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Abstract: This article discusses the author’s version of the technology for solving a one-dimensional
boundary value problem for a one-dimensional advection–diffusion equation based on the method
of separation of variables, as well as the theory of eigenvalues and eigenfunctions when constructing
a solution to a differential equation. This problem is solved in two stages. Firstly, we illustrate the
technology of separating variables for equations with fractional derivatives, and then apply the
theory of eigenvalues and eigenfunctions to obtain an exact solution in the form of an infinite series.
Since this series converges very quickly, it is natural to replace it with the sum of the first few terms.
The approximate solution obtained in this way is quite suitable for numerical calculations in practice.
The article provides a listing of the program for performing calculations, as well as the results of
calculations themselves.
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1. Introduction

It should be noted that fractional derivative equations are widely used in fields such
as hydrodynamics, quantum science [1], medicine [2], mechanics of viscoelastic behavior
of materials [3], modeling damping mechanisms [4], the study of biological processes [5],
the study of viscoelastic material with partial damping [6], and the study of polymer
concrete [7]. The article describes the development of the author’s technology of separation
of variables in solving differential variables with a fractional derivative, as well as the
theory of eigenvalues and eigenfunctions by the example of studying the process of heat
and mass transfer in various media with diffusion and subdifusion.

The problem of studying the patterns of formation of the radon environment is not
new. The development of the mining industry (to study the regularities of the formation of
the radon environment in mine workings, it was necessary to simulate the flux of radon
density, which led to the construction of various models of radon transfer) became the main
catalyst for in-depth research in this direction.

Note also that according to the radiation safety standards of the Russian Federation,
the average annual equivalent equilibrium volumetric activity (concentration) of radon
in the air of residential and public buildings should not exceed the established limit. To
implement this decree, various models of mass transfer (radon) were built. Most of these
models are based on the equation [8–12]:

d ∂2C(x)
∂x2 − λ · C(x) = 0, (1)

where C(x)—distribution of radon volumetric activity in the sample, Bq/m3; d—diffusion
coefficient of radon; λ—radon decay constant; λ—radon decay constant 2.09× 10−6.

Equation (1) is obtained under the following assumptions:
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• Radon transfer occurs in one direction perpendicular to the sample cross section, while
the influence of edge effects on its lateral surface is negligible;

• Barometric pressures at the boundaries of the sample are the same during the experiment;
• The emissions of radon in the sample material are negligible;
• There is no sorption of radon in the sample material.

Model (1) describes a stationary regime of mass transfer. Let us present the formulation
and solution of the nonstationary problem. For this, we present laboratory studies of the
diffusion radon permeability of materials in a non-stationary mode given in. There are
two fundamentally different methods—“constant” and “instant” sources. In the well-
known works of G. Zapalac [13], the theoretical basis of the non-stationary method of
“constant source” is presented, as well as the scheme of the experimental setup and the
results of determining the effective diffusion coefficient of radon in thin concrete samples.
The mathematical formulation of the problem of radon mass transfer in the test sample
corresponding to the experimental conditions is presented in the form of the equation:

d
∂2C(x, t)

∂x2 =
∂C(x, t)

∂t
. (2)

Equation (2) will be used by us in the future to model the process of radon transport
in various environments. We also note the equation:

d ∂2C(x,t)
∂x2 − λ · C(x, t) = ∂C(x,t)

∂t ,

which is widely used in the theory of heat and mass transfer. When it comes to abnormal
diffusion, there are two main methods:

1. The first method is stochastic—in this case, diffusion is described using the process of
a random walk of particles;

2. The second method is based on fractional calculus. Here, we are talking about models
based on nonstationary fractional differential equations of the form:

d
∂αC(x, t)

∂xα
=

∂C(x, t)
∂t

, (3)

where:
∂αu(x, t)

∂xα
=

1
Γ(2− α)

∂2

∂x2

x∫
0

u(τ, t) dτ

(x− τ)α−1

the derivative of the fractional (in the sense of Riemann–Liouville) order 1 < α < 2, which
is widely used in modeling the process of radon transport.

In this paper, we carry out a detailed discussion and development of the method
of separation of variables (Fourier method) when solving boundary value problems for
Equation (3).

2. Research Method
2.1. Boundary Value Problem for an Inhomogeneous Fractional Differential Equation of Variance in
a Local Setting

Consider the first boundary value problem for the inhomogeneous fractional disper-
sion equation:

∂u(x, t)
∂t

= D · ∂αu(x, t)
∂xα

+ f (x, t), (4)

u(1, t) = u(0, t) = 0, (5)

u(x, 0) = ϕ(x), (6)

where ∂αu(x, t)
∂xα = 1

Γ(2−α)
∂2

∂x2

x∫
0

u(τ,t) dτ
(x−τ)α−1 is the fractional derivative (in the sense of Riemann–

Liouville) order 1 < α < 2 [14].
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The following theorem holds.

