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Abstract: Let G be a graph with a minimum degree δ of at least two. The inclusion chromatic index
of G, denoted by χ′⊂(G), is the minimum number of colors needed to properly color the edges of
G so that the set of colors incident with any vertex is not contained in the set of colors incident to
any of its neighbors. We prove that every connected subcubic graph G with δ(G) ≥ 2 either has an
inclusion chromatic index of at most six, or G is isomorphic to K̂2,3, where its inclusion chromatic
index is seven.
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1. Introduction

Graph coloring is an abstraction for partitioning a set of binary-related objects into
subsets of independent objects; it has many practical applications [1]. The chromatic index
and chromatic polynomials are two important parameters in graph theory. There are also
many chemical applications to the chromatic index and chromatic polynomials; see ([2–8]).
In this paper, we will study an edge coloring: inclusion-free edge coloring. Graphs in this
article are assumed to be simple and undirected. Let G be a graph with minimum degree
δ ≥ 2 and let φ be a proper edge coloring of G. For every v ∈ V(G), the palette of v is
defined to be

Sφ(v) = {φ(e)|e is incident to v}.

The inclusion-free edge coloring, recently introduced by Przybyłlo and Kwaśny [9], is
a proper edge coloring φ of G such that for every uv ∈ E(G), neither Sφ(u) ⊆ Sφ(v) nor
Sφ(v) ⊆ Sφ(u). The requirement of δ ≥ 2 is necessary since the palette of a degree-1 vertex
is always a subset of the palette of its unique neighbor. The minimum number of colors
required in an inclusion-free edge coloring of G is called the inclusion chromatic index and is
denoted by χ′⊂(G).

Actually, the concept of the inclusion-free edge coloring was first introduced by
Zhang [10], where it was named as Smarandachely adjacent vertex edge coloring. Then,
Gu et al. [11] also investigated the topic and named the coloring as strict neighbor-
distinguishing edge coloring. Although their names are different, they were all introduced
to strengthen the adjacent-vertex-distinguishing edge coloring, or for short, AVD-edge col-
oring. An AVD-edge coloring of G is a proper edge coloring φ such that for every uv ∈ E(G),
Sφ(u) 6= Sφ(v); the minimum number of colors needed in an AVD-edge coloring is called
the AVD chromatic index, denoted by χ′a(G). Clearly a graph G has an AVD-edge coloring
if and only if G contains no isolated edges. Note that for a regular graph G, the palettes
of any two vertices are different if and only if neither is contained in the other; hence,
χ′a(G) = χ′⊂(G).

The AVD-edge coloring has attracted the attention of several groups of graph theorists.
It was conjectured by Zhang et al. [12] that χ′a(G) ≤ ∆ + 2 for any connected graph G with
|V(G)| ≥ 3 that is not the cycle C5. Balister et al. [13] proved that the conjecture holds
for the class of bipartite graphs and for the class of subcubic graphs; they also showed
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that in general, χ′a(G) ≤ ∆ + O(log χ(G)) where χ(G) is the chromatic number of G. More
recently, Hatami [14] showed that χ′a(G) ≤ ∆ + 300.

Despite the similarity between the two invariant χ′a(G) and χ′⊂(G), the upper bound
for χ′⊂(G) seems to be much larger than that of χ′a(G). Przybyłlo and Kwaśny [9] showed
that if G is a complete bipartite graph, then χ′⊂(G) = (1 + 1

δ−1 )∆, where δ is the min-
imum degree of G. By using a greedy coloring scheme, they showed that in general
χ′⊂(G) ≤ 3∆− 1 where ∆ is the maximum degree of G. They made the following conjecture:

Conjecture 1. Let G be a connected graph with minimum degree δ ≥ 2 and maximum degree ∆
that is not isomorphic to C5. Then

χ′⊂(G) ≤ d(1 + 1
δ− 1

)∆e.

Using a probabilistic approach, Przybyłlo and Kwaśny [9] proved the following upper
bound for χ′⊂(G), which is not as strong as the conjectured bound in Conjecture 1.

Theorem 1. If G is a graph with minimum degree δ ≥ 2 and maximum degree ∆, then

χ′⊂(G) ≤ (1 +
4
δ
)∆ + O(∆

2
3 log4 ∆).

It turns out that there exists a class of exceptional graphs to Conjecture 1 in the case of
δ = 2: for ∆ ≥ 3, let K̂2,∆ be the graph obtained from the complete bipartite graph K2,∆ by
subdividing an edge exactly once; see Figure 1. It is easy to check that no two edges of K̂2,∆
can receive the same color in an inclusion-free edge coloring; hence, χ′⊂(K̂2,∆) = 2∆ + 1,
which is the number of edges of K̂2,∆.

x1

x2

y1

y2 y3 y4 y5 y∆

a

Figure 1. The graph K̂2,∆.

