con-
sequently, there are four widely used hazard-based regression models: proportional hazard
(PH) [1,3], accelerated hazard (AH) [4], accelerated failure time (AFT) [5,6], and general haz-
ard (GH) [7–10]. The odds-based regression models, which are created using a probabilistic
function that has recently received more attention and is known as the odds function, are
another family of survival regression model classes. Although the odds function is used
in epidemiological case-control research, the proportional odds (PO) model class that was
presented by Bennet [11] is the first to apply it in survival models. AFT model is another
odds-based regression model [3]. As a result, just like hazard-based regression models,
odds-based models are divided into four primary categories: PO [11], accelerated odds
(AO), AFT [5], and general odds (GO) models.

There are other survival regression models as well, which combine hazard-based and
odds-based regression models and are built by taking into account both hazard rate and
odds functions. For instance, Yang and Prentice [12] developed the Yang-Prentice model,
a semi-parametric survival regression model that can include crossover survival curves.
In order to describe survival data with crossed survival curves, Demarqui and Mayrink [13]
modified the Yang-Prentice (YP) model using a piecewise exponential baseline distribution.
Both the PH and PO models are included as sub-models in the YP model. A generalized
odds-rate hazards model was developed by Banerjee et al. [14] and includes the PH, PO,
and AFT models as special cases.

For censored lifetime data, Royston and Parmar [15] presented a flexible parametric
model based on the PH and PO models. On the other hand, Huang et al. [16] also introduced
a general class of regression model called the PH-PO model, which includes PH and PO
models as sub-models. Huang and Jiang [17] proposed an extension of the PH-PO model
into a more generalized model that takes into account time scale changing effects and time
varying coefficient effects. A semi-parametric super model containing six popular survival
regression models, including the PH, PO, AFT, AH, YP, and GH models, was recently
proposed by Zhang et al. [18]. Davis [19] has recommended the development of further
new families that combine hazard-based and odds-based regression models. For additional
details, please see [20].

The absence of a general class of odds-based and hazard-based regression models
that encompasses all hazard-based and odds-based regression frameworks is an issue
that needs to be addressed. Each of the hazard-based and odds-based regression model
classes mentioned above can capture different aspects of survival data. On the other hand,
choosing which hazard-based or odds-based regression model is the most suitable and
precise in reflecting the link between baseline (hazard or odds) and covariates, is an issue
and an important research problem that must be addressed. To explicitly nest simpler
models and to address the issue, we propose a novel, general, flexible, fully parametric
class of hazard-based and odds-based regression framework named “Amoud class (AM)”.
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In contrast, there are three categories of survival regression model classes: non-
parametric, semi-parametric, and parametric models. Compared to non-parametric and
semi-parametric methods, parametric models are more informative. They can be used to
forecast survival times, hazard rates, as well as mean and median survival times in addition
to computing relative effect estimates [21]. They can also be used to plot covariate-adjusted
survival curves and forecast absolute risk over time. Semi-parametric models lack the
power of parametric models when the parametric form is incorrectly stated. Additionally,
they are more effective, resulting in estimates with reduced standard errors and greater
accuracy [22,23]. Furthermore, parametric techniques use full maximum likelihood to
estimate parameters. Parametric model residuals often take the form of the discrepancy
between what was observed and what was expected [24].

Considering the discussion above, the current study proposes a fully parametric class
of regression models that comprises formally nested special cases of the PH, PO, AH,
AO, AFT, GH, and GO survival regression models. As a result, model selection among
these models can be accomplished by conducting approximate likelihood ratio tests using
the frequentist approach. To describe baseline hazard or baseline odds, a generalized
log-logistic (GLL) distribution containing some of the most frequent parametric baseline
distributions used in survival analysis, such as the log-logistic (LL), Bur-XII, exponential,
and Weibull distributions, is employed. A right-censoring mechanism is considered,
and the proposed model’s parameters are evaluated using maximum likelihood estimation
and Bayesian estimation techniques. A real-world right-censored survival dataset with
a crossing survival curve is utilized to demonstrate how the proposed AM class can
be employed.

Hence, the novelty of this research paper is to introduce and investigate a novel,
general, tractable, fully-parametric class of hazard-based and odds-based regression model
for dealing with right-censored survival data with or without crossing survival curves.
This is accomplished by assuming the GLL distribution in the proposed class to cope with
the baseline distribution. To the author’s best knowledge, no one has ever contemplated
employing the parametric AM class of parametric hazard-based and odds-based regression
models in general, and with GLL baseline hazard in particular. This class is an extension of
the most common hazard-based and odds-based regression frameworks in the literature.
On the other hand, another area of interest that has yet to be addressed in the context
of the AM class is the use of both the inferential procedures, Bayesian and frequentist
approaches. As a result, the strategies are investigated utilizing the frequentist approach
using the maximum likelihood estimation (MLE) method and the Bayesian approach using
non-informative priors.

The structure of the article is as follows: Section 2 presents a review of the hazard-
based, and odds-based regression models in the context of survival, duration, and reliability
analysis. The formulation of the AM class, its associated probabilistic functions, and sub-
models of the class are discussed in Section 3. Section 4 describes the baseline distribution
under examination in this study, as well as some of its special circumstances. Section 5
presents the estimation of the proposed class parameters using both classical MLE and
Bayesian estimation approaches. Section 6 focuses on the model selection situations for
both nested and non-nested models. Section 7 shows a real-world, right-censored cancer
dataset with crossing survival curves. Section 8 finishes the study with a farewell address
and recommendations for future research.

2. Recent Literature Review and State of Art

In this section, we review the studies completed in the framework of the hazard-based
and odds-based regression models that are closely related to the proposed class in order
to illustrate the state of scientific development in the context of current survival, duration,
and reliability models.
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2.1. Hazard-Based Regression Models

In general, survival datasets are highly skewed and can be censored for some subjects,
possibly even the most. Standard linear regression models cannot fit them, and they
also only allow for the interpretation of regression coefficients in terms of the mean of
time. However, different models can be applied to survival data to generate different
interpretations. Observed times’ functions rather than the observed times themselves are
used for this. The hazard rate and the odds functions, in particular, are two probabilistic
functions that are extremely important practically in survival analysis.

There are four major types of hazard-based regression models proposed in the liter-
ature to fit survival time data in medical investigations, namely, PH, AH, AFT, and GH
models. These models can be used to analyze real-world data in domains other than
medicine, such as economics, marketing, engineering, social science, criminology, and edu-
cation. The modeling approach differs depending on the researcher’s event of interest; the
general notion is to watch time until the event occurs; however, for some subjects, the event
never occurs.

The formulation and construction of four hazard-based regression models are re-
viewed and discussed in this section. We define the alternative structures below using the
hazard rate function (hrf), odds function, survival (complementary distribution) function
(sf), and cumulative (or integrated) hazard function (chf) in relation to time t and a vector of
covariates x. We suppose that the vector of covariates lacks an intercept to avoid concerns
about identifiability. The unknown regression coefficients are represented by a vector β.

2.1.1. PH Model

The semi-parametric PH model introduced by Cox [1] is one of the most well-known
hazard-based regression models in survival analysis. The hrf is multiplicatively affected by
the impact of the covariates in this model. Different researchers have examined and ana-
lyzed studies relating to the parametric PH model utilizing various baseline distributions
and inferential techniques. A parametric PH model, with an extended exponential geomet-
ric baseline distribution was developed and evaluated by Rezaei et al. [25]. A parametric
PH with GLL baseline distribution was also proposed by Khan and Khosa [23]. A modified
PH model and a reversed PH model employing the Marshall-Olkin baseline distribution
were examined by Balakrishnan et al. [26]. Muse et al. [27] have investigated the Bayesian
analysis of the PH model with a GLL baseline distribution.

The PH model’s hrf, odds, sf, and the chf can be stated as follows:

hPH(t; β, x) = h0(t)ex′β, (1)

RPH(t; β, x) = R0(t)ex′β
, (2)

SPH(t; β, x) = S0(t)ex′β
, (3)

HPH(t; β, x) = H0(t)ex′β, (4)

where H0, R0, S0, and H0 are the baseline hazard rate, odds, survival and cumulative
hazard functions.

2.1.2. AFT Model

The PH model is the most popular hazard-based regression model in survival analysis,
but it can only be used in situations in which the PH assumption holds. An alternative to the
PH model is the AFT model [3,5]. The AFT model is analogous to a hazard-based regression
model in which covariates measured on an individual are assumed to act multiplicatively
on the time-scale, influencing the rate at which the individual advances along the time
axis. Numerous scholars have studied and discussed studies involving the parametric
AFT model using various baseline hazards and statistical inference techniques. A para-
metric AFT model with an exponentiated Weibull baseline distribution was presented
and analyzed by Khan [22]. A parametric AFT with a log-exponential power baseline
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distribution was also proposed by Olosunde et al. [28]. Ashraf-Ul-alam and Khan [29]
used a generalized Top-leone-Weibull baseline distribution to study a parametric AFT
model. A parametric AFT model with a GLL baseline distribution was recently proposed
by Muse et al. [30].

