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Abstract: In this paper, we consider rings of multisets consisting of elements of a Banach algebra.
We investigate the algebraic and topological structures of such rings and the properties of their
homomorphisms. The rings of multisets arise as natural domains of supersymmetric functions. We
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1. Introduction

In recent years, symmetric structures and mappings in infinite-dimensional spaces
have been studied by numerous authors [1–11]. In many problems of algebra and anal-
ysis [1,6], as well as in applications in symmetric neural networks (see, e.g., [12–15]), it
is crucial to know the invariants of a given (semi)-group S acting on a Banach space X.
The invariants can be described as elements of algebras of S-symmetric functions on X.
The Classical Invariant Theory, which was developed in the middle of the last century,
investigated polynomial invariants of a group acting on a finite-dimensional linear space.
The famous Nagata counterexample to the general case of Hilbert’s fourteenth problem
shows that polynomial algebras on Cn may be not finitely generated.

Symmetric polynomials and analytic functions on infinite-dimensional Banach spaces
were investigated first by [16–19]. In particular, in [16,17], algebraic bases were described
in algebras of symmetric polynomials on various Banach spaces with symmetric structures.
These investigations were continued in [19–26] and others. To describe the spectrum of a
uniform algebra of S-symmetric functions on X, it is important to have more information
about the quotient set X/∼, where “∼” is the relation of equivalence “up to the action of S”
on X. Such a quotient set may be interesting in itself and has applications in informatics and
neural networks. If X is a sequence space and S is the group of permutations of elements
of the sequences, then X/∼ can be considered as a set of nonzero multisets—completed in
a metrizable topology—induced from X. The set X/∼ has a semiring structure with respect
to natural algebraic operations. The commutative semiring can be extended to a ring by
using a standard procedure from K-theory (see, e.g., [27]). Such a ringM of multisets for
the case X = `1 was investigated in [7,28]. In particular, homomorphisms and ideals ofM
were considered, and it was shown that each supersymmetric polynomial on `1 × `1 can be
extended to the ringM. In [29], the properties of the ring of multisets of integer numbers
were studied, and some applications to cryptography were found.

Axioms 2022, 11, 511. https://doi.org/10.3390/axioms11100511 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11100511
https://doi.org/10.3390/axioms11100511
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-5554-4342
https://doi.org/10.3390/axioms11100511
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11100511?type=check_update&version=2


Axioms 2022, 11, 511 2 of 13

In this paper, we consider possible generalizations of the results obtained in [7] for
more general cases. Instead of the sequence space `1, we consider the space of sequences
(x1, x2, . . . , xn, . . .), where xn are elements of a Banach algebra A and each sequence of
norms, (‖x1‖A, ‖x2‖A, . . . , ‖xn‖A, . . .), is a vector in a Banach space X with a norm ‖ · ‖X
and a symmetric basis {en}. Let us recall (see [30] for details) that a sequence {en} is a
topological (or Schauder) basis in a Banach space X if every element x ∈ X can be uniquely
expressed by

x =
∞

∑
n=1

xnen = lim
m→∞

m

∑
n=1

xnen,

where the limit is taken in (X, ‖ · ‖X). From here, in particular, we have that xn → 0 as
n→ ∞.

A topological basis is called symmetric if it is equivalent to the basis {eσ(n)} for every
permutation σ on the set of natural numbers N. This means that for every σ, a series
∑∞

n=1 xnen converges if and only if ∑∞
n=1 xneσ(n) converges. It is known [30] (p. 114) that

every Banach space X with a symmetric basis has an equivalent so-called symmetric norm
such that ∥∥∥∥∥ ∞

∑
n=1

xnθneσ(n)

∥∥∥∥∥
X

=

∥∥∥∥∥ ∞

∑
n=1

xnen

∥∥∥∥∥
X

for every permutation σ and sequence of numbers {θn} such that |θn| = 1. Throughout this
paper, we assume that X is endowed with a symmetric norm. In this case, we know that
for every x ∈ X, |xn| ≤ 2‖x‖.

In Section 2, we construct a ring of multisetsMX(D) of sets from a multiplicative
semigroup D of A and investigate the basic properties. In particular, we show thatMX(D)
is complete in a metrizable topology induced from X. In Section 3, we investigate homo-
morphisms ofMX(D) and related supersymmetric polynomials. In addition, we consider
some examples and make discussions. We refer the reader to [31] for more information
about polynomials on Banach spaces and to [32] for details on the classical theory of
symmetric functions.

2. Group Rings of Multisets

Let X be a Banach space with a normalized symmetric basis {en} and a symmetric
norm ‖ · ‖X , letA be a Banach algebra with an identity e, and letD be a closed multiplicative
subgroup in A containing e. We denote by X(D) the set of sequences u = (x1, . . . , xn, . . .),
xi ∈ D, and

‖u‖ =
∥∥∥∥∥ ∞

∑
i=1

en‖xn‖A

∥∥∥∥∥
X

.