Theorem 1. The function:

u(x, t) =
∞

∑
n=1

eλnDt

 t∫
0

fn(t) e−λnDtdt + ϕn

xα−1Eα,α(λnxα) (7)

is a solution to the boundary value problem (4)–(6). Here,

Eα,α(λnxα) =
∞

∑
k=0

(λnxα)k

Γ(α + αk)

is the well-known Mittag–Leffler type function [14], ϕn is the expansion coefficient of functions
u(x, t) and f (x, t) by the function basis ωn(λn, x) = xα−1Eα,α(λnxα).

To prove Formula (7), we need the following lemma.

Lemma 1. Function:

u(x, t) =
∞

∑
n=1

ϕn exp{λnt}xα−1Eα,α(λnxα) (8)

is a solution to the following problem:

∂u(x, t)
∂t

= Dα
0+u(x, t), (9)

u(0+, t) = u(1, t) = 0, (10)

u(x, 0) = φ(x), (11)

where Dα
0+u(x, t) = 1

Γ(2−α)
∂2

∂x2

∫ u(τ,t)dτ
(x−τ)α−1 is a fractional derivative (in the sense of Riemann–

Liouville) of order 1 < α < 2.
Here,

Eα,α(λnxα) =
∞

∑
k=0

(λnxα)k

Γ(α + αk)

a well-known Mittag–Leffler type function, ϕn is the Fourier coefficient of the function expansion
ϕ(x) on a nonorthogonal basis of the system of functions Xn(λn, x) = xα−1Eα,α(λnxα).

Proof of Lemma 1. We will look for a continuous nontrivial solution in a closed domain
(0 ≤ x ≤ 1, 0 ≤ t ≤ T) to the homogeneous fractional differential Equation (9) satisfying
the boundary conditions (10) and the initial condition (11).

To solve this problem, consider, as is customary in the method of separation of vari-
ables [15], first the main auxiliary problem: find a solution to Equation (1) that is not
identically zero, satisfying the homogeneous boundary conditions (2) and represented as
a product:

u(x, t) = X(x) T(t), (12)

where X(x) is a function of only variable x, T is a function of only variable t. Let us use the
author’s approach [16], the method of separation of Fourier variables, for equations with
fractional derivatives, which was successfully tested in [7,17].

Substituting the assumed form of solution (12) into Equation (1) and dividing both
sides of the equality obtained as a result of this substitution by the product X(x) T(t) 6= 0,
we have the equation:

T
′
(t)

T(t)
=

Dα
x X(x)
X(x)

. (13)
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In Equation (13), we can put:

T
′
(t)

T(t)
=

Dα
x X(x)
X(x)

= λ, (14)

where λ = const since the left side of Equation (13) depends only on t, and the right side
only on x.

From (14) it follows that:
Dα

x X(x) = λX(x), (15)

T
′
(t) = λT(t). (16)

Boundary conditions (10) gives:

X(0) = 0, X(1) = 0. (17)

Thus, to determine the function X(x), the eigenvalue problem was obtained (the
Sturm–Liouville problem):

Dα
x X(x) = λX(x), X(0) = 0, X(1) = 0, (18)

studied in [16,18,19]. In these works, it was shown that only for the eigenvalues λn, which
are zeros of the function Eα,α(λ), there exist eigenfunctions of the problem equal to:

Xn(λn, x) = xα−1Eα,α(λnxα). (19)

These eigenvalues λn, obviously correspond to solutions of the Equation (16):

Tn(λn, t) = ϕn exp{λnt},

where ϕn is the still undetermined coefficients.
Returning to the main auxiliary problem, we see that the functions:

un(x, t) = Xn(λn, t) · Tn(λn, t) = ϕn exp{λnt}xα−1Eα,α(λnxα)

are particular solutions of Equation (1) that satisfy the zero boundary conditions.
Let us now turn to the solution of problem (9)–(11). We formally compose the series:

u(x, t) =
∞

∑
n=1

ϕn exp{λnt}xα−1Eα,α(λnxα). (20)

The function u(x, t) satisfies the boundary conditions since all members of the series
satisfy them. Requiring the fulfillment of the initial conditions, we obtain:

ϕ(x) =
∞

∑
n=1

ϕnxα−1Eα,α(λnxα). (21)

In [20], it was shown that the system of functions Xn(λn, t) = {xα−1Eα,α(λnxα)}∞
n=1

forms the basis in L2(0, 1). Since the basis Xn(λnt) is not orthogonal, then together with the
system Xn(λn, t) we will consider the system zn(λn, t) = {(1− x)α−1Eα,α(λn(1− x)α)}∞

n=1
to be biorthogonal to the Xn(λn, t) [21]. Generally speaking, the system zn(λn, t) =
{(1− x)α−1Eα,α(λn(1− x)α)}∞

n=1 is a system of eigenfunctions of the adjoint problem [22],
which may be obtained the following way.