The hrf, odds, sf, and chf of the AFT model are defined by:

hAFT(t; β, x) = h0

(
tex′β

)
ex′β, (5)

RAFT(t; β, x) = R0

(
tex′β

)
, (6)

SAFT(t; β, x) = S0

(
tex′β

)
, (7)

HAFT(t; β, x) = H0

(
tex′β

)
. (8)

2.1.3. AH Model

AFT and PH models have been widely applied to deal with lifetime data in different
disciplines of knowledge. Despite being widely used, such hazard-based regression models
are not suitable to handle survival data with crossing survival curves. Chen and Wang [4]
proposed a semi-parametric hazard-based regression model, named the AH model, al-
lowing the analysis of crossing survival curves. In the context of a parametric AH model,
different baseline hazards are available in the AHSurv package [31].

The hrf, odds, sf, and chf of the AH model are defined by:

hAH(t; β, x) = h0

(
tex′β

)
, (9)

RAH(t; β, x) = R0

(
tex′β

)e−x′β

, (10)

SAH(t; β, x) = S0

(
tex′β

)e−x′β

, (11)

HAH(t; β, x) = H0

(
tex′β

)
e−x′β. (12)

2.1.4. GH Model

Ciampi and Etazadi-Amoli [7] introduced a general hazard (GH) regression model for
testing the PH and the AFT hypothesis in the analysis of censored lifetime data with the
presence of covariates. Then, Etazadi-Amoli and Ciampi [8] extended their work by the
application of the splines as a baseline function. It is worth to mention that the EHR model
requires a careful selection of the knots and could easily lead to an overparametrized or
non-identifiable model. On the other hand, Chen and Jewell [10] introduced a general class
of semi-parametric hazard-based regression models by following the same procedure as [7]
but just by adding the AH framework. The case of parametric GH structure in the context
of relative survival framework was introduced by Rubio et al. [2] and developed an R
Package called GHSurv available in https://github.com/FJRubio67/GHSurv (accessed
on 5 October 2022) and HazReg package that contain several choices of the baseline
hazards (https://github.com/FJRubio67/HazReg, accessed on 5 October 2022). Recently,
Muse et al. [32] proposed the over survival framework for the GH model using both
Bayesian and classical inferences. Consequently, Alvares and Rubio [33] discussed the GH
structure in the context of joint models for longitudinal and survival datasets. Finally, in the
context of the a spatial survival models, Li et al. [34] extended the GH model to spatial GH
model. Recently, Rubio and Drikvandi [35] modified the GH structure into a mixed-effect
general hazard (MEGH) model to account for cluster survival datasets.

https://github.com/FJRubio67/GHSurv
https://github.com/FJRubio67/HazReg
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The hrf, odds, sf, and chf of the GH model are expressed as follows:

hGH(t; β1, β2, x) = h0

(
tex′β1

)
ex′β2 , (13)

RGH(t; β1, β2, x) = R0

(
tex′β1

)ex′(β2−β1)

, (14)

SGH(t; β1, β2, x) = S0

(
tex′β1

)ex′(β2−β1)

, (15)

HGH(t; β1, β2, x) = H0

(
tex′β1

)
ex′(β2−β1), (16)

where β1 and β2 denote the unknown regression parameters.

2.1.5. Special Cases of the GH Model

All of the hazard-based regression models listed above are incorporated into the GH
model of hazard-based models as special cases. The GH model can be used to derive the
PH, AH, and AFT models, according to the following proposition.

Proposition 1. Suppose h(t; β, x) is given by Equation (13). Then, we have the following results:
1. If β2 = β1, then h(t; β, x) = ho

(
tex′β

)
ex′β giving the AFT model.

2. If β1 = 0, then h(t; β, x) = ho(t)ex′β giving the PH model.
3. If β2 = 0, then h(t; β, x) = ho

(
tex′β

)
, giving the AH model.

Proof of Proposition 1. The proof of Proposition 1 is straightforward.

2.2. Odds-Based Regression Models

To fit survival time data in medical research, two primary types of odds-based re-
gression models have been proposed in the literature: PO and AFT models. Two more
innovative odds-based regression models proposed in this study are the accelerated odds
and general odds models. In fields other than medicine, such as economics, marketing,
engineering, social science, criminology, and education, these models can be utilized to
examine actual data.

The odds function indicates how much more likely it is that a particular event will
occur for a given period t. As a result, the odds function is denoted by R(t; θ), and its
mathematical expression is given by the relationship between the cumulative distribution
function and its complementary (sf):

R(t; θ) =
F(t; θ)

S(t; θ)
=

1− exp[−H(t; θ)]

exp[−H(x; θ)]
= exp[H(t; θ)]− 1, (17)

where R(t; θ), F(t; θ), S(t; θ), and H(t; θ) are the odds, cumulative distribution, survival and
cumulative hazard functions respectively, and θ is the vector of distributional parameters.

The associated derivative of the odds function is expressed as follows:

r(t; θ) =
dR(t; θ)

d(t)
=

h(t; θ)

S(t; θ)
=

f (t; θ)

S(t; θ)2 , (18)

where r(t; θ), h(t; θ), and f (t; θ) represent the odds, hrf, and probability density function
(pdf), respectively.

In this section, we review two odds-based regression models that have been explored
in the literature along with their formulation. On the other hand, based on the author’s
knowledge, we present two novel odds-based regression models that have never been used
before in the literature. We define the alternative structures below with respect to time t
and a vector of covariates x using the odds function R(.), derivative of odds function r(.),
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hrf h(.), and sf S(.). We assume that the covariate vector is free of an intercept to ease issues
about identifiability. The vector β is used to represent the unknown regression coefficients.

2.2.1. PO Model

The proportional odds (PO) model, originally introduced by Bennett [11], is an odds-
based regression model. According to Bennett [11], the PO model is structurally similar
to the PH model of Cox and may be used in similar situations. Although the PO model
represents an attractive alternative to the PH model.

The odds function of this model is expressed as follows:

RPO(t; β, x) = R0(t)ex′β, (19)

where R0(t) is the baseline odds function. The associated derivative of the odds function of
the PO model is computed as follows:

rPO(t; β, x) = r0(t)ex′β, (20)

where r0(t) is the baseline derivative odds function.
The hrf of the PO model is computed as follows:

hPO(t; β, x) =
r0(t)ex′β

1 + R0(t)ex′β . (21)

In terms of the baseline hazard, the hrf, and sf can be expressed as follows using
Equation (18):

hPO(t; β, x) =

[
h0(t)
S0(t)

]
ex′β

1 +
[

F0(t)
S0(t)

]
ex′β

=
h0(t)ex′β

F0(t)ex′β + S0(t)
, (22)

SPO(t; β, x) =
[

1
1 + R0(t)ex′β

]
=

 1

1 +
[

F0(t)
S0(t)

]
ex′β

 =

[
1 +

[
F0(t)
S0(t)

]
ex′β
]−1

. (23)

Now, we will put forth two new models that employ methods related to the hazard-
based regression models. All of the odds-based regression models in this section will be
generalized as well. The model formulation put forward by Chen and Wang [4] served as
inspiration for the initial proposed approach. Their model includes accelerated hazards,
but we propose a model with accelerated odds. This is how our models differ from theirs.
The model formulation proposed by Chen and Jewell [10] served as the basis for the second
proposed model. The PH, AH, and AFT models are included in their models as sub-models.
In contrast to their model, ours includes the PO, AFT, and AO models as sub-models.
The general odds model is the name of this model. The odds-based regression models with
different baseline distributions are available in the AmoudSurv Package [36].

2.2.2. Accelerated Forms

The second parametric method of taking into account the effect of covariates, known
as the accelerated form, presupposes that the covariates directly rescale time. Accelerated
effects of covariates come in two varieties: Two examples of this are the:

i. Accelerated failure time (AFT) model; and
ii. Accelerated odds model.

The accelerated types of the odds-based regression models can be formulated in two
different ways, the first of which is similar to the AFT model. The AFT model is the
only parametric survival regression framework that belongs to both the hazard-based and
odds-based regression models, and both the continuous probability distributions that are
closed under the hazard-based regression models and those closed under the odds-based
regression models are consistent with the AFT model. For instance, the Weibull and LL
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distributions. We will explore these distributions in Section 4 of this study. Based on what
the authors know, accelerated odds (AO) model is a new survival regression model that
has never been used previously.

The formulation one belongs to the AFT framework and can be expressed as follows:

RAF(t; β, x) = R0

(
tex′β

)
. (24)

The associated derivative of the odds function of the AFT model is computed as follows:

rAF(t; β, x) = r0

(
tex′β

)
ex′β. (25)

The hrf and sf are expressed as follows:

hAF(t; β, x) =
R′0
(

tex′β
)

1 + R0
(
tex′β

) =

[
h0

(
tex′β

)
S0(tex′β)

]
ex′β

1 +
[

F0(tex′β)
S0(tex′β)

] =
h0

(
tex′β

)
ex′β

F0
(
tex′β

)
+ S0

(
tex′β

) = h0

(
tex′β

)
ex′β, (26)

SAF(t; β, x) =

[
1

1 + R0
(
tex′β

)]−1

=

 1

1 +
[

F0(tex′β)
S0(tex′β)

]

−1

=
[
S0

(
tex′β

)]
. (27)

This model, as one can see after its derivation and simplification, is similar to the
AFT model. As a result, we can remark that the AFT model is the only one of the survival
regression models that holds true for both hazard-based and odds-based regression models.