In addition, let us denote by ΛX(D) = X(D)× X(D), and we represent each element
v ∈ ΛX(D) as

v = (y|x) = (. . . , yn, . . . , y2, y1|x1, x2, . . . , xn, . . .),

x, y ∈ X(D). Clearly, ΛX(A) is a Banach space with respect to the norm

‖v‖ = ‖x‖+ ‖y‖,

and ΛX(D) is its closed subset.
For a given x ∈ ΛX(D), we denote by supp x the subset of all natural numbers n ∈ N

such that xn 6= 0.
Let σ, µ be permutations on N and (y|x) ∈ X(D). We define

(σ, µ)(y|x) = (. . . , yσ(n), . . . , yσ(1)|xµ(1), . . . , xµ(n), . . .).
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Let u = (y|x) and w = (d|b) be in ΛX(D). Then,

u • w = (y • d|x • b) = (. . . , dn, yn, . . . , d1, y1|x1, b1, . . . , xn, bn, . . .).

Note that if x, b ∈ X(D), then ‖x • b‖ ≤ ‖x‖ + ‖b‖. Hence, u • w ∈ ΛX(D) for all
u, w ∈ ΛX(D).

Let us consider an equivalence defined as (y|x) ∼ (y′|x′) if and only if there are vectors
(a|a), (c|c) ∈ ΛX(D), and bijections σ and µ such that σ maps supp x • c onto supp x′ • a
and µ maps supp y • c onto supp y′ • a; in addition,

(σ, µ)
(
(y′|x′) • (a|a)

)
= (y|x) • (c|c). (1)

Let us denote byM(D) =MX(D) the quotient set ΛX(D)/ ∼ with respect to the
equivalence “∼”. We denote by [(y|x)] ∈ M(D) the class of equivalence containing
element (y|x). Clearly, for every a ∈ X(D), (a|a) ∼ (0|0), and so [(y|x) • (x|y)] = [(0|0)].
In addition, we denoteM+(D) = {[(0|x)] : x ∈ ΛX(D)}.

Let us explain the definition of the equivalence in a more detailed form. The require-
ment that σ and µ act bijectively between supports of corresponding vectors means that
zero coordinates “do not matter”, that is, for example,

(. . . , yn, . . . , y2, y1|x1, x2, . . . , xn, . . .) ∼ (. . . , yn, 0, . . . , 0, y2, 0, y1|x1, 0, x2, 0, . . . , 0, xn, . . .).

In addition, for example,

(. . . , yn, . . . , y2, y1|x1, x2, . . . , xn, . . .) ∼ (. . . , yn, . . . , y2, y1, λ|λ, x1, x2, . . . , xn, . . .)

for any λ ∈ C. In addition, the classes of equivalence are invariant with respect to permuta-
tions of coordinates of x and of y separately. This approach allows us to considerM+(D)
as a set of multisets of D. More exactly, the subsetM+

00(D) consisting of all elements in
M+(D) with finite supports can be naturally identified with the set of all finite multisets
of nonzero elements in D, and the operation “•” is actually the union of multisets.

We say that (y′|x′) is an irreducible representative of [u] ∈ M(D) if [(y′|x′)] = [u], and
(y′|x′) ∼ (y|x) implies that

(y|x) = (σ, µ)
(
(y′|x′) • (a|a)

)
for some permutations σ, µ on N and (a|a) ∈ ΛX(D). In other words, for every nonzero
coordinate x′i of x′, we have x′i 6= y′j for all coordinates y′j of y′.

Proposition 1. For every [u] ∈ M(D), there exists an irreducible representative.

Proof. Let (y|x) be a representative of [u]. Since elements ∑n en‖xn‖A and ∑n en‖yn‖A
belong to the Banach space X with the Schauder basis en, it follows that ‖xn‖A → 0, and
‖yn‖A → 0 as n→ ∞. Without loss of generality, we may assume that the coordinates of x
are ordered so that ‖x1‖A ≥ ‖x2‖A ≥ · · · ≥ ‖xn‖A ≥ · · · . If there is j such that x1 = yj,
then let us remove the coordinate x1 in x and yj in y, and we denote by x(1) and y(1) the
resulting vectors. If such a number j does not exist, we denote x(1) = x and y(1) = y.
Suppose that x(n) and y(n) are already constructed. If there is j such that xn+1 = yj, then
we remove the coordinate xn+1 in x(n) and yj in y(n) and denote by x(n+1) and y(n+1) the
resulting vectors. Otherwise, we set x(n+1) = x(n) and y(n+1) = y(n). Thus, we obtain the
sequence (y(n)|x(n)) in ΛX(D), which is obviously fundamental. By the completeness of
ΛX(D), there exists a limit

(y′|x′) = lim
n→∞

(y(n)|x(n)).
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Let a be a vector in X(D) such that its coordinates an are exactly removed coordi-
nates from x. Then, (y|x) = (y′ • a|x′ • a), and so (y′|x′) is a representative of [u]. By the
construction, (y′|x′) is irreducible.