The spectral problem corresponding to (1) and (2) is:

Dα
x X(x) = λX(x), X(0) = 0, X(1) = 0. (22)
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The spectral problem was considered in [17,18] and the eigenfunctions of the spectral
problem are:

{Xn(x)}∞
n=1 =

{
xα−1Eα,α(λnxα)

}∞

n=1
(23)

corresponding to the eigenvalues λn, which are the zeros of the function Eα,α(λ) with
Im(λn) > 0.

The set {Xn(x)}∞
n=1 of eigenfunctions is complete but not orthogonal [23–26]. For the

adjoint problem of the spectral problem (22), we have:

〈cDα
x X(x), Y(x)〉 =

〈
d

dx
J2−α
x

d
dx

X(x), Y(x)
〉

.

Integration by parts and taking Y(0) = 0 = Y(1), we have:〈
d

dx
J2−α
x

d
dx

X(x), Y(x)
〉

=

〈
J2−α
x

d
dx

X(x),
d

dx
Y(x)

〉
.

Thus,

〈cDα
x X(x), Y(x)〉 =

〈
X(x),

d
dx

J2−α
1,x

d
dx

Y(x).
〉

Hence, the adjoint problem of the spectral problem (22) is:

cDα
1,xY(x) = λY(x), Y(0) = 0 = Y(1).

The adjoint problem has eigenfunctions Yn(x) corresponding to the same eigenvalues
as that of spectral problem, where:

{Yn(x)}∞
n=1 =

{
(1− x)α−1Eα,α(λn(1− x)α)

}∞

n=1
. (24)

The {Xn(x)}∞
n=1 sets and {Yn(x)}∞

n=1 form a biorthogonal system of functions [20].
Let us provide some properties of the eigenvalues of the spectral problem.

Lemma 2.11: [20]. The eigenvalues λn, that are the zeros of the function Eα,α with
Im(λn) > 0, satisfy the following relations:

• |λk| < |λk+1|, for k ≥ 1.
• For n large enough and arg(λn) >

απ
2 , we have

∣∣eλnt
∣∣ < 1 and |λn| ∼ O(nα),1 < α < 2.

Before we proceed further, notice that due to the properties of eigenvalues and the fact
that T > 0, the Mittag–Leffler-type function Eη,1(λnTη) 6= 1 (see [20]). Hence, we can find
a positive constant C2 independent of n such that:

1∣∣Eη,1(λnTη)− 1
∣∣ ≤ C2. (25)

Let us mention that Eγ,1(z) 6= 1, only when z = 0.
To determine unknown coefficients ϕn, for both sides of equality (20), we multiply by

the system of functions zn(λnt):

ϕ(x)zn(λn, x) =
∞

∑
n=1

ϕnXn(λn, x)zn(λn, x). (26)

It is known that for zeros {λn} of the function Eα,β(λ) (α < 2, β—arbitrary real number)
such that µ ≤ | arg(λ)| ≤ π, where µ ∈

(
πα
2 , min{π, απ}

)
the following estimate holds:

|Eα,β(λ)| ≤
C

1 + |λn|
, (27)



Axioms 2022, 11, 541 6 of 16

where C is an arbitrary real constant.
For sufficiently large (in absolute value) zeros {λn} of the function Eα,β(λ), the follow-

ing relation is also true:

λ
1
α
n = 2nπi− (1 + α)

[
ln(2nπ) +

π

2
i
]
+ ln

α

Γ(−α)
+ O(1) =

=

[
−(1 + α) ln(2nπ) + ln

α

Γ(−α)
+ O(1)

]
+
[
2nπ − π

2
(1 + α)

]
i,

from this we have:

|λ
1
α
n | =

[
−(1 + α) ln(2nπ) + ln

α

Γ(−α)
+ O(1)

] 2
+
[
2nπ − π

2
(1 + α)

] 2
∼

∼ [−(1 + α) ln(2nπ)] 2 + [2nπ] 2 ∼ O(n2).