2.2.3. Accelerated Odds Model

A novel parametric odds-based regression model that can incorporate censored life-
time datasets with crossing survival curves is introduced here and named the “accelerated
odds (AO)” model. This model is formulated using the odds function, and by using the
same procedure as for the AH model, we obtained the following parametric odds-based
regression model that is a new one and has not been featured in the literature so far:

RAO(t; β, x) = R0

(
tex′β

)
e−x′β. (28)

The associated derivative of the odds function of the AO model is computed as follows:

rAO(t; β, x) = r0

(
tex′β

)
. (29)

The hrf and sf are expressed as follows:

hAO(t; β, x) =
R′0
(

tex′β
)

1 + R0
(
tex′β

) =
h0

(
tex′β

)
F0
(
tex′β

)
e−x′β + S0

(
tex′β

) , (30)

SAO(t; β, x) =

 1

1 + e−x′β
[

F0(tex′β)
S0(tex′β)

]
 =

1 + e−x′β

 F0

(
tex′β

)
S0
(
tex′β

)


−1

. (31)

2.2.4. General Odds Model

Another novel general survival regression model, termed the “general odds (GO)”
model, is introduced here and consists of three odds-based regression models as special
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cases, namely: PO, AFT, and AO models. The odds function of this model can be computed
as follows:

RGO(t; β1, β2, x) = R0

(
tex′β1

)
ex′(β2−β1). (32)

The associated derivative of the odds function of the GO model corresponding to the
odds function in Equation (32) is computed as follows:

rGO(t; β1, β2, x) = r0

(
tex′β1

)
ex′β2 . (33)

The hrf and sf of the GO model corresponding to Equation (32) are expressed as follows:

hGO(t; β1, β2, x) =
h0

(
tex′β1

)
ex′β2

ex′(β2−β1)F0
(
tex′β1

)
+ S0

(
tex′β1

) . (34)

SGO(t; β1, β2, x) =

1 + ex′(β2−β1)
Fo

(
tex′β1

)
S0
(
tex′β1

)
−1

. (35)

In terms of the odds function, the sf in Equation (35) of the GO model can be computed
as follows:

SGO(t; β1, β2, x) =
[
1 + R0(t)ex′(β2−β1)

]−1
. (36)

2.2.5. Special Cases of the GO Model

All of the odds-based regression models listed above are incorporated into the GO
model of odds-based models as special cases. The GO model can be used to derive the PO,
AO, and AFT models, according to the following proposition:

Proposition 2. Suppose r(t; β, x) is given by Equation (33). Then, we have the following results:
1. If β1 = β2, then r(t; β, x) = ro

(
tex′β

)
eβx′ giving the AFT model.

2. If β2 = 0, then r(t; β, x) = ro(t)ex′β giving the PO model.
3. If β1 = 0, then r(t; β, x) = ro

(
tex′β

)
, giving the AO model.

Proof of Proposition 2. The proof of Proposition 2 is straightforward.

3. The Proposed Class
3.1. Why AM Class of Hazard-Based and Odds-Based Regression Models?

All of the hazard-based and odds-based regression models discussed in the preceding
Section 2 can model different aspects of time-to-event data. However, determining which
model is the most accurate and precise in revealing the correlation between explanatory
variables and the baseline hazard (or the baseline odds) is a challenging issue and a
significant research question that must be addressed.

In real life, we must decide between hazard-based regression models and odds-based
regression models when provided with a dataset. A popular technique would be to fit
one model to each of them, and then test the model to determine where it falls well short.
However, the possibility of verifying the model assumptions may be constrained due to the
finite sample size and other data characteristics. Additionally, if the right time-dependent
covariates are taken into account, both the hazard-based models, such as the PH, AFT, AH,
and GH models, and the odds-based models, such as the PO, AO, AFT, and GO models,
may be able to fit the data relatively well.

Another issue with time-to-event data is that lifetimes can be censored in a variety of
ways, including left, right, interval, double, and middle censoring, as well as survival data
with crossover survival or hazard curves. Furthermore, a general class containing all of the
preceding eight hazard-based and odds-based regression models is required. As a result,
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it is difficult to address all of the aforementioned open topics using both frequentist and
Bayesian methods.

To address the aforementioned problems and to fill the gap, we introduce the AM class
of hazard-based and odds-based survival regression models, a unique, novel, tractable,
universal, parametric class of survival regression models that encompasses all hazard-
based and odds-based regression models to help applied statisticians to decide which
model to fit in a given censored survival dataset. We estimate the model parameters using
both frequentist and Bayesian approaches, and we evaluate the proposed model’s nested
structure using a likelihood ratio test.

In this section, we introduce the new survival regression model, its main probabilistic
functions, and some special cases.

3.2. Model Formulation

Let T be a non-negative random variable that represents the length of time until an
event of interest occurs. As already sketched, a universal class for hazard-based and odds-
based regression models called the “Amoud Class (AM)” has the following closed form
in order to accommodate survival data with or without the crossover of the hazard and
survival curves:

RAM(t; β1, β2, β3, x) = ex′(β2−β1)Ro

(
tex′β1

)ex′(β3−β1)

, (37)

where Ro(.) is the baseline odds function. This generality is attained using a structure
resembling the general class of hazard-based regression models, with the addition that
the baseline odds function is multiplied to a link function (i.e., log-linear function) for
the covariates.

The sf for the AM model corresponding to the odds function in Equation (37) is
expressed as follows:

SAM(t; β1, β2, β3, x) =

1 + ex′(β2−β1)
Fo

(
tex′β1

)
S0
(
tex′β1

)
−ex′(β3−β1)

. (38)

The hrf for the AM model corresponding to Equation (37) is computed as follows:

hAM(t; β1, β2, β3, x) =
ex′(β2+β3−β1)h0

(
tex′β1

)
ex′(β2−β1)F0

(
tex′β1

)
+ S0

(
tex′β1

) . (39)

3.3. Probabilistic Functions for the Amoud Class Model

In terms of odds function, the sf for the AM model in Equation (38) can be expressed
as follows:

SAM(t; β1, β2, β3, x) =
[
1 + ex′(β2−β1)Ro

(
teβ1x′

)]−ex′(β3−β1)

. (40)

The derivative of the odds function for the AM model is expressed as follows:

rAM(t; β1, β2, β3, x) = ro

(
tex′β1

)
ex′(β2+β1)Ro

(
teβ1x′

)ex′(β3−β1)−1
. (41)

The cumulative distribution function (cdf) for the SM model is computed as follows:

FAM(t; β1, β2, β3, x) = 1−

1 + ex′(β2−β1)
Fo

(
tex′β1

)
S0
(
tex′β1

)
−ex′(β3−β1)

, (42)
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where the baseline hazard, odds, survival, cumulative distribution, and the derivative of
the odds functions are H0(.), R0(.), S0(.), F0(.), and r0(.), respectively.

3.4. Special Sub-Models of the Proposed Class

All of the hazard-based and odds-based regression models listed above are incor-
porated into the AM Class of hazard-based and odds-based survival models as special
cases. The AM class can be used to derive the PH, PO, AH, AO, AFT, GH, and GO models,
according to the following proposition:

Proposition 3. Suppose R(t; β, x) is given by Equation (37). Then, we have the following results:

1. If β2 = β1, then R(t; β1, β2, x) = Ro

(
tex′β1

)ex′(β2−β1)

, giving the GH model.

2. If β3 = β1, then R(t; β1, β2, x) = Ro

(
tex′β1

)
ex′(β2−β1), which is the GO model.

3. If β3 = β2 = β1, then R(t; β, x) = Ro

(
tex′β

)
, giving the AFT model.

4. If β3 = β1 = 0, then R(t; β, x) = Ro(t)ex′β, which is the PO model.

5. If β2 = β1 = 0, then R(t; β, x) = Ro(t)
ex′β

, giving the PH model.

6. If β3 − β1 = 0, β2 = 0, then R(t; β, x) = Ro

(
tex′β

)e−x′β

, which is the AO model.

7. If β2 − β1 = 0, β3 = 0, then R(t; β, x) = Ro

(
tex′β

)
e−x′β, giving the AH model.

Proof of Proposition 3. The proof of Proposition 3 is straightforward.

Figure 1 illustrates the relationship between the proposed AM class and its sub-models
including the GH, GO, AFT, AO, AH, PO, and PH models.

Figure 1. Visual graph illustrating the relationship between the proposed Amoud Class (AM) and
its sub-models including the proportional hazard (PH), general odds (GO), general hazard (GH),
accelerated failure time (AFT), accelerated odds (AO), accelerated hazard (AH), and proportional
odds (PO) models.
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4. Baseline Distributions

The Weibull distribution, LL distribution, and a GLL distribution that combines
both of them are three different baseline distributions that are presented in this section.
The closeness of the Weibull distribution under hazard-based regression models and the
closeness of the LL distribution under odds-based regression models were also proven.
When applied to censored survival data, the closeness of the distributions is what causes
the regression models to produce comparable findings. We propose the use of a modified
baseline distribution that demonstrates the differences between the survival regression
models taken into consideration in this study because the Weibull and LL distributions
have limitations and give the same results under different survival regression models.