Now, we can introduce a commutative operation “+” onM(D).

Definition 1. For a given u = [u] = [(y|x)] and w = [w] = [(d|b)] inM(D), we define

u + w := [u • w] = [(y • d|x • b)].

In addition, we set −u = −[(y|x)] := [(x|y)].

Proposition 2. The operation “+” is well defined onM(D), and
(
M(D),+

)
is a commutative

group with zero (the neutral element), 0 = [(0|0)] = [(. . . , 0|0, . . .)].

Proof. From definition of the operation, it follows that u + 0 = u and u − u = 0. If
u = [(y′|x′)] and w = [(d′|b′)] are the irreducible representatives u and w, then, according
to (1) and Proposition 1, (y|x) = (y′ • a|x′ • a) and (d|b) = (d′ • c|b′ • c) for some a and c.
Hence,

[(y|x)] + [(d|b)] = [(y′|x′) • (a|a)] + [(d′|b′) • (c|c)]

= [(y′|x′)] + [(d′|b′)] + [(a|a)] + [(c|c)] = [(y′|x′)] + [(d′|b′)].

So, the result does not depend of representatives.

Let x, y ∈ X(D). By x � y, we denote the resulting sequence of ordering the set
{xiyj : i, j ∈ N} with one single index in some fixed order.

Proposition 3. Let x, y ∈ X(D). Then, x � y ∈ X(D) and ‖x � y‖ ≤ 2‖x‖‖y‖. Moreover, if D
is such that ‖ab‖ = ‖a‖‖b‖ for every a, b ∈ D, and X = c0 or `p for some 1 ≤ p < ∞, then
‖x � y‖ = ‖x‖‖y‖.

Proof. Let k(i, j) be a bijection from N×N to N. According to the straightforward calcula-
tions,

‖x � y‖ =
∥∥∥ ∞

∑
i,j=1
‖xiyj‖Aek(i,j)

∥∥∥
X
≤ sup

i
‖xi‖A

∥∥∥ ∞

∑
i,j=1
‖yj‖Aej

∥∥∥
X
≤ 2‖x‖‖y‖.

Let D be such that ‖ab‖ = ‖a‖‖b‖ for every a, b ∈ D. If X = `p(D), then

‖x � y‖p =
∞

∑
i,j=1
‖xiyj‖

p
A =

∞

∑
i,j=1
‖xi‖

p
A‖yj‖

p
A = ‖x‖p‖y‖p.

If X = c0, then

‖x � y‖ = sup
i,j
‖xiyj‖A = sup

i,j
‖xi‖A‖yj‖A = ‖x‖‖y‖.

Next, let us define a multiplication onM(D).

Definition 2. If u = [(0|x)] and v = [(0|y)], we define uv = [(0|x � y)]. Finally, if u = [(y|x)]
and v = [(d|b)] are inM(D), then we define

uv = [((y � b) • (x � d)|(y � d) • (x � b))].
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Using routine calculations, it is easy to check (cf. [7,29]) that the multiplication is well
defined and associative and that the distributive low with the addition holds onM(D). If
A is a commutative Banach algebra, then the introduced multiplication is commutative. So,
we have the following proposition.

Proposition 4.
(
M(D),+, ·

)
is a ring with zero, 0 = [(0|0)], and unity, I = [(0|e, 0, . . .)]. If A

is commutative, then
(
M(D),+, ·

)
is commutative.

Note that M(D) is not an algebra, even if D = C, because it is not a linear space
(see, e.g., [7]). However, it is possible to introduce a norm on a given ring that has natural
properties and induces a metrizable topology. Let us recall the following definition (cf. [33]).

Definition 3. If R is any ring, then a real-valued function ‖z‖ defined on R is called a norm for R
if it satisfies the following conditions for all z, r ∈ R:

1. ‖z‖ ≥ 0 and ‖z‖ = 0 if and only if z = 0,
2. ‖z + r‖ ≤ ‖z‖+ ‖r‖,
3. ‖ − z‖ = ‖z‖,
4. ‖zr‖ ≤ C‖z‖‖r‖ for some constant C > 0.

Definition 4. Let us define a norm onM(D) in the following way:

‖u‖ = ‖[(y|x)]‖ := ‖(y′|x′)‖ = ‖x′‖+ ‖y′‖,

where (y′|x′) is an irreducible representative of u.