We strongly believe that K̂2,∆ may be the only exception to Conjecture 1. So Conjec-
ture 1 needs to be slightly modified by adding the condition that G is not isomorphic to
K̂2,∆. Gu et al. [11] confirmed the modified conjecture for the class of subcubic graphs. A
graph G is f ormal if δ(G) ≥ 2. They proved the following result:

Theorem 2. Let G be a connected formal subcubic graph. Then χ
′
⊂(G) ≤ 7, and moreover,

χ
′
⊂(G) = 7 if and only if G is isomorphic to the graph K̂2,3.

They proved the result by contradiction. Let G be a counterexample with a minimal
number of edges, by establishing a series of auxiliary claims, they showed that G does not
contain a 2-vertex adjacent to two 2-vertices, and any 3-vertex of G cannot be adjacent to a
2-vertex, that is, G must be 3-regular, and hence, χ

′
⊂(G) ≤ 5, a contradiction.

In this paper, we will give a shorter proof of this theorem. We also prove the result by
contradiction. First, we establish a lemma for forbidden colors and use it to exclude some
structures. We also show that G does not contain a 2-vertex adjacent to two 2-vertices, i.e.,
G contains no k-thread with k ≥ 3, and G does not contain a 3-cycle with one 2-vertex, and
a 4-cycle with two non-adjacent 2-vertices. Then, we show that if G contains a 1-thread or
2-thread, it must be isomorphic to K̂2,3.
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2. Proof of the Main Result

Let G be a connected subcubic graph with δ(G) = 2. Suppose that χ′⊂(G) ≥ 7. We
pick a graph G such that |V(G)|+ |E(G)| is as small as possible. By a good coloring, we
mean an inclusion-free edge coloring using at most six colors. If G and H are two graphs
with |E(H)|+ |V(H)| < |E(G)|+ |V(G)|, we will say that H is smaller than G. We will
show that G is isomorphic to K̂2,3.

Let C = {1, 2, 3, 4, 5, 6} be a set of six colors. Suppose that φ is a good coloring of a
proper subgraph G′ of G using colors from C. Let e = uv be an edge in E(G)\E(G′). We
denote by Aφ(e) the set of colors that are available for e. To color e, one cannot use a color
from Sφ(u); moreover, for each neighbor v′ of u other than v, if by assigning a color α to e,
we would have either Sφ(u) ⊆ Sφ(v′) or Sφ(v′) ⊆ Sφ(u), then the color α cannot be used
for e. We call these two types of colors the forbidden colors of e by the vertex u, denoted by
Fφ(e, u). It follows that Aφ(e) = C\(Fφ(e, u) ∪ Fφ(e, v)).

For simplicity, we use k-vertex to denote a vertex with degree k. Similarly, by k-neighbor
of a vertex u, we mean a neighbor of u that has degree k.

Lemma 1. Suppose that G′ is a proper subgraph of G with δ(G′) = 2 and that φ is a good coloring
of G′. Let e = uv be an edge in E(G)\E(G′), where u is a 2-vertex of G′. Then

• |Fφ(e, u)| = 2 if both neighbors of u in G′ are 3-vertices;
• |Fφ(e, u)| = 3 if exactly one neighbor of u in G′ is a 3-vertex;
• |Fφ(e, u)| ≤ 4 if both neighbors of u in G′ are 2-vertices.

Proof. Let v′ and v′′ be the two neighbors of u in G′. Since φ is a good coloring of G′,
φ(uv′′) /∈ Sφ(v′). Therefore, no matter what color we assign to the edge uv, we will have
that Sφ(u) * Sφ(v′). Now if v′ is a 3-vertex of G′, then the only color in Sφ(v′) that is
forbidden for e is φ(uv′); while if v′ is a 2-vertex of G′, then neither color in Sφ(v′) can
be used for e since we require Sφ(v′) * Sφ(u). By symmetry, the same holds for v′′. So
Lemma 1 follows immediately. (Note that we may have that |Fφ(e, u)| = 3 in the case of
dG′(v′) = dG′(v′′) = 2: this happens when Sφ(v′) ∩ Sφ(v′′) 6= ∅.)

Actually, Lemma 1 can be extended to more general situations: let G be a connected
graph with δ(G) ≥ 2. Suppose that G′ is a proper subgraph of G with δ(G′) ≥ 2 and that
φ is an inclusion-free edge coloring of G′. Let e = uv be an edge in E(G)\E(G′). Then
|Fφ(e, u)| ≤ du + Nu, where du is the degree of u in G′, and Nu is the number of neighbors
of u in G′ with degree no more than du.

For integer k ≥ 0, a k-thread of G is a path P = v0v1v2 · · · vk+1 of length k + 1 such
that both v0 and vk+1 are 3-vertices, and each of v1, v2, · · · , vk is a 2-vertex. So a 0-thread is
an edge that is incident to two 3-vertices. A k-thread P is called separating if deleting all the
internal vertices in P yields a disconnected subgraph of G.