4.1. Weibull Baseline for Hazard-Based Regression Models

The Weibull distribution is widely used as a baseline distribution in survival and
reliability regression models. Its hrf is monotone. Moreover, hrf and sf can be derived
analytically, and as such, censored data can be analyzed easily. Because of the tractability
and flexibility of hazard and survival functions, the Weibull model is popular among
researchers in survival and reliability analysis. However, the Weibull distribution has the
limitation of not capable of accommodating non-monotone unimodal and bathtub-shaped
hazard functions [37,38]. Another issue is that Weibull distribution is not a PO model,
but this is the only distribution closed under the hazard-based regression models. This
means that the PH, AH, and AFT models coincide when the baseline hrf is that of the
Weibull distribution. This also means that the GH model is not identifiable.

The hrf and chf of the Weibull distribution are expressed as follows:

hW(t; k, α) = αk(kt)α−1, t ≥ 0, k, α > 0, (43)

HW(t; k, α) = (kt)α, t ≥ 0, k, α > 0, (44)

where k > 0 and α > 0 are the rate and shape parameters, respectively.
The odds function for the Weibull distribution is expressed as follows:

RLL(t; k, α) = exp[HW(t; k, α)]− 1 = exp((kt)α)− 1, t ≥ 0, k, α > 0. (45)

The associated derivative of the odds function of the Weibull distribution is as follows:

rW(t; k, α) = hW(t; θ) exp[HW(t; θ)] = αk(kt)α−1 exp((kt)α), t ≥ 0, k, α > 0. (46)

The Weibull accelerated failure time (W-AFT) model is defined as follows:

hW−AFT(t; β, x) = H0

(
tex′β

)
ex′β = ex′βαk

(
ktex′β

)α−1
=
(

ex′βk
)α

αtα−1 = αk∗tα−1. (47)

In Equation (47), we can observe the hrf for the Weibull in Equation (43). As men-
tioned, the scale parameter differs between groups and we can write it as: Ti ∼ Weibull(

k∗ =
(

ex′βk
)α

, α
)

, with scale k∗ and shape α.
On the other hand, if a Weibull distribution is assumed for Ti under the PH framework

(W-PH) in Equation (1), it then follows that Ti ∼Weibull
(

k∗ = ex′βkα, α
)

, with scale k∗

and shape α. The hrf for the W-PH model is rewritten as follows:

hW−PH(t; β, x) = r0(t)ex′β = αk(kt)α−1ex′β = ex′βkααtα−1 = αk∗tα−1. (48)

This proves that the Weibull baseline is the only baseline distribution that is closed
under all hazard-based regression models.
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4.2. Log-Logistic Baseline for Odds-Based Regression Models

The LL distribution is a frequently used baseline distribution in survival and reliability
regression models. Its hrf is monotone decreasing hazard and non-monotone unimodal.
The LL model hazard and probability density shapes are similar to those of the log-normal
distribution. but it has explicit algebraic expressions for the hazard rate and survival
functions which makes it more suitable for the analysis of censored lifetime data than the
log-normal distribution [39,40]. The LL distribution has the limitation of not being capable
of accommodating monotone increasing and bathtub shaped hrfs. Another issue is that the
LL distribution is not a PH model, but is the only distribution closed under the odds-based
regression models. This means that PO, AO, and AFT models coincide when the baseline
hazard is LL. This also makes the GO model not identifiable.

The cdf and sf of the LL distribution are expressed as follows:

FLL(t; k, α) =
(kt)α

1 + (kt)α
, t ≥ 0, k, α > 0, (49)

SLL(t; k, α) =
1

1 + (kt)α
, t ≥ 0, k, α > 0, (50)

where k > 0, and α > 0 are the rate and shape parameters, respectively.
The odds function for the LL distribution is expressed as follows:

RLL(t; k, α) =
FLL(t; k, α)

SLL(t; k, α)
=

(kt)α

1+(kt)α

1
1+(kt)α

= (kt)α, t ≥ 0, k, α > 0. (51)

The associated derivative of the odds function of the LL distribution is as follows:

rLL(t; k, α) = R′LL(t; k, α) = αk(kt)α−1, t ≥ 0, k, α > 0. (52)

It is obvious that the odds function for the LL distribution and its derivative are
comparable to the chf and hrf functions for the Weibull distribution, respectively. Therefore,
it is simple to illustrate that the odds-based regression models simply consider the LL
distribution as a closed baseline distribution. the PO and AFT models, as examples.

According to Lawless [21], the LL distribution can be used to support a parametric AFT
model, allowing scale parameter to differ between groups. For this, we need to keep the
AFT structure that we mentioned above in the odds-based regression model formulation
and adopt the derivative odds function of the LL distribution for Equation (52) for the
reference group.

The log-logistic AFT (LL-AFT) derivative of the odds function is defined as follows:

rLL−AFT(t; β, x) = r0

(
tex′β

)
ex′β = ex′βαk

(
ktex′β

)α−1
=
(

ex′βk
)α

αtα−1 = αk∗tα−1. (53)

In Equation (53), we can observe the derivative of the odds structure for the LL
distribution in (52). As mentioned, the scale parameter differs between groups and we can

write it as Ti ∼ log− logistic
(

k∗ =
(

ex′βk
)α

, α
)

, with scale k∗ and shape α.
On the other hand, if a LL distribution is assumed for Ti under the PO framework

(LL-PO) in Equation (20) it then follows that Ti ∼ log− logistic
(

k∗ = ex′βkα, α
)

, with scale
k∗ and shape α. The derivative of the odds function for the LL-PO model is thus rewritten
as follows:

rLL−PO(t; β, x) = r0(t)ex′β = αk(kt)α−1ex′β = ex′βkααtα−1 = αk∗tα−1. (54)

This proves that the log-logistic distribution is the only baseline distribution that is
closed under all odds-based regression models.
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4.3. Generalized Log-Logistic Baseline for All Models

The GLL distribution [23,27,30,41,42] is an example of a baseline distribution that
can incorporate both monotone and non-monotone hrfs, as well as be closed under both
odds-based and hazard-based regression models, and has the benefit of including both the
Weibull and LL models as sub-models [42].

The hrf and the odds function of the GLL distribution are expressed as follows:

hGLL(t; k, α, η) =
αk(kt)α−1

[1 + (ηt)α]
, t ≥ 0, k, α, η > 0, (55)

RGLL(t; k, α, η) = [1 + (ηt)α]
kα

ηα − 1, t ≥ 0, k, α, η > 0, (56)

where k > 0, α > 0, and η > 0 are the distributional rate and shape parameters, respectively.
The hrf in Equation (55) consists of different sub-models of the GLL distribution [42].
- Log-logistic (LL) distribution: when k = η, Equation (55) reduces to the hrf of an LL

distribution, which is

hLL(t; k, α) =
αk(kt)α−1

[1 + (kt)α]
, t ≥ 0, k, α > 0. (57)

- Burr-XII (BXII) distribution: when η = 1, Equation (55) reduces to the hrf of a BXII-2
distribution, which is

hBXII(t; k, α) =
αk(kt)α−1

[1 + tα]
, t ≥ 0, k, α > 0. (58)

- Weibull (W) distribution: when η → 0, Equation (55) reduces to the hrf of the W
distribution, which is

hW(t; k, α) = αk(kt)α−1, t ≥ 0, k, α > 0. (59)

5. Estimation Based on Frequentist and Bayesian Approaches

In this section, the unknown parameters of the proposed fully parametric AM class
with GLL, LL and Weibull baseline distributions are estimated using frequentist MLE and
Bayesian approaches.

5.1. MLE for Right-Censored Data

As was earlier indicated, not always an observed time will be a survival time: the
subject is observed up to a particular time and is no longer followed up for a reason
unrelated to the event occurrence. This is an illustration of a right-censored observed time,
which was taken into consideration in this work and is the most common type of censoring
in oncology studies. The same survival likelihood functions are reached despite the fact
that there are many right-censoring techniques [21]. This ensures the identifiability of the
distribution of the observed times under the further assumption that the survival times are
independent random variables for all subjects (random censoring) and that the censoring
times depend on no parameter associated with the survival function (non-informative
censoring) [24].