Proposition 5. The norm in Definition 4 is well defined onM(D) and satisfies the conditions of
Definition 3. In addition,

‖u‖ = min
(y|x)∈u

(‖x‖+ ‖y‖).

Proof. Note that an irreducible representative of u is not unique in general. However,
if (y′|x′) and (y′′|x′′) are irreducible representatives of u, then they consist of the same
coordinates (up to a permutation (σ, µ) of nonzero coordinates), and so, ‖(y′|x′)‖ =
‖(y′′|x′′)‖. Thus, the norm is well-defined.

Clearly, if u = 0, then [(0|0)] is its irreducible representative, and so, ‖u‖ = 0.
Otherwise, ‖u‖ ≥ 0. The second property of the norm evidently follows from the corre-
sponding triangle property of the norm on a linear space. In addition, ‖− u‖ = ‖(x′|y′)‖ =
‖(y′|x′)‖ = ‖u‖.

For any representative (y|x) of u, we have that ‖(y|x)‖ ≥ ‖(y′|x′)‖, where ‖(y′|x′)‖
is an irreducible representative of u. So,

‖u‖ = min
(y|x)∈u

(‖x‖+ ‖y‖).

Let u = [(y|x)]andw = [(d|b)] ∈ M(D), and let (y′|x′) and (b′|d′) be corresponding
irreducible representatives. Then, by Proposition 3,

‖uw‖ = ‖[(y′|x′)(b′|d′)]‖ = ‖[((y′ � b′) • (x′ � d′)|(y′ � d′) • (x′ � b′))]‖

≤ ‖((y′ � b′) • (x′ � d′))‖+ ‖((y′ � d′) • (x′ � b′))‖

≤ 2‖y′‖‖b′‖+ 2‖x′‖‖d′‖+ 2‖y′‖‖b′‖+ 2‖x′‖‖b′‖ = 2‖u‖‖w‖.

Thus, ‖ · ‖ satisfies Condition 4 in Definition 3 for C = 2. In addition, by Proposition 3,
we can put C = 1 if X = c0 or `p, 1 ≤ p < ∞.
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We define a metric ρ onM(D), associated with the norm in the natural way. Let u, w
be inM(D). We set

ρ(u, w) = ‖u−w‖.

It is well known and easy to check that ρ is a metric.

Example 1. Let u(n) = [(0|hn, 0, . . .)], hn ∈ D be a sequence inM(D) such that hn → h as
n → ∞. If h 6= 0, then u(n) → [(0|h, 0, . . .)] if and only if hn = h for all values of n that are big
enough. Indeed, if hn 6= h, then

‖[(0|hn, 0, . . .)]− [(0|h, 0, . . .)]‖ = ‖[(. . . , 0, hn|h, 0, . . .)]‖ = ‖hn‖A + ‖h‖A ≥ ‖h‖A.

On the other hand, if h = 0, then ‖u(n) − 0‖ = ‖hn‖A → 0 as n→ ∞.

Proposition 6. The quotient map (y|x) 7→ [(y|x)] is discontinuous as a map from the Banach
space ΛX(D) to the metric space

(
M(D), ρ

)
at each point of ΛX(D), except for zero.

Proof. Example 1 can be easily modified to show the discontinuity of the quotient map
at any nonzero point. Indeed, let v = (y|x) 6= 0; then, without loss of generality, we
can assume that x1 6= 0. Consider u(n) = (y|(1− 1/n)x1, x2, . . . , xm, . . .) ∈ ΛX(D). Then,
u(n) → v in ΛX(D) as n→ ∞, but

‖[u(n)]− [v]‖ = ‖[. . . , 0, x1|(1− 1/n)x1, 0, . . . ‖ = 2‖x1‖A −
‖x1‖A

n
> ‖x1‖A > 0,

and so the quotient map is discontinuous at v. On the other hand, if a sequence u(n) tends
to zero, then ‖[u(n)]‖ → 0 as n→ ∞, and thus, the quotient map is continuous at zero.

Theorem 1. The metric space
(
M(D), ρ

)
is complete.

Proof. Let u and v be inM(D) and let (y|x) be an irreducible representative of u. We claim
that there exists an irreducible representative (d′|b′) ∈ v such that in ΛX(D), ‖(y|x) −
(d′|b′)‖ < ε. Indeed, let (d|b) be any irreducible representative of v. The inequality

‖u− v‖ = ‖[(y • b|x • d)]‖ < ε

implies that there is an irreducible representative (c|a) of (y • b|x • d) such that ‖c‖+ ‖a‖ <
ε. Note that (y • b|x • d) is not necessary irreducible. However, since both (y|x) and
(d|b) are irreducible, it may happen that some coordinates of y are the same as some
coordinates of d and that some coordinates of x are the same as some coordinates of b. Let
us construct (d′|b′) such that d′ is obtained by permutating the coordinates of d, and b′ is
obtained by permutating the coordinates of b, so the coordinates of d that are equal to some
coordinates of y have the same positions in d′ as the corresponding coordinates in y, and
the coordinates of b that are equal to some coordinates of x have the same positions in b′ as
the corresponding coordinates in x. Then, (d′|b′) ∼ (b|d) and

‖(y|x)− (d′|b′)‖ = ‖[(y • b′|x • d′)]‖ = ‖c‖+ ‖a‖ < ε.