Thus, the following equivalence holds:

|λn| ∼ O(nα). (28)

Using estimate (27) and equivalence (28) for systems of functions {Xn} and {zn}, we
obtain the following relations:

|Xn(x)| = |xα−1Eα,α(λnxα)| ≤ C1xα−1

1 + |λnxα| ≤
C1

|λn|x
≤ C1

nαx
, C1 = const; (29)

|zn(x)| = |(1− x)α−1Eα,α(λn(1− x)α)| ≤

≤ C2(1− x)α−1

1 + |λn(1− x)α| ≤
C2

|λn|(1− x)
≤ C2

nα(1− x)
, C2 = const. (30)

From this, it follows that {Xn} and {zn} in the right side of equality (26) are bounded;
therefore, equality (26) can be term-by-term integrated over the segment [0, 1]:

1∫
0

ϕ(x)zn(x)dx =
∞

∑
n=1

ϕn

1∫
0

Xn(x)zn(x) dx. (31)

Equality (31) can be rewritten as:

(ϕ, zn) =
∞

∑
n=1

ϕn(Xn, zn), (32)

where:

(ϕ, zn) =

1∫
0

ϕ(x)zn(x)dx, (Xn, zn) =

1∫
0

Xn(x)zn(x) dx.

Due to the biorthogonality of the systems of functions {Xn(x)} and {zn(x)}, it follows
from (31) that (ϕ, zn) = ϕn(Xn, zn). From here:

ϕn =
(ϕ, zn)

(Xn, zn)
. (33)
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As the system of functions {Xn(x)} and {zn(x)} are not only biorthogonal to each
other, but also orthonormal, then:

(Xn, zn) =

1∫
0

Xn(x)zn(x) dx = 1

and Formula (33), respectively, takes the form:

ϕn = (ϕ, zn).

Thus, the Fourier coefficients ϕn in solution u(x, t) of the boundary value problem
(9)–(11) expressed as the dot product of functions ϕ(x) and zn(x) in the form:

ϕn = (ϕ, zn) =

1∫
0

ϕ(x)zn(x)dx. (34)

Consider the series (20) with coefficients ϕn, defined by Formula (34) and show that
this series satisfies all conditions of problem (4)–(6).

For this, it is necessary to prove that the function defined by the series is differentiable
and satisfies Equation (1) in the domain 0 < x < 1, t > 0 and is continuous at the points of
the boundary of this region (for t = 0, x = 0, x = 1).

Since Equation (4) is linear, then, by virtue of the superposition principle, a series com-
posed of particular solutions will also be a solution if it converges and can be differentiated
term-by-term once by t and twice by x as:

(1 < α < 2).

For zeros, λn of the Mittag–Leffler functions Eα,β(λ) for n→ ∞ holds [14] the asymp-
totic formula:

λn = ei απ
2 (2πn)α

[
1 + O

(
lg2 n

n2

)]
(35)

and we may neglect the remainder term O
(

lg2 n
n2

)
since lg2 n

n2 → 0 for n→ ∞. From (34), it

follows that arg(λn) =
απ
2 > π

2 (1 < α < 2). From this, it follows that for the set of zeros
. . . , λ−3, λ−2, λ−1, λ1, λ2, λ3, . . . of the function Eα, β(λ), the argument | arg(λn)| > π

2 .
Thus, Re (λn) < 0.

From the above it follows that:

| exp{λnDt}| = | exp{(Re(λn) + Im(λn) · i)Dt}| =

= | exp{(Re(λn)t} · exp{Im(λn) · i)Dt}| =

= | exp{Re(λn)Dt}| · | exp{Im(λn)Dti}| =

= | exp{Re(λn)Dt}| < 1 (Re(λn) < 0).

Thus, exp{λnDt} corresponds the estimation:

| exp{λnDt}| < 1. (36)

Taking into account (26), (35) for the series, we obtain:

|ϕn exp{λntxα−1Eα,α(λnxα)| ≤ |ϕn| · |Eα,α(λnxα)| ≤ |ϕn|
1

1 + |λn|xα
≤ |ϕn|

1
|λn|xα

.
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Consider now the majorizing series:

∞

∑
n=1

an =
∞

∑
n=1

1
|λn|

. (37)

Using the equivalence (27), we rewrite the majorant (36) in the form:

∞

∑
n=1

1
nα

, (1 < α < 2). (38)

As can be seen, the series (38) is a converging generalized harmonic series, which
implies the absolute convergence of the series for any 0 ≤ x ≤ 1 and 0 ≤ t ≤ T.

Let us now show that for t ≥ t̄ ≥ 0 (t̄—any auxiliary number) the series of derivatives,

∞

∑
n=1

∂un(x; t)
∂t

and
∞

∑
n=1

∂u2
n(x; t)
∂x2

converge uniformly. Let us formulate additional requirements that the function must satisfy
ϕ(x). Assume first that ϕ(x) is bounded, |ϕ(x)| < M; then:

|ϕn| = 2

∣∣∣∣∣∣
1∫

0

ϕ(ξ)zn(ξ)dξ

∣∣∣∣∣∣ < 2M,

from which it follows:∣∣∣∣∂un(x, t)
∂t

∣∣∣∣ < 2M|λn exp{λn t̄}xα−1Eα,α(λnxα)| <

< 2M|λn|
1

1 + |λn|
< 2M|λn|

1
|λn|

< 2M

for t ≥ t̄.
Similarly, given that,(

d
dz

)m[
zβ−1Eα,β(zα)

]
= zβ−m−1Eα,β−m(zα),

∣∣∣∣∂2un(x, t)
∂x2

∣∣∣∣ ≤ 2M

∣∣∣∣∣
(

∂

∂x

)2[
xα−1Eα,α(λnxα)

]
exp{λn t̄}

∣∣∣∣∣ ≤
≤ 2M|xα−3Eα,α−2(λnxα)| | exp{λn t̄}| < 2M for t ≥ t̄.