These presumptions allow for the formulation of a general expression for the survival
likelihood function. Assuming that a survival time Ti = ti or a censored time Ci = ci
are recorded for each subject, i, 1 ≤ i ≤ n. Assume also that survival (censoring) times
are independent among all subjects, i.e., T1, . . . , Tn ∼ FT(t; θT)(C1, . . . , Cn ∼ FC(c; θC)).
The actual observable time is defined by Yi = min(Ti, Ci), whose distribution is indexed
by a vector θ = (θT , θC) of parameters. Then, the information of a subject i is given by the



Axioms 2022, 11, 606 15 of 34

pair (Yi, δi), where δi = ITi<ci being the censoring indicator random variable. For a pair
(Yi = ti, δi = 1 ) (a survival observed time), the likelihood contribution is given by:

lim
ε→0+

1
2ε

P(yi − ε < Yi < yi + ε, δi = 1; θ) = lim
ε→0+

1
2ε

P(yi − ε < Ti < yi + ε, Ti ≤ Ci; θ)

= lim
ε→0+

1
2ε

∫ yi+ε

yi−ε

∫ ∞

t
dFC(c; θC)dFT(t; θT) (independence)

= lim
ε→0+

1
2ε

∫ yi+ε

yi−ε
[1− FC(c; θC)]dFT(t; θT)

= [1− FC(yi; θC)] fT(yi; θT).

(60)

On the other hand, the likelihood contribution for a pair (Yi = ci, δi = 0) (right cen-
sored observed time), the likelihood contribution is provided by

lim
ε→0+

1
2ε

P(yi − ε < Yi < yi + ε, δi = 0; θ) = lim
ε→0+

1
2ε

P(yi − ε < Ci < yi + ε, Ti > Ci; θ)

= [1− FT(yi; θT)] fC(yi; θC).
(61)

Thus, under a random right censoring, the survival likelihood function for a sample
y = (y1, ..., yn) of size n has the following expression:

L(θ; y) =
n

∏
i=1
{[1− FC(yi; θC)] fT(yi; θT)}δi{[1− FT(yi | θT)] fC(yi; θC)}1−δi . (62)

Assuming that censoring is non-informative, i.e., the distribution of the censoring
times does not depend on the parameters θT from the survival function, the factors
[1− FC(yi; θC)]

δi and [ fC(yi; θC)]
1−δi do not give any information for inference and can

be dropped from Equation (62). Thereby, θ = θT and a simpler survival likelihood function
is given by

L(θ, β; D) =
n

∏
i=1

[ f (ti; θ, β, x)]δi [S(ti; θ, β, x)]1−δi

=
n

∏
i=1

[
h(ti; θ, β, x)
S(ti; θ, β, x)

]δi

[S(ti; θ, β, x)]1−δi

=
n

∏
i=1

[h(ti; θ, β, x)]δi S(ti; θ, β, x)

=
n

∏
i=1

[h(ti; θ, β, x)]δi exp[−H(ti; θ, β, x)],

(63)

where D = (ti, δi, xi, i = 1, 2, . . . , n) represents the observed data including ti = survival
time, δi = censoring time, θ is the vector of baseline distributional parameters, and xi = co-
variates. The maximum likelihood estimation can be generated via an iterative optimization
method (e.g., the Newton-Raphson algorithm).
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The above formulation in Equation (63) is useful for modelling hazard-based regression
models, like the PH, AH, and GH models. An alternative version can be obtained only in
terms of the odds function and its derivative as follows:

L(θ, β; D) =
n

∏
i=1

[ f (ti; θ, β, x)]δi [S(ti; θ, β, x)]1−δi

=
n

∏
i=1

[
r(ti; θ, β, x)S(ti; θ, β, x)2

]δi
[S(ti; θ, β, x)]1−δi

=
n

∏
i=1

[r(ti; θ, β, x)]δi [S(ti; θ, β, x)]1−δi

=
n

∏
i=1

[
r(ti; θ, β, x)

1 + R(ti; θ, β, x)

]δi

[S(ti; θ, β, x)],

=
n

∏
i=1

[
r(ti; θ, β, x)

1 + R(ti; θ, β, x)

]δi

exp[−H(ti; θ, β, x)]

=
n

∏
i=1

[
r(ti; θ, β, x)

1 + R(ti; θ, β, x)

]δi
[

1
1 + R(ti; θ, β, x)

]
.

(64)

The log-likelihood function corresponding to Equation (63) is written as follows:

`(θ, β; D) =
n

∑
i=1

δi log[H0(ti; θ, β, x)]−
n

∑
i=1

H0(ti; θ, β, x). (65)

5.2. The Log-Likelihood Functions

Let θ = (α, k)′, Ξ =
(

β′1, β′2, β′3
)′, Ω = (θ′, Ξ′)′, ai = ex′i(β2+β3−β1), bi = ex′i(β2−β1), ci =

ex′i(β3−β1), and di = k.ti.x′i β1 and assume the Weibull baseline distribution, then the log-
likelihood function for the Weibull-AM (W-AM) model is

`(Ω) =
n

∑
i=1

δi log α +
n

∑
i=1

δi log k + (α− 1)
n

∑
i=1

δi log di

+
n

∑
i=1

δi log ai −
n

∑
i=1

δi log[{bi(1− exp(−di)
α)}+ exp(−di)

α]

−
n

∑
i=1

log
[

ci

(
1 + bi

{
1− exp(−di)

α

exp(−di)α

})]
.

(66)

The log-likelihood function for the LL baseline distribution under the AM class can be
expressed as follows:

`(Ω) =
n

∑
i=1

δi log α +
n

∑
i=1

δi log k + (α− 1)
n

∑
i=1

δi log(di)−
n

∑
i=1

δi log(1 + dα
i )

+
n

∑
i=1

δi log ai −
n

∑
i=1

δi log

[{
bi

(
dα

i
1 + dα

i

)}
+

1(
1 + dα

i
)]

−
n

∑
i=1

log[ci(1 + bi{dα
i })].

(67)

Moreover, assuming θ = (α, k, η)′, mi = η.ti.x′i β1, and regarding the GLL baseline
distribution under the AM class, the log-likelihood function can be expressed as follows:
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`(Ω) =
n

∑
i=1

δi log α +
n

∑
i=1

δi log k + (α− 1)
n

∑
i=1

δi log(di)−
n

∑
i=1

δi log(1 + mα
i )

+
n

∑
i=1

δi log ai −
n

∑
i=1

δi log
[{

bi

(
1− {1 + mα

i }
−
(

κ
η

)α))}
+

(
{1 + mα

i }
−
(

κ
η

)α)]
−

n

∑
i=1

log
[

ci

〈
1 + bi{1 + mα

i }
(

κ
η

)α

− 1
〉]

.

(68)

5.3. Bayesian Inference

In this section, we offer general guidelines for prior selection of the regression coef-
ficients associated with covariates and baseline distribution parameters. We examined
a prior independent scenario between the baseline parameters in H0(t) (baseline hazard)
or R0(t) (baseline odds) and the regression coefficients. Additionally, we determined the
prior independence of the regression coefficients in a non-informative scenario with normal
distributions of zero mean and a large known variance [43] as

π(H0, β1, β2, β3) = π(H0)π(β1, β2, β3) = π(H0)
J

∏
j=1

N
(

β j | 0, σ2
j

)
, (69)

where π(H0) is the prior distribution of all baseline parameters and hyperparameters in
H0(t).

For the baseline hazard parameter θ in baseline distributions, we consider the following priors:

π(α) ∼ G(a1, b1) =
ba1

1
Γ(a1)

αa1−1e−b1α; a1, b1, α > 0, (70)

π(η) ∼ G(a2, b2) =
ba2

2
Γ(a2)

ηa2−1e−b2η ; a2, b2, η > 0, (71)

π(k) ∼ G(a3, b3) =
ba3

3
Γ(a3)

ka3−1e−b3k; a3, b3, k > 0. (72)

The values of the hyper-parameters values of the prior distributions are selected from
the historical data of the baseline distribution [42].

For the regression coefficients prior, we have

π
(

β′1
)
∼ N(a4, b4), (73)

π
(

β′2
)
∼ N(a5, b5), (74)

π
(

β′3
)
∼ N(a6, b6). (75)

The joint prior distribution for the distributional parameters and coefficient of regres-
sion expressed as follows:

π
(
α, k, η, β′1, β′2

)
= π(α)π(η)π(k)π

(
β′1
)
π
(

β′2
)
π
(

β′3
)
. (76)

The model must be supplied with data D = {(ti, δi, xi), i = 1, . . . , n}, where ti is the
observed lifetime time for the ith individual, δi is the censoring status taking 1 if the event
of interest has occurred and 0 otherwise, and xi are the explanotory variables.

Prior knowledge and experimental data are combined in the posterior distribution via
the Bayes’ theorem, and we get

π(H0, β1, β2, β3;D) ∝ L(H0, β1, β2, β3)π(H0, β1, β2, β3), (77)

where L(H0, β1, β2, β3) is the likelihood function of (H0, β1, β2, β3) given in Equation (63).
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This study uses Markov chain Monte Carlo (McMC) techniques for Bayesian infer-
ence, and the Metropolis within the Gibbs algorithm is used to sample from the posterior
distribution [44]. In our implementation, the independence sampler is used to update each
parameter component [45].