Let u(m), m ∈ N be a Cauchy sequence in
(
M(D), ρ

)
. Taking a subsequence, if neces-

sary, we can assume that if n ≥ N and m ≥ N, then ρ(u(m), u(n)) < 1
2N+1 . Let us choose

irreducible representatives (y(m)|x(m)) of u(m) with

‖(y(m+1)|x(m+1))− (y(m)|x(m))‖ = ρ(u(m+1), u(m)) <
1

2m+1 .
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Thus, if n ≥ N and m ≥ N, then

‖(y(m)|x(m))− (y(n)|x(n))‖ < 1
2N .

Hence, (y(m)|x(m)), m ∈ N is a Cauchy sequence in X(D), so it has a limit z(0) =

(y(0)|x(0)). Let z(m)
i be the ith coordinate of z(m) = (y(m)|x(m)), i ∈ Z \ {0}, that is, z(m)

i =

x(m)
i if i > 0 and z(m)

i = y(m)
−i if i < 0. Clearly, z(m)

i → z(0)i as m → ∞. We claim that if

z(0)i = c 6= 0, then there is a number N such that for every m > N, z(m)
i = c. Indeed, if

it is not so, then for every n, m ∈ N, that is big enough, ρ(u(m), u(n)) > c, and we have a
contradiction.

For a given ε > 0, we denote by zε a vector in X(D) such that zε has a finite support,
zε

i = z(0)i or zε
i = 0, and

ρ
([

zε
]
,
[
z(0)
])

<
ε

3
.

Note that for this case, ρ
([

zε
]
,
[
z(0)
])

= ‖zε − z(0)‖. Let N be a number such that for

every n > N, zε
i = z(n)i for all i ∈ supp zε and ‖z(n) − z(0)‖ < ε

3 . So,

ρ
([

z(n)
]
,
[
zε
])

= ‖zε − z(n)‖ ≤ ‖zε − z(0)‖+ ‖z(n) − z(0)‖ < 2
3

ε.

Thus,
ρ
([

z(n)
]
,
[
z(0)
])
≤ ρ

([
z(n), zε

])
+ ρ
([

zε, z(0)
])

< ε.

Therefore, u =
[
z(0)
]

is the limit of u(m), and thus,
(
M(D), ρ

)
is complete.

From the triangle and multiplicative triangle inequalities of the norm, we have that
the algebraic operations are jointly continuous in

(
M(D), ρ

)
. Indeed, let ρ(u, u′) < ε1 and

ρ(v, v′) < ε2; then,

ρ(u + v, u′ + v′) < ‖(u + v)− (u′ + v′)‖ < ε1 + ε2

and
ρ(uv, u′v′) < 2ε2‖u‖+ 2ε1‖v‖+ 4ε1ε2.

The continuity of the addition implies that if Φ is an additive map fromM(D) to an
additive topological group and Φ is continuous at zero, then it is continuous at any point.

3. Homomorphisms and Supersymmetric Polynomials

Let U be a closed multiplicative semigroup of another Banach algebra B and let Y be a
Banach space with a symmetric basis.

Theorem 2. Let γ be a multiplicative map from D to U . If there is a constant Cγ, such that
‖γ(z)‖B ≤ Cγ‖z‖A, z ∈ D, then there exists a continuous ring homomorphism

Φγ : MX(D)→MY(U )

defined by

Φγ(u) = Φγ([(y|x)]) = [(. . . , γ(yn), . . . , γ(y2), γ(y1)|γ(x1), γ(x2), . . . , γ(xn), . . .)].

Proof. It is clear that Φγ([(y|x)]) is additive and does not depend on the representative. In
addition,

‖Φγ([(y|x)])‖ = ‖[(. . . , γ(yn), . . . , γ(y2), γ(y1)|γ(x1), γ(x2), . . . , γ(xn) . . .)]‖ ≤ Cγ‖u‖.
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Let u ∈ MX(D) and let (y|x) be its irreducible representative. Then,

‖Φγ(u)‖ = ‖γ(x)‖+ ‖γ(y)‖ ≤ Cγ(‖x‖+ ‖y‖) = Cγ‖u‖.