From this, it follows that for t > 0 the series is the function differentiable term-by-term
once by t and twice by x, and so, having a derivative of order α since 1 < α < 2.

If the function ϕ(x) is continuous, it has a piecewise continuous derivative, and
satisfies the conditions ϕ(0) = 0 and ϕ(1) = 0, then the series defines a continuous
function for t ≥ 0.

Really, from the inequality:

|u(x, t)| < |ϕn|(fort ≥ 0, 0 ≤ x ≤ 1)

it immediately follows the uniform convergence of the series for t ≥ 0, 0 ≤ x ≤ 1, which
proves the validity of the above statement if we take into account that for a continuous and
piecewise smooth function ϕ(x), a series of moduli of the Fourier coefficients converges if
ϕ(0) = ϕ(1) = 0.
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Since it is established that:

u(x, t) =
∞

∑
n=1

δn exp{λnt}xα−1Eα,α(λnxα).

We get:

u12(x, t) =
12

∑
n=1

δn exp{λnt}xα−1Eα,α(λnxα), u17(x, t) =
17

∑
n=1

δn exp{λnt}xα−1Eα,α(λnxα).

From this, it follows:∣∣∣∣∣ 17

∑
n=1

δn exp{λnt}xα−1Eα,α(λnxα)−
12

∑
n=1

δn exp{λnt}xα−1Eα,α(λnxα)

∣∣∣∣∣ ≤ 0164

which speaks about the high accuracy of the stated approximate method. For implementa-
tion we proposed the algorithm, realized in Matlab R2017b.

Consider first, the homogeneous fractional differential equation:

∂u(x, t)
∂t

= D · ∂αu(x, t)
∂xα

(39)

corresponding to the fractional differential Equation (1). In order to find a nontrivial
solution to the homogeneous fractional differential Equation (32), we use the Fourier
method of separation of variables and represent the function u(x, t) in the form:

u(x, t) = ω(x)ρ(t), (40)

where ω(x) is the function that depends only on a variable x, ρ(t) is the function that de-
pends only on a variable t. Substituting the assumed form of solution (40) into Equation (39),
we obtain the following equality:

ω(x)ρ′(t) = ρ(t)Dα
xω(x). (41)

Dividing both sides of equality (41) by the product ω(x)ρ(t), we obtain the equation:

ρ′(t)
ρ(t)

=
Dα

xω(x)
ω(x)

. (42)

The left side of Equation (42) depends only on the variable t, while the right side only
on the variable x. Therefore, Equation (42) can be true only in the case:

ρ′(t)
ρ(t)

=
Dα

xω(x)
ω(x)

= λ, (43)

where λ is some real number.
Equation (42) implies that:

Dα
xω(x) = λω(x), (44)

ρ′(t) = λρ(t). (45)

The boundary conditions (2) in this case give:

ω(0) = 0, ω(1) = 0.
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Thus, to define the function ω(x), an eigenvalue problem is obtained (Sturm–Liouville
problem): 

Dα
xω(x) = λω(x),

ω(0) = 0,
ω(1) = 0.

(46)

In this work, it was shown that only for eigenvalues {λk}, that are zeros of the function
Eα,α(λ), there exist eigenfunctions ωn(λn, x), which are:

ωn(λn, x) = xα−1Eα,α(λnxα). (47)

It was also proved that the system of functions ωn(λn, x) forms a basis in a Hilbert
space L2(0, 1). Thus, the functions u(x, t) and f (x, t) can be expanded in a Fourier series
on the basis of the system of functions (47):

u(x, t) =
∞

∑
n=1

vn(t)ωn(λn, x), (48)

f (x, t) =
∞

∑
n=1

fn(t)ωn(λn, x). (49)

In expressions (48) and (49), the functions vn(t) and fn(t) play the role of the Fourier
coefficients of the function expansions u(x, t) and f (x, t) on the basis of the system of
functions (47).