6. Model Comparison
6.1. Classical Model Comparison

The comparison between GH, AFT, AH, and PH models based on the GLL baseline
hazard was evaluated using different information criteria, and the nested structure of the
GH model and its special cases was evaluated using the likelihood ratio test (LRT) as
discussed below:

6.1.1. Nested Models

When the models are nested, we can compare them using a LRT. Assume we have
two models: f = f (t | θ ∈ Θ) and f0 = f (t | θ0 ∈ Θ0 ⊂ Θ), where dim(Θ) = m and
dim(Θ0) = m − r, respectively. In other words, f is reduced to f0 by adjusting r of its
parameters to constants. Wilks [46] proved that the LRT is expressed as follows:

LRT = −2 log
L(θ̂)
L(θ̂0)

= 2
[
`(θ̂)− 2`0

(
θ̂0

)]
∼ x2

r, (78)

where θ̂ is the restricted Maximum likelihood (M L) estimates under the null hypothesis
(H0) and θ̂0 is the unrestricted ML estimates under the alternative hypothesis (H1), L is the
likelihood function, and ` is the log-likelihood function.

In our case, the AM model of hazard-based and odds-based regression models has
seven sub-models, namely; GH, GO, PH, AH, PO, AO, and AFT models. In order to assess
the following hypotheses, we used the likelihood ratio criterion:

i. H0: β2 = β1, that is the sample is from the GH model.
H1 : if H0 is false, then the sample is from the AM model.

ii. H0: β1 = β3, that is the sample is from the GO model.
H1 : if H0 is false, then the sample is from the AM model.

iii. H0: β1 = β2 = β3 = 0, that is the sample is from the AFT model.
H1 : if H0 is false, then the sample is from the AM model.

iv. H0: β1 = β3 = 0, that is the sample is from the PO model.
H1 : if H0 is false, then the sample is from the AM model.

v. H0: β1 = β2 = 0, that is the sample is from the PH model.
H1 : if H0 is false, then the sample is from the AM model.

vi. H0: β3–β1 = 0, β2 = 0, that is the sample is from the AO model.
H1 : if H0 is false, then the sample is from the AM model.

vii. H0: β2–β1 = 0, β3 = 0, that is the sample is from the AH model.
H1 : if H0 is false, then the sample is from the AL model.

Under the null hypothesis, the LRT follows the Chi-square distribution with degrees of
freedom (df) (d falt − d fnull ). If the p-value is less than 0.05 the null hypothesis is rejected.
In other words, if LRT > X2

r,1−τ , we conclude that the fit provided by f is significantly
better than f0 (at the τ level of significance).

6.1.2. Non-Nested Model

More generally, models can be non-nested, which means that there is no parameter
configuration that makes the two models’ equivalent. As a result, we are unable to use the
likelihood ratio test. The Akaike information criterion (AIC) is one of the most extensively
used methods for comparing non-nested models. The AIC rewards goodness of fit but
penalizes the model for increasing the number of estimated parameters and is expressed
as follows:

AIC = 2(j + p)− 2l, (79)
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where l represents the log-likelihood function evaluated as the MLEs, p the number of co-
variates, and j the number of distributional parameters of the assumed baseline probability
distribution (i.e., j = 3 for the GLL distribution). Burnham and Anderson [47] provided
some basic rules of thumb for the use of AIC as summarized in Table 1.

Table 1. Rule of thumb for AIC differences.

∆M Level of Support of Model M

0–2 Substantial
4–7 Considerably less
>10 Essentially none

Other approaches for model comparison tools for both nested and non-nested models
to decide which model best fits the provided data are available. Specifically, Bozdogan’s
consistent AIC (BCAIC), the Bayesian information criterion (BIC), the CAIC (Consistent
AIC), and the Hannan Quin information criterion (HQIC).

In scenarios where the sample size is fairly small when compared to the number of
parameters in the model, the CAIC fixes the AIC for overfitting of the data and is calculated
as follows:

CAIC = AIC +
2(j + p)(j + p + 1)

n− (j + p)− 1
. (80)

Contrary to the AIC, which is asymptotically efficient, the HQIC is frequently quoted
in the literature. It is calculated as follows:

HQIC = 2(j + p) log(log(n))− 2l. (81)

The BCAIC is another adjusted form of AIC which is consistent and is computed
as follows:

BCAIC = 2(j + p) log(log(n))− 2l. (82)

The BIC also known as the Schwarz information criterion [48], is used in the same way
as AIC (we aim to minimize its value) but has a larger penalty for complexity when n ≥ 8
(which is typically is). The BIC is computed as follows:

BIC = (j + p) log(n)− 2l. (83)

6.2. Bayesian Model Comparison

The Watanabe-Akaike information criterion (WAIC) and Leave-one-out cross-validation
information criterion (LOOIC) were employed as full Bayesian model selection criteria in
this study. They are both techniques for calculating pointwise out-of-sample prediction
accuracy using a fitted Bayesian model. Asymptotically, they are equivalent since WAIC is
based on the series expansion of leave-one-out cross-validation (LOO). It is helpful to be
able to compute both WAIC and cross-validation because they address different prediction
questions with finite data. The log-likelihood assessed from the posterior simulations of
the parameter values can be used to directly estimate the WAIC and an approximated LOO
based on importance sampling. Compared to more basic estimates of prediction error like
AIC and DIC, LOOIC and WAIC have a number of advantages, but they are less frequently
employed in practice since they require additional computing steps [49,50].

7. Practical Illustrations

A clinical trial right-censored oncology dataset is examined in this section to demon-
strate the applicability and tractability of the proposed models, including the fully-parametric
AM class, GO, and AO models with three different baseline distributions, including Weibull,
LL, and GLL baseline distributions in modelling right-censored survival data with crossing
survival curves. We compared the proposed AM class with its sub-models that contain
both hazard-based regression models, including PH, AH, AFT, and GH models, and the
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odds-based regression models, including PO, AO, AFT, and GO models, using both the
MLE frequentist and Bayesian approaches using noninformative priors. The class and its
sub-models were compared using different information criteria, including the classical
ones (AIC, BIC, BCAIC, CAIC, and HQIC), Bayesian model selection (WAIC, and LOOIC),
and checking the nested structure of the AM class using the LRT test.

7.1. IPASS Clinical Trial Data Set

In order to show the applicability of the proposed models, we re-analyzed a large
dataset from a randomized clinical trial called IPASS for this study. In a randomized
controlled trial, gefitinib vs. carboplatin-paclitaxel was compared for progression-free
survival in patients with advanced pulmonary adenocarcinoma. An unadjusted PH model
was used to examine the main outcome. Despite the implicit violation of the PH model
assumption represented by the crossing of the two survival curves, the study’s findings
were published using this model [51].

Argyropoulos and Unruh [52] reconstructed and re-published the IPASS dataset, and it
is now freely available in an AHSurv R package [31].The features stated in the references are
all still there in this reconstructed dataset, which is also accessible to the clinical trial’s results.
The months of March 2006 through April 2008 are covered by the database. The main
objective of the trial is to evaluate the effects of gefitinib versus carboplatin/paclitaxel
doublet chemotherapy on progression-free survival (in months) in a subset of patients with
non-small-cell lung cancer (NSCLC). According to the trial’s design, n = 1207 previously
untreated individuals in East Asia with advanced lung adenocarcinoma and who were
non-smokers or previous light smokers were randomly assigned to either carboplatin +
paclitaxel (608 patients) or gefitinib (608 patients) (609 patients). The observations show 965
occurrences of the event of interest (79.3 percent), with 449 (73.7 percent) relating to patients
receiving gefitinib and 516 (84.9 percent) related to patients receiving carboplatin+paclitaxel.

The primary goal of this section is to appropriately assess the rebuilt IPASS data and
estimate the regression coefficients using the proposed fully-parametric AM class provided
in Section 3. For the proposed model, we evaluate both the maximum likelihood and the
Bayesian estimating approaches to achieve this goal.

We fit all hazard-based and odds-based regression models as well as the general pro-
posed AM class using three different baseline distributions, namely Weibull, LL, and GLL
distributions, letting xi = I(treatment = chemotherapy), which equals 1 if the treatment
involves gefitinib and 0 if the treatment involves carboplatin/paclitaxel. Tables 2–4 provide
a summary of the numerical results.

Figure 2 displays the total time on test (TTT) plot for the survival time and the survival
curves of the two types of drugs where crossing between the curves can be seen, which
confirms the efficacy of the proposed novel models in this study, including the AM, GO,
and AO models, plus some other existing models in the literature, including the GH,
and AH models, and that it is appropriate for the analysis of survival data with crossover
survival curves.

Figure 2. Illustrating the total time on test (TTT) plot, and the crossing survival curves for the two
types of drugs determined using the Kaplan-Meier method for the IPASS dataset.



Axioms 2022, 11, 606 21 of 34

Table 2. Results from the fitted proposed fully-parametric odds-based and hazard-based regression
models with W baseline distribution to IPASS dataset.