Hence, Φγ is continuous at zero, and according to the additivity, it is continuous at
each point ofMX(D).

By the multiplicativity of γ,

Φγ([(0|x)][(0|x′)]) = [(0|γ(x1)γ(x′1), . . . , γ(xn)γ(x′j) . . .)] = Φγ([(0|x)])Φγ([(0|x′)]).

Thus,
Φγ([(y|x)][(y′|x′)])

= Φγ([(y|0)][(y′|0)]) + Φγ([(0|x)][(0|x′)])−Φγ([(0|x)][(0|y′)])−Φγ([(0|0)][(0|x′)])

= Φγ([(y|x)])Φγ([(y′|x′)]).

Note that in Theorem 2, we do not need the continuity of γ.

Example 2. Let D = B be an open unit ball centered at the origin of a Banach algebra A and
U = Bε ∪ {e}, where e is the unity of A, and Bε is an open ball of radius 0 < ε < 1, which is
centered at the origin of A. In addition, let X = Y. We define γ : D → U by

γ(z) =
{

z if z ∈ U ,
0 otherwise.

Then, Φγ satisfies the conditions of Theorem 2 and, thus, is continuous.

Corollary 1. Any continuous homomorphism ϕ from a Banach algebraA to a Banach algebra B can
be extended to a continuous homomorphism fromMX(A) toMY(B) for any infinite-dimensional
Banach space Y with a symmetric basis.

Proof. Since ϕ is a continuous linear and multiplicative operator fromA toB, it follows that

‖ϕ‖B ≤ ‖ϕ‖‖z‖A, z ∈ A.

Hence, Φγ satisfies the conditions of Theorem 2 for γ = ϕ; thus, Φϕ is a continuous
homomorphism fromMX(A) toMY(B). The map z 7→ [(0|z, 0, . . .)] is an embedding of
A toMX(A) and

Φϕ[(0|z, 0, . . .)] = [(0|ϕ(z), 0, . . .)].

Thus, we can consider Φϕ as an extension of ϕ. Note that z 7→ [(0|z, 0, . . .)] is not a
homomorphism of rings because it is not additive.

The following example shows that for some cases, the condition ‖γ(z)‖B ≤ Cγ‖z‖A
is not necessary for the continuity of Φγ.

Example 3. Let X = `p for 1 ≤ p < ∞, let Y = `1, and let n be a natural number, n ≥ p. We set
γ(z) = zn, z ∈ A. Then, for every Banach algebra A, the mapping Φγ fromM`p(A) toM`1(A)
is a continuous homomorphism. Indeed, since n ≥ p, Φγ(u) ∈ M`1(A) for every u ∈ M`p(A)
and

‖Φγ(u)‖ ≤ ‖u‖n.

Thus, Φγ is continuous at zero and, thus, continuous.

Example 4. Let γ(z) = ‖z‖A. Then, Φγ mapsMX(D) toMX(C), and it is continuous and
additive. If the norm A is multiplicative, then Φγ is multiplicative.
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Note that if Φ is a homomorphism fromMX(D) toMY(U ) and for every z ∈ D,

Φ([0|z, 0, . . .]) = ([0|w, 0, . . .])

for some w ∈ U , then the map γ : z 7→ w is multiplicative. However, we do not know if
every homomorphism fromMX(D) toMY(U ) is of the form in Theorem 2.

Let us consider vector-valued mappings onM(D). Let E be a linear normed space. We
say that a mapping f : ΛX(D)→ E is supersymmetric if f (y|x) = f (y′|x′) whenever (y|x) ∼
(y′|x′). In fact, every supersymmetric function can be defined onM(D) by f̃ ([(y|x)]) =
f (y|x). It is easy to check that if f is of the form

f (y|x) =
∞

∑
i=1

γ(xi)−
∞

∑
j=1

γ(yj), (2)

where γ is a map fromM(D) to E, then f̃ is supersymmetric and additive. If γ is multi-
plicative, then f̃ is so.

Example 5. Let (y|x) be an irreducible representative of u ∈ ΛX(D). We set

f (u) = ‖x‖ − ‖y‖.

Then, f is a supersymmetric complex-valued function.

If D = A is a Banach algebra, then ΛX(A) is a Banach space, and we can consider
supersymmetric polynomials on ΛX(A), that is, polynomial mappings to a normed space E
that are supersymmetric. Let us recall that a mapping Pn from a normed space Z to E is an
n-homogeneous polynomial if there exists a multi-linear mapping Pn on the nth Cartesian
degree Zn of Z such that Pn(x) = Pn(x, . . . , x). A finite sum of homogeneous polynomials
is a polynomial. Continuous polynomials on Banach spaces were studied by many authors
(see, e.g., [31]). The following example gives us supersymmetric polynomials on Λ`p(A)
for 1 ≤ p ≤ ∞.