Now, substituting (48) and (49) into Equation (1), we obtain:

∞

∑
n=0

v′n(t)ω(λn, x) =
∞

∑
n=0

vn(t) D
∂αω(λn, x)

∂xα
+

∞

∑
n=0

fn(t)ω(λn, x). (50)

Assuming the right-hand side of equality (50):

∂αω(λn, x)
∂xα

= λnω(λn, x),

we rewrite Equation (50) as:

∞

∑
n=0

v′n(t)ω(λn, x) =
∞

∑
n=0

λnD vn(t)ω(λn, x) +
∞

∑
n=0

fn(t)ω(λn, x). (51)

Dividing both sides of equality (51) by ωn(λn, x), we come to a linear differential
equation of the first order:

v′n(t) = λnD vn(t) + fn(t), (52)

the solution that we find by the Lagrange method, i.e., by the method of variation of
an arbitrary constant. First, as is customary with the Lagrange method, consider the
homogeneous differential equation:

v′n(t) = λnD vn(t), (53)

corresponding to the inhomogeneous differential Equation (18). Separating the variables in
Equation (46), we obtain:

dvn(t)
vn(t)

= λnD dt. (54)

Integrating the resulting equation with separated variables (54), we obtain:

vn(t) = σneλnD t, (55)
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where σn is the arbitrary constant. Further, in (55), as is customary in the Lagrange method,
arbitrary constants σn considered as some functions of t, i.e., we assume that σn = ϕn(t):

vn(t) = ϕn(t)eλnD t. (56)

To find unknown functions ϕn(t), we differentiate the Equation (56) by t:

v′n(t) = ϕ′n(t) eλnD t + λnD ϕn(t) eλnD t. (57)

Now, substituting (56) and (57) into (52), we arrive at the equation:

ϕ′n(t) eλnD t + λnD ϕn(t) eλnD t = λnD ϕn(t) eλnD t + fn(t),

solving which, we obtain:

ϕn(t) =
t∫

0

fn(t) e−λnD tdt + ϕn, (58)

where ϕn is an arbitrary real constant.
Thus, substituting (58) into (56), we find the value of the desired function vn(t):

vn(t) = eλnD t

 t∫
0

fn(t) e−λnD tdt + ϕn

. (59)

Finally, substituting expression (59) into equality (48), we obtain solution (7) of Equa-
tion (1), which satisfies the zero boundary conditions (2).

In order to determine the coefficients ϕn, on the right side of the series (7), we satisfy

it to the initial condition (3): u(x, 0) =
∞
∑

n=1
ϕnxα−1Eα,α(λnxα), i.e.,

ϕ(x) =
∞

∑
n=1

ϕnωn(λn, t). (60)

Since the basis of the system of functions ωn(λn, t) is not orthogonal, together with the
system ωn(λn, t), we introduce into consideration the system zn(λn, t) = (1− x)α−1Eα, α

(λn(1− x)α), which is biorthogonal to it.
Let us multiply both sides of equality (60) by the system of functions zn(λn, t):

ϕ(x)zn(λn, t) =
∞

∑
n=1

ϕnωn(λn, t)zn(λn, t). (61)

It is known that for zeros {λn} of the function Eα,β(λ) (α < 2, β—is arbitrary real
number) such that µ ≤ | arg(λ)| ≤ π, where µ ∈

(
πα
2 , min{π, απ}

)
the following esti-

mate holds:
|Eα,β(λ)| ≤

C
1 + |λn|

, (62)

where C is an arbitrary real constant.
For sufficiently large (in absolute value) zeros {λn} of the function Eα,β(λ), the follow-

ing relation also holds:

λ
1
α
n = 2nπi− (1 + α)

[
ln(2nπ) +

π

2
i
]
+ ln

α

Γ(−α)
+ O(1) =

=

[
−(1 + α) ln(2nπ) + ln

α

Γ(−α)
+ O(1)

]
+
[
2nπ − π

2
(1 + α)

]
i,
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from this it follows that:

|λ
1
α
n | =

[
−(1 + α) ln(2nπ) + ln

α

Γ(−α)
+ O(1)

] 2
+
[
2nπ − π

2
(1 + α)

] 2

∼ [−(1 + α) ln(2nπ)] 2 + [2nπ] 2 ∼ O(n2).

Thus, the following equivalence holds:

|λn| ∼ O(nα). (63)

Using the estimate (62) and the equivalence (63) for the systems {ωn} and {zn} we
obtain the following relations:

|ωn(x)| = |xα−1Eα,α(λnxα)| ≤ C1xα−1

1 + |λnxα| ≤
C1

|λn|x
≤ C1

nαx
, C1 = conct; (64)

|zn(x)| = |(1− x)α−1Eα,α(λn(1− x)α)| ≤ (65)

≤ C2(1− x)α−1

1 + |λn(1− x)α| ≤
C2

|λn|(1− x)
≤ C2

nα(1− x)
, C2 = const.