Models Parameter(s) Estimate SE AIC BCAIC BIC CAIC HQIC

W-AM β1 0.167 0.008 5552.888 5583.409 5578.409 5552.849 5562.495
β2 −1.346 0.109
β3 2.815 0.129
α 1.845 0.002
κ 7.003 0.009

W-GH β1 1.398 0.007 5686.968 5711.385 5707.385 5686.943 5694.653
β2 −0.862 0.129
α 1.362 0.129
κ 6.613 0.129

W-GO β1 −2.574 0.008 5609.716 5634.133 5630.133 5609.691 5617.402
β2 1.921 0.011
α 1.596 0.003
κ 6.870 0.005

W-AH β −0.875 0.005 5684.474 5702.787 5699.787 5684.460 5690.239
α 1.365 0.004
κ 6.762 0.003

W-PH β −0.320 0.007 5684.474 5702.787 5699.787 5684.460 5690.239
α 1.365 0.004
κ 6.762 0.003

W-AO β −0.567 0.001 5652.746 5671.058 5668.058 5652.731 5658.510
α 1.419 0.003
κ 6.515 0.002

W-PO β −0.003 0.017 5708.640 5726.952 5723.952 5708.625 5714.404
α 1.341 0.010
κ 7.594 0.006

W-AFT β −0.234 0.009 5684.474 5702.787 5699.787 5684.460 5690.239
α 1.365 0.004
κ 6.762 0.003

Table 3. Results from the fitted proposed fully-parametric odds-based and hazard-based regression
models with LL baseline distribution to IPASS dataset.

Models Parameter(s) Estimate SE AIC BCAIC BIC CAIC HQIC

LL-AM β1 2.185 0.030 5690.051 5720.572 5715.572 5690.014 5699.658
β2 −0.361 0.009
β3 −0.171 0.011
α 2.291 0.022
κ 5.498 0.006

LL-GH β1 1.074 0.018 5688.051 5712.468 5708.468 5688.027 5695.737
β2 −0.088 0.019
α 2.291 0.029
κ 5.498 0.109

LL-GO β1 −0.845 0.038 5757.552 5781.968 5777.968 5757.527 5765.237
β2 0.726 0.129
α 1.801 0.129
κ 5.478 0.129
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Table 3. Cont.

Models Parameter(s) Estimate SE AIC BCAIC BIC CAIC HQIC

LL-AH β 1.119 0.014 5687.976 5706.289 5703.289 5687.961 5693.740
α 2.259 0.008
κ 5.614 0.009

LL-PH β −0.128 0.013 5751.598 5769.911 5766.911 5751.584 5757.362
α 1.832 0.010
κ 5.156 0.009

LL-AO β 0.061 0.007 5755.552 5773.864 5770.864 5755.537 5761.316
α 1.801 0.009
κ 5.478 0.010

LL-PO β 0.049 0.004 5755.552 5773.864 5770.864 5755.537 5761.316
α 1.801 0.009
κ 5.478 0.010

LL-AFT β 0.027 0.009 5755.552 5773.864 5770.864 5755.537 5761.316
α 1.801 0.009
κ 5.478 0.010

Table 4. Results from the fitted proposed fully-parametric odds-based and hazard-based regression
models with GLL baseline distribution to IPASS dataset.

Models Parameter(s) Estimate SE AIC BCAIC BIC CAIC HQIC

GLL-AM β1 0.179 0.003 5554.864 5591.489 5585.489 5554.810 5566.392
β2 −1.344 0.001
β3 2.824 0.002
α 1.853 0.129
κ 0.143 0.129
η 0.010 0.129

GLL-GH β1 2.049 0.001 5605.079 5635.600 5630.600 5605.041 5614.686
β2 −0.835 0.002
α 1.818 0.129
κ 0.151 0.129
η 0.045 0.129

GLL-GO β1 −0.635 0.002 5645.507 5676.028 5671.028 5645.470 5655.114
β2 0.339 0.001
α 1.364 0.129
κ 0.145 0.129
η 0.000 0.129

GLL-AH β 1.545 0.001 5656.576 5680.993 5676.993 5656.551 5664.262
α 1.886 0.129
κ 0.154 0.129
η 0.101 0.129

GLL-PH β −0.064 0.014 5686.187 5710.604 5706.604 5686.162 5693.872
α −0.171 0.129
κ −0.171 0.129
η −0.171 0.129

GLL-AO β −0.708 0.002 5661.339 5685.755 5681.755 5661.314 5669.024
α 1.482 0.129
κ 0.158 0.129
η 0.000 0.129

GLL-PO β −0.008 0.021 5708.832 5733.249 5729.249 5708.808 5716.518
α 1.406 0.129
κ 0.139 0.129
η 0.031 0.129

GLL-AFT β −0.166 0.014 5688.582 5712.999 5708.999 5688.557 5696.267
α 1.359 0.129
κ 0.143 0.129
η 0.000 0.129
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The parameters and related standard errors from the various hazard- and odds-
based regression models employing the Weibull baseline distribution and five different
information criterion estimations are shown in Table 2. The TTT plot in Figure 2 shows
that the data’s increasing hazard rate points to the theoretical use of the Weibull baseline
distribution. According to the findings in Table 2 and Figure 3, the W-AM class has
the lowest values for each information criterion when compared to all other competing
regression models, demonstrating its superiority over other hazard-based and odds-based
regression models. Another crucial aspect that restricts the use of the Weibull baseline
distribution is the fact that all hazard-based regression models yield the same result, which
is a weakness of the Weibull baseline distribution.

All hazard-based regression models, including the AH, PH, AFT, and GH models,
produce the same findings when compared to the Weibull baseline as illustrated in Table 2.
The LL baseline distribution was used to fit and compare all of the regression models
after we looked at an alternate baseline distribution. Using the LL baseline distribution
and five different information criteria, Table 3 provides estimates of the parameters and
related standard errors from the various hazard-based and odds-based regression models.
According to the AIC values in Table 3, there is no clear preference for one model over the
other. The fact that all odds-based regression models yield the same result is a significant
factor that restricts the applicability of the LL baseline distribution.

When the Weibull distribution is used as the baseline distribution, all hazard-based
regression models exhibit coincidence as shown in Table 2. On the other hand, when
the baseline distribution is an LL distribution, all odds-based regression models exhibit
coincidence as illustrated in Table 3, and Figure 4.

These two points recommend looking for and utilizing a modified baseline distribution,
which can provide us with various results for all survival regression models, regardless of
whether they are hazard-based, odds-based, or a combination of both. We used the GLL
baseline distribution, where a sub-model of the Weibull distribution that yields different
results for all the regression models taken into consideration in this study, to close the gap
and compare the seven different hazard-based and odds-based regression models that are
currently in use.

For the proposed AM class and seven different hazard- and odds-based regression
models with GLL baseline distribution, the parameter estimates and their associated stan-
dard errors are shown in Table 4. We see that for the eight competing models, the estimates
of the baseline distribution parameters and their standard errors are quite similar and
within a reasonable range. The GLL-AM model appears to be preferred above the other
competing models and provided the best-fitting model, according to the values of the five
distinct information criteria. The results also showed that the GH and GO models are
preferred over their sub-models. Finally, the results indicate that the only basic survival
regression models that can be used to model and analyze survival data with crossing
survival curves are the AH and AO models.

The GLL-AM regression model is the best model compared to the others, according
to the LRT results in Table 5. The previously stated result is supported by the plots of the
estimated hazards in Figure 5.

Table 5. LRT values for the AM class and its sub-models using IPASS dataset.

Model Hypothesis LRT Statistic p-Value

GH H0: β2 = β1, H1: H0 is false, 52.214 <0.0001

GO H0: β3 = β1, H1: H0 is false, 92.644 <0.0001

AH H0: β2–β1 = 0,β3 = 0, H1: H0 is false, 105.712 <0.0001

AO H0: β3–β1 = 0,β2 = 0, H1: H0 is false, 135.322 <0.0001

PH H0: β1 = β2 = 0, H1: H0 is false, 110.474 <0.0001

PO H0: β1 = β3 = 0, H1: H0 is false, 157.968 <0.0001

AFT H0: β1 = β2 = β3, H1: H0 is false, 137.718 <0.0001
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According to the LRT results in Table 6, the GLL-GH regression model is the most
effective of the alternatives hazard-based regression models.

Table 6. LRT values for the GH model and its sub-models using IPASS dataset.

Models Hypothesis LRT Statistic p-Value

GH vs. AH H0: β2 = 0, H1: H0 is false, 53.498 <0.0001

GH vs. PH H0: β1 = 0, H1: H0 is false, 83.108 <0.0001

GH vs. AFT H0 β1 = β2, H1: H0 is false, 85.504 <0.0001

According to the LRT results in Table 7, the GLL-GO regression model is the most
effective of the alternatives odds-based regression models.

Table 7. LRT values for the GO Model and its sub-models using IPASS dataset.

Models Hypothesis LRT Statistic p-Value

GO vs. AO H0: β2 = 0, H1: H0 is false, 17.830 <0.0001

GO vs. PO H0: β1 = 0, H1: H0 is false, 65.324 <0.0001

GO vs. AFT H0: β1 = β2, H1: H0 is false, 45.074 <0.0001

The W-AM model is the best model among the others, according to the hazard plots of
the estimated hazard rates in Figure 3, while other hazard-based models with the Weibull
baseline distribution fitted similarly and there was no more difference at all. According to
the plots in Figure 4, there is no model that is preferred over the others when the baseline
distribution is the LL distribution, and there is no difference between any of the odds-based
regression models that were fitted. Finally, as illustrated in Figure 5, the GLL-AM model is
the superior compared to the other competitive models.