Example 6. Let X = `p for some 1 ≤ p < ∞, and E = A. For any integer n ≥ p, we define

Tm(y|x) =
∞

∑
i=1

xm
i −

∞

∑
i=1

ym
i .

Clearly, polynomials Tm are supersymmetric. Since the mapping xi 7→ xm
i is multiplicative

and ‖Tm(y|x)‖ ≤ (‖x‖+ ‖y‖)m, mappings T̃m are continuous ring homomorphisms fromM(A)
to A.

A polynomial P on Λ`p(C) is separately symmetric if P is invariant with respect to all
permutations (σ, µ) acting by

σ : (x1, . . . , xn, . . .) 7→ (xσ(1), . . . , xσ(n), . . .)

and
µ : (y1, . . . , yn, . . .) 7→ (yµ(1), . . . , yµ(n), . . .).

Clearly, if P is supersymmetric, then it is separately symmetric, but the inverse state-
ment is not true.

Example 7. Let
P(y|x) = ∑

i<j
xixj −∑

i<j
yiyj.
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Evidently, P is separately symmetric. Moreover, P(x|y) = −P(y|x). However, P is not su-
persymmetric. Indeed, P(. . . , 0,−1|1, 0, . . .) = 0 while P(. . . , 0, 1,−1|1, 1, 0, . . .) = 2. However,
(. . . , 0,−1|1, 0, . . .) ∼ (. . . , 0, 1,−1|1, 1, 0, . . .). Thus, P has different values on equivalent vectors,
and thus, it cannot be supersymmetric.

The minimal algebra generated by polynomials Tm, m ∈ N was studied in [7,29] for
the case of X = `1 and D = A = C. The next theorem shows that every supersymmetric
polynomial can be represented as a finite algebraic combination of polynomials Tm.

Theorem 3. Let P be a supersymmetric polynomial on Λ`1(C). Then, P is an algebraic combination
(that is, a linear combination of finite products) of polynomials Tm, m ∈ N.

Proof. Let P be a supersymmetric polynomial on Λ`1(C); then, P(y|x) is separately sym-
metric. According to [34], P is an algebraic combination of polynomials F+

m and F−m , m ∈ N,
where

F+
m (y|x) =

∞

∑
k=1

xm
k and F−m (y|x) =

∞

∑
k=1

ym
k .

Thus, we have

P(y|x) =
m

∑
k1 + 2k2 + · · ·+ iki+
n1 + 2n2 + · · · jnj = 0

ck1 ...kin1 ...nj
F+

1 (x)k1 · · · F+
i (x)ki F−1 (y)n1 · · · F−j (y)nj

for some constants ck1 ...kin1 ...nj
.

Clearly, Tk = F+
k − F−k . Denote Qk = F+

k + F−k . Then, there is a polynomial q : Cn → C
such that

P(y|x) = q(T1(y|x), . . . , Tm(y|x), Q1(y|x), . . . , Qm(y|x)).

According to our assumption, P(y • a|x • a) = P(y|x), a ∈ `1. We can see that

Tk(y • a|x • a) = Tk(y|x) and Qk(y • a|x • a) = Qk(y|x) + 2Fk(a)

for every k ∈ N. It is known that for every (λ1, . . . , λm) ∈ Cm, there exists a vector a ∈ `1
such that Fn(a) = λn, 1 ≤ n ≤ m (see, e.g., [19]). Thus, for every (λ1, . . . , λm) ∈ Cm,

q(T1(y|x), . . . , Tm(y|x), Q1(y|x), . . . , Qm(y|x))

= q(T1(y|x), . . . , Tm(y|x), Q1(y|x) + λ1, . . . , Qm(y|x) + λm).

However, this means that q does not depend on Q1, . . . , Qm. Hence, P is an algebraic
combination of polynomials Tm, m ∈ N.

In particular, in [29], it was proved that [(y|x)] = [(y′|x′)] inM`1(C) if and only if
Tm(y|x) = Tm(y′|x′) for all m ∈ N. The next example shows that in a more general case,
supersymmetric polynomials do not separate points ofM(D).

Example 8. Let X = `1 and A = C2 be the algebra with respect to the coordinate-wise multiplica-
tion. Then, the vector

(y|x) =
(

. . . , 0,
(

1
2

)
,
(

3
4

)∣∣∣(3
2

)
,
(

1
4

)
, 0, . . .

)
is not equivalent to (0|0), but

Tm(y|x) =
(

3m + 1m − 1m − 3m

4m + 2m − 2m − 4m

)
=

(
0
0

)
.
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Let ϕ be a complex homomorphism of A and let Φ be a ring homomorphism from
M(D) to A; then, ϕ ◦Φ is a ring complex homomorphism ofM(D). From the following
example, we can see that there are complex homomorphisms ofM(D) constructed in a
different way.