From this, it follow that the functions {ωn} and {zn} in the right side of (61) are
bounded, so for the equality (61), we may integrate it term-by-term over the segment [0, 1]:

1∫
0

ϕ(x)zn(x)dx =
∞

∑
n=1

ϕn

1∫
0

ωn(x)zn(x) dx. (66)

Let us rewrite (66) as follows:

(ϕ, zn) =
∞

∑
n=1

ϕn(ωn, zn), (67)

where (ϕ, zn) =
1∫

0
ϕ(x)zn(x)dx, (ωn, zn) =

1∫
0

ωn(x)zn(x) dx.

Due to the biorthogonality of the systems of functions {ωn(x)} and {zn(x)} from (67),
it follows that (ϕ, zn) = ϕn(ωn, zn). From this:

ϕn =
(ϕ, zn)

(ωn, zn)
. (68)

Since the systems of the functions {ωn(x)} and {zn(x)} are not only biorthogonal to

each other, but also orthonormal, then (ωn, zn) =
1∫

0
ωn(x)zn(x) dx = 1 and formula (68),

respectively, takes the form ϕn = (ϕ, zn).
Thus, the Fourier coefficients ϕn in the solution u(x, t) boundary value problem (1)–(3)

are expressed as the scalar product of functions ϕ(x) and zn(x) in the form:
Hence, it follows that the real coefficients:

ϕn = (ϕ, zn) =

1∫
0

ϕ(x)zn(x)dx. (69)

It follows that the real coefficients ϕn, can be defined as the coefficients of the expansion
in the Fourier series of the function ϕ(x) in the basis ωn(λn, t):

ϕn = (ϕ(x), zn(λn, x)).
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Let us now determine the values of the functions fn(t). Let us now determine the
values of the functions in the expression of the series (7). For this, we use equality (49).
Since in expression (49), the function fn(t) plays the role of the coefficients of the expansion
in the Fourier series of the function f (x, t) in the basis ωn(λn, t), then sought functions
fn(t) can be defined as the scalar product:

fn(t) = ( f (x, t), zn(λn, x)),

where, as noted earlier, zn(λn, t) is a system biorthogonal to the system ωn(λn, t).
It is known that [8] for the zeros {λn} of the Mittag–Leffler function Eα, β(λ) for n→ ∞

the asymptotic formula holds:

λn = ei απ
2 (2πn)α

[
1 + O

(
lg2 n

n2

)]
, (70)

with the remainder O
(

lg2 n
n2

)
, which can be neglected since lg2 n

n2 → 0 for n → ∞. From

Formula (57), it follows that arg(λn) = απ
2 > π

2 (1 < α < 2). Hence, it follows that for
the set of zeros, . . . , λ−3, λ−2, λ−1, λ1, λ2, λ3, . . . of the function Eα, β(λ), the argument is
| arg(λn)| > π

2 . Thus, Re (λn) < 0.
From the above it follows that:

| exp{λnDt}| = | exp{(Re(λn) + Im(λn) · i)Dt}| =

= | exp{(Re(λn)t} · exp{Im(λn) · i)Dt}| =

= | exp{Re(λn)Dt}| · | exp{Im(λn)Dti}| =

= | exp{Re(λn)Dt}| < 1 (Re(λn) < 0).

Thus, for exp{λnDt} conforms to the estimation:

| exp{λnDt}| < 1. (71)

Taking into account thee estimates (62) and (71), we obtain the following relation:∣∣∣∣∣∣eλnDt

 t∫
0

fn(t) e−λnDtdt + ϕn

xα−1Eα,α(λnxα)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
 t∫

0

fn(t) dt + ϕn

 1
1 + |λn|xα

∣∣∣∣∣∣.
Further, taking into account the equivalence (63), as well as the boundedness of the

function fn(t) and the coefficients ϕn, we conclude about the convergence of the series
determined by the right-hand side of the function (7).

Based on the theoretical results obtained, algorithms and programs have been com-
piled in Matlab R2017b to calculate the solution u(x, t) (20) of the problem (9)–(11),
ϕ(x) = 1− x. In the first case, we limit ourselves in (20) to the number of terms n = 12
and in the second case n = 17. Below, there is one version of the program listing and
two calculation options for comparing the accuracy of the result. The eigenvalues λn
and the results of the values of the analytical approximate solution u12(x, t) and u17(x, t)
are calculated.