Figure 3. Estimated hrfs for the competitive models of the IPASS dataset.
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Figure 4. Estimated hrfs for the competitive models of the IPASS dataset.

Figure 5. Estimated hrfs for the competitive models of the IPASS dataset.

7.2. Bayesian Analysis

We performed all Bayesian inferential procedures resulting from the combination of
the aforementioned general baseline distribution specifications with various prior scenarios
in baseline parameters, as well as regression coefficients related to explanatory variables.
Using the Rstan package in R [53], the joint posterior distribution for each model was
approximated. We performed four parallel chains with 3000 iterations and a burn-in of
1000 for each estimated model. To lessen autocorrelation in the sample, chains were also
trimmed by storing after every fifth iteration. With a prospective scale reduction factor close
to 1 and an actual number of separate simulation draws of more than 400, convergence to
the joint posterior distribution was assured [29,54].

The posterior distribution’s numerical summary characteristics are summarized in
Table 8. According to the summary results, the McMC algorithm has converged to the joint
posterior distribution because the potential scale reduction factor (R̂) is 1, the effective
sample size (n − e f f ) is greater than 400, and the Monte Carlo standard error (SE) is
less than 5 percent of the posterior standard deviations (SD) for all of the parameters.
For visually examining convergence, use trace graphs. The trace plots in Figures 6–13
demonstrate a stationary pattern fluctuating inside a band, demonstrating convergence of
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the McMC algorithm. For the proposed AM class, density and autocorrelation graphs are
also employed in Figures 14 and 15, respectively, and both show that the McMC algorithm
has converged.

Figure 6. Trace plots for the GLL−AM model parameters.

Figure 7. Trace plots for the GLL−GH model parameters.
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Figure 8. Trace plots for the GLL−GO model parameters.

Figure 9. Trace plots for the GLL−PH model parameters.
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Figure 10. Trace plots for the GLL−AH model parameters.

Figure 11. Trace plots for the GLL−PO model parameters.
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Figure 12. Trace plots for the GLL−AO model parameters.

Figure 13. Trace plots for the GLL−AFT model parameters.



Axioms 2022, 11, 606 30 of 34

Figure 14. Density plots for the GLL−AM model parameters.

Figure 15. Autocorrelation plots for the GLL−AM model parameters.
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Table 8. Results for the posterior properties of the competitive models.

Models Par (s) Estimate SE SD 2.5% Medium 97.5% n − e f f R̂

GLL-AM β1 0.293 0.003 0.166 −0.032 0.291 0.618 4108 1.000
β2 −1.287 0.002 0.096 −1.473 −1.288 −1.096 3309 1.000
β3 2.810 0.004 0.242 2.349 2.811 3.279 3431 1.000
α 1.953 0.001 0.072 1.818 1.952 2.095 3477 1.000
k 0.151 0.000 0.004 0.143 0.151 0.160 4309 1.001
η 0.052 0.000 0.010 0.032 0.052 0.073 3613 1.001

GLL-GH β1 1.839 0.005 0.219 1.444 1.828 2.296 2068 1.001
β2 −0.672 0.003 0.139 −0.968 −0.663 −0.425 2232 1.000
α 1.851 0.001 0.075 1.712 1.849 2.004 2672 1.002
k 0.155 0.000 0.005 0.145 0.155 0.165 2431 1.001
η 0.059 0.000 0.013 0.036 0.059 0.087 1739 1.002

GLL-GO β1 −0.395 0.001 0.065 −0.524 −0.395 −0.263 3169 1.001
β2 0.157 0.001 0.077 0.005 0.158 0.307 3303 1.001
α 1.450 0.001 0.041 1.371 1.450 1.533 3576 1.000
k 0.145 0.000 0.004 0.137 0.145 0.154 3523 1.001
η 0.008 0.000 0.007 0.000 0.007 0.027 3664 1.000

GLL-AH β 1.448 0.003 0.143 1.163 1.445 1.728 3090 1.000
α 1.912 0.002 0.089 1.742 1.911 2.087 2446 1.000
k 0.159 0.000 0.006 0.148 0.159 0.170 2406 1.000
η 0.112 0.000 0.013 0.088 0.112 0.137 1989 1.000

GLL-PH β −0.294 0.001 0.066 −0.427 −0.294 −0.168 3606 1.000
α 1.526 0.001 0.054 1.425 1.524 1.635 3214 1.001
k 0.167 0.000 0.007 0.155 0.167 0.180 3082 1.000
η 0.071 0.000 0.016 0.042 0.071 0.104 2693 1.002

GLL-AO β −0.557 0.001 0.092 −0.740 −0.556 −0.378 4181 1.000
α 1.481 0.001 0.041 1.403 1.480 1.561 3743 1.001
k 0.163 0.000 0.005 0.153 0.163 0.174 3575 1.001
η 0.042 0.000 0.011 0.022 0.042 0.067 3654 1.002

GLL-PO β −0.011 0.002 0.105 −0.214 −0.011 0.196 2226 1.001
α 1.412 0.002 0.059 1.308 1.408 1.537 1028 1.003
k 0.140 0.000 0.007 0.128 0.140 0.156 837 1.003
η 0.033 0.001 0.019 0.003 0.032 0.075 726 1.004

GLL-AFT β −0.188 0.001 0.054 −0.291 −0.190 −0.078 3662 1.000
α 1.481 0.001 0.051 1.388 1.479 1.584 3041 1.000
k 0.161 0.000 0.006 0.150 0.161 0.174 2976 1.000
η 0.061 0.000 0.016 0.032 0.060 0.095 2601 1.000

Table 9 displays the computed models’ WAIC and LOOIC values. In comparison to
the other fitted models, including the GLL-AH, GLL-AO, GLL-PO, GLL-AFT, GLL-GH,
GLL-GO, and GLL-PH models, the GLL-AM model performs better based on the WAIC
and LOOIC values. The worst performance is displayed by the most popular survival
regression models, such as the PH, PO, and AFT models. This proves that, despite their
frequent application, these models are not appropriate for handling survival data with
crossing survival curves.

Table 9. Bayesian model selection between the proposed AM class and its sub-models using the GLL
baseline distribution.

Model WAIC LOOIC

GLL-AM 5559.50 5559.54
GLL-GH 5608.30 5608.28
GLL-GO 5651.76 5651.69
GLL-AH 5657.40 5697.43
GLL-PH 5692.50 5692.51
GLL-AO 5666.60 5666.61
GLL-PO 5708.60 5708.62

GLL-AFT 5698.00 5698.04
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8. Conclusions

We investigated a novel, general, flexible, fully parametric class for hazard-based and
odds-based regression models, named the AM class, with a GLL baseline distribution that
can incorporate the basic shapes of the failure rate and contains, as specific cases, the main
survival regression models of interest in time-to-event analysis: PO, PH, AO, AH, AFT, GO,
and GH models. However, the AH, AO, and GO models’ restricted utility is mostly due to
a lack of reliable and efficient estimating methods. We demonstrated that both classical and
Bayesian inference may be performed using existing optimization techniques by adopting
a flexible parametric baseline distribution.

The proposed AM class framework is quite adaptable and can easily be applied to
a wide range of reliability and survival analysis applications. This framework specifi-
cally incorporates and generalizes the practically significant PH, AFT, AH, GH, PO, AO,
and GO survival regression models. Additionally, the GLL baseline model, which only
requires one additional parameter, accounts for the main hrf shapes (monotone and non-
monotone) within some of the most common baseline distributions (Burr type XII, LL,
Weibull, and exponential distributions).

The combination of such adaptable parametric odds-based and hazard-based regres-
sion models with the AM class structure is a potent tool for modeling survival times.
Although we concentrated on overall survival models, the proposed tractable fully para-
metric AM class is equally useful in excess hazard (relative survival) models. In the AM
class, we used the GLL distribution as a baseline distribution; however, other versatile
parametric distributions, such as the generalized Weibull, exponentiated Weibull, power
generalized Weibull, and generalized gamma distributions, can also accommodate the basic
shapes of the hrf including constant, monotone and non-monotone shapes.

We only used the GLL distribution in this case since it allows for a simple implementa-
tion, makes parameter interpretation easier, and the accompanying MLEs and Bayesian
estimators are consistent and asymptotically normal in the presence of right-censored
observations. Finally, an R package called AmoudSurv was developed to fit the odds-based
regression models [36].

In the future, we want to develop an R package to fit the most common parametric
hazard-based and odds-based regression models, such as the AH, AO, AFT, PH, PO, GO,
GH, and AM models, with different baseline distributions that can represent varied hazard
rates. This study’s technique can also be extended to numerous event scenarios, such
as the multi-state model, competing risk model, and to include lifetime data with cure
proportion rate and frailty characteristics. It is also possible to adapt it to joint model
frameworks, spatial models, mixed effects models, and excess hazard models. Other
strategies for censoring observations, such as interval censoring, left censoring, middle-
censoring, and double-censoring, could be utilized in future investigations. This is beyond
the focus of this study, but it will be covered in many others.
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