Example 9. Consider the caseM`1(C
2), as in Example 8. For arbitrary k, n ∈ N, we set

Pkn(y|x) =
∞

∑
i=1

xk
i x
′n
i −

∞

∑
i=1

yk
i y
′n
i ,

where

(y|x) =
(
· · · ,

(
y2

y
′
2

)
,
(

y1

y
′
1

) ∣∣∣ (
x1

x
′
1

)
,
(

x2

x
′
2

)
, · · ·

)
.

Note that ‖Pkn(y|x)‖ ≤ (‖x‖+ ‖y‖)k+n. Polynomials Pkn are of the form (2) for γ(x) =
xk

i x
′n
i , and the map γ is multiplicative. So, P̃kn are continuous complex homomorphisms.

Polynomials Pkn in Example 9, which are restricted to elements (0|x), are called block-
symmetric polynomials on `1(C2) (see, e.g., [4,23,26]) or MacMahon polynomials in the
literature [35].

Example 10. Let X = `1, and let A = Mm be the algebra of all square matrices m × m for
some fixed m ∈ N. Then,M`1(Mm) is a noncommutative ring of matrix multisets. Let D be the
following map fromM`1(Mm) toM`1(C):

D([(y|x)]) = [(. . . , det(yn), . . . , det(y2), det(y1)|det(x1), det(x2), . . . , det(xn), . . .)].

Since the determinant det(xi) ia a multiplicative mapping, D is a homomorphism. The
continuity of D follows from the fact that ‖D(y|x)‖ ≤ (‖x‖+ ‖y‖)m.

4. Discussions and Conclusions

We considered the ring of multisetsMX(D) consisting of elements in a given multi-
plicative semigroup D of a Banach algebra A and endowed with some natural “supersym-
metric” operations of addition and multiplication. We constructed a complete metrizable
topology ofMX(D) generated by a ring norm. In addition, we investigated homomor-
phisms ofMX(D) and their relations with supersymmetric polynomials. Note thatMX(D)
is not a linear space over C or R because there is no natural multiplication by scalars (see,
e.g., [7]).

Rings of multisets may have wide applications in neural networks and machine
learning. Computer algorithms are often invariant with respect to permutations of input
data instances. This observation suggests the use of permutation-invariant sets instead
of vectors of a fixed dimension for the organization of input data (see, e.g., [12]). For this
purpose, multisets (sets with possible repetitions of elements) are actually more suitable.
However, classical multisets have a poor algebraic structure. For example, a very important
operation of the union of two multisets has no inverse. On the other hand, we can consider a
set of multisets as a natural domain of symmetric functions (with respect to permutations of
variables) that are defined on a linear space. Since the union of multisets does not preserve
cardinality, it is convenient to use infinite-dimensional linear spaces of sequences, such as
Banach spaces with symmetric bases. All symmetric functions on X can be extended to the
set of multisets, and if X = `1, then symmetric polynomials separate different points of the
multisets. To get an operation that is inverse to the union, we have to use Grothendieck’s
well-known idea, which is widely used in K-theory. It leads to the construction of classes of
equivalences of pairs (y|x), where y plays the role of a “negative part” (while components
of both vectors x and y are complex numbers or, in the general case, elements of an abstract
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Banach algebra A). If we consider x as vector coding information, then y consists of
“negative” information in the sense that if both x and y contain the same piece of information
(the same coordinate), then this piece of information will be annulated. Therefore, the
union can be extended to a commutative group operation on the classes of equivalence,
and together with a natural symmetric multiplication, they form a ring structure on the set
of classes. Such a ring of multisets of complex numbers was considered in [7] for the case
of X = `1. In this paper, we investigated the situation when the “coordinates” of x and
y were in a Banach algebra A and sequences of their norms belonged to a Banach space
X with a symmetric basis. It is interesting that the basic results in [7] can be extended to
the general case. In particular, the ringMX(D) that was obtained is a complete metric
space in a metrizable topology, and it is naturally induced by norms of A and X. The main
difference is that supersymmetric polynomials separate points ofM`1(C), while in the
general case, they do not.

One can compare the rings of multisets and fuzzy sets. In a fuzzy set, each element
may have a partial membership (between 0 and 1) [36]. In a ring of multisets, elements
may have multiple memberships, and even negatively multiple memberships. Note that
the ringMX(D) is never algebra, even if D = C (see [7]). However, it is known [33] that
under some natural conditions, any metric ring R can be embedded into a normed algebra
over the field of fractions over R. It would be interesting to construct such an algebra for
the ringMX(D) and compare it with fuzzy sets and other algebraic structures.
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