Program Script

Clear
clc
global a
a=3/2;
global s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17
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s0=1/(gamma(a+a*0));
s1=1/(gamma(a+a*1));
s2=1/(gamma(a+a*2));
s3=1/(gamma(a+a*3));
s4=1/(gamma(a+a*4));
s5=1/(gamma(a+a*5));
s6=1/(gamma(a+a*6));
s7=1/(gamma(a+a*7));
s8=1/(gamma(a+a*8));
s9=1/(gamma(a+a*9));
s10=1/(gamma(a+a*10));
s11=1/(gamma(a+a*11));
s12=1/(gamma(a+a*12));
s13=1/(gamma(a+a*13));
s14=1/(gamma(a+a*14));
s15=1/(gamma(a+a*15));
s16=1/(gamma(a+a*16));
s17=1/(gamma(a+a*17));
p=[s17 s16 s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0];
r=roots(p);
global l
l=sort(r)
for i=1:17
[I11,cnt11]=quad(@(x)2*x.*(1-x).^(a-1).*(s0+s1*(l(i)*(1-x).^a).^1+s2*(l(i)*(1-x).^a).^2+...
s3*(l(i)*(1-x).^a).^3+s4*(l(i)*(1-x).^a).^4+s5*(l(i)*(1-x).^a).^5+s6*(l(i)*(1-x).^a).^6+...
s7*(l(i)*(1-x).^a).^7+s8*(l(i)*(1-x).^a).^8+s9*(l(i)*(1-x).^a).^9+s10*(l(i)*(1-x).^a).^10+...
s11*(l(i)*(1-x).^a).^11+s12*(l(i)*(1-x).^a).^12+s13*(l(i)*(1-x).^a).^13+s14*(l(i)*(1-.^a).^
14+s15*(l(i)*(1-x).^a).^15+s16*(l(i)*(1-x).^a).^16+s17*(l(i)*(1-x).^a).^17),0,0.5);
[I12,cnt12]=quad(@(x)(4/3-2/3*x).*(1-x).^(a-1).*(s0+s1*(l(i)*(1-x).^a).^
1+s2*(l(i)*(1-x).^a).^2+. . .
s3*(l(i)*(1-x).^a).^3+s4*(l(i)*(1-x).^a).^4+s5*(l(i)*(1-x).^a).^5+s6*(l(i)*(1-x).^a).^6+...
s7*(l(i)*(1-x).^a).^7+s8*(l(i)*(1-x).^a).^8+s9*(l(i)*(1-x).^a).^9+s10*(l(i)*(1-x).^a).^10+...
s11*(l(i)*(1-x).^a).^11+s12*(l(i)*(1-x).^a).^12+s13*(l(i)*(1-x).^a).^13+
s14*(l(i)*(1-x).^a).^14+...
s15*(l(i)*(1-x).^a).^15+s16*(l(i)*(1-x).^a).^16+s17*(l(i)*(1-x).^a).^17),0,0.5);
ff(i)=I11+I12;
end
format(’long’,’g’)
ff
% syms x
% sol=0;
% for k=1:20
% sol=sol+ff(k)*x.^(a-1)
% end

3. Discussion of the Results

Based on the compiled algorithms and programs in Matlab R2017b, one of the listing
options is presented in Section 2, the eigenvalues λn of the Sturm–Liouville problem and
the results of the values of the analytical approximate solution for n = 12, u12(x, t), and for
n = 17, u17(x, t) are calculated.

1 =
−5.0754300393759
−16.7908900478112
−18.744700713431− 5.27370466276291i
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−18.744700713431 + 5.27370466276291i
−17.5935684739021− 13.958778580314i
−17.5935684739021 + 13.958778580314i
−12.5037075124573− 23.7208022342114i
−12.5037075124573 + 23.7208022342114i
−1.26795205683724− 33.9468429922635i
−1.26795205683724 + 33.9468429922635i
22.0702143093482− 42.7337132624382i
22.0702143093482 + 42.7337132624382i
f f =
0.137401420534954
l =
−5.07543002954347
−17.4721082329839
−28.6069313666809
−29.3861949229922− 7.44053043356274i
−29.3861949229922 + 7.44053043356274i
−28.664909832168− 16.9294907149687i
−28.664909832168 + 16.9294907149687i
−25.1399503163194− 27.4228090665281i
−25.1399503163194 + 27.4228090665281i
−17.9295026344547− 38.610702911213i
−17.9295026344547 + 38.610702911213i
−5.49276791576975− 49.9819129876363i
−5.49276791576975 + 49.9819129876363i
15.1216190018407− 60.4343903753214i
15.1216190018407 + 60.4343903753214i
51.7431493434345− 66.9283288460732i
51.7431493434345 + 66.9283288460732i
f f =
0.137401421100112

4. Conclusions

The paper describes the development of the author’s approach to the technology of
solving differential equations with fractional partial derivatives by the example of a one-
dimensional boundary value problem for a one-dimensional advection–diffusion equation
based on the method of separation of variables, as well as the theory of eigenvalues and
eigenfunctions in constructing a solution to a differential equation. As the above list of
references shows, this technology is successfully implemented in solving other boundary
value problems and Cauchy problems. The article provides a listing of the program for
performing calculations, as well as the results of calculations themselves.
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