Lemma 2. G contains no separating k-thread for k ≥ 0.

Proof. Let P = v0v1v2 · · · vk+1 be a separating k-thread and let G′ be the subgraph of G
obtained by deleting all the internal vertices in P. Since G′ is disconnected, we assume that
G1 and G2 are the two components of G′ with v0 ∈ V(G1) and vk+1 ∈ V(G2). Since G′ is a
proper subgraph of G, G′ has a good coloring φ. We will extend φ to G by assigning colors
to the edges on the thread P.

First we assume that k ≥ 1. By permuting colors in G1 if necessary, we may assume
that Sφ(v0) = Sφ(vk+1). Clearly v0 is a 2-vertex in G′. By Lemma 1, |Fφ(v0v1, v0)| ≤ 4, and
hence, |Aφ(v0v1)| ≥ 2. By symmetry, |Aφ(vkvk+1)| ≥ 2. So we may assign distinct colors
to v0v1 and vkvk+1, then color all other edges on the thread one by one in the following
order: v1v2, v2v3, · · · , vk−1vk. Note that in each step, the edge to be colored forbids at most
five colors, and hence, it has at least one color available. So we obtain a good coloring of G.
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Next assume that k = 0, i.e., G has a cut edge that is incident to two 3-vertices. Then we
can permute colors in G1 so that Fφ(v0v1, v1) ⊆ Fφ(v0v1, v0) if |Fφ(v0v1, v1)| ≤ |Fφ(v0v1, v0)|
or Fφ(v0v1, v0) ⊆ Fφ(v0v1, v1) otherwise; hence, there are at least two colors available for
v0v1 and it can be colored.

In each case, we obtain a good coloring of G, contrary to our assumption. Therefore,
G contains no separating k-thread for k ≥ 0.

For general case, suppose that G is a connected graph with δ(G) ≥ 2, P = v0v1v2 · · · vk+1
is a separating k-thread in G. Let G′ be the graph obtained by deleting all the inter-
nal vertices of P, and G1, G2 be the two components of G′. By the similar proof as
Lemma 2, we have χ

′
⊂(G) ≤ max{χ′⊂(G1), χ

′
⊂(G2), |Fφ(v0v1, v0)|, |Fφ(vkvk+1, vk+1)|}+ 3.

Since |Fφ(e, u)| ≤ du + Nu ≤ 2du, χ
′
⊂(G) ≤ max{χ′⊂(G1), χ

′
⊂(G2), 2dv0 , 2dvk+1 |}+ 3.

Lemma 3. Let G′ be a subgraph of G with δ(G′) ≥ 2. Suppose that P = v0v1v2 · · · vk+1 is a
k-thread in G′ with k ≥ 3, then G′ has a good coloring φ such that φ(v0v1) = φ(vkvk+1). In
particular, G contains no k-thread with k ≥ 3.

Proof. First assume that v0 is not adjacent to vk+1. Then let G′′ be the graph obtained by
adding the edge v0vk+1 to G′\{v1, v2, · · · vk}. Clearly δ(G′′) ≥ 2. So G′′ has a good coloring
φ′. We can construct a good coloring φ of G′ as follows: φ(v0v1) = φ(vkvk+1) = φ′(v0vk+1);
φ(e) = φ′(e) for all e ∈ E(G′) ∩ E(G′′). We color the remaining edges in the following
order: v1v2, v2v3, · · · , vk−1vk. Since k ≥ 3, at each step, the edge to be colored forbids at
most five colors. Therefore, all edges of P can be colored and we obtain a good coloring φ
of G′ with φ(v0v1) = φ(vkvk+1).

Next assume that v0 is adjacent to vk+1. Let G′′ = G′\{v1, v2, · · · vk} and let φ be a
good coloring of G′′. Then each of Aφ(v0v1) and Aφ(vkvk+1) has size at least three. Since
φ(v0vk+1) /∈ Aφ(v0v1) ∪ Aφ(vkvk+1). We have that Aφ(v0v1) ∩ Aφ(vkvk+1) 6= ∅. We may
pick α ∈ Aφ(v0v1) ∩ Aφ(vkvk+1) and assign it to v0v1 and vkvk+1. Similar as above, the
remaining edges of P can be colored in the order: v1v2, v2v3, · · · , vk−1vk. Therefore, G′ has
a good coloring φ such that φ(v0v1) = φ(vkvk+1).

In particular, if G′ = G, and G has a k-thread with k ≥ 3, then G has good coloring φ,
contrary to our assumption. Hence, G contains no k-thread with k ≥ 3.

Lemma 3 can also be extended to more general situations: let G be a connected graph
with δ(G) ≥ 2, and H be a graph obtained from G by subdividing an edge with at least 3
vertices, then χ

′
⊂(H) ≤ max{χ′⊂(G), 6}.

Lemma 4. Let P be a 1- or 2-thread in G. Then the two 3-vertices on P are not adjacent to
each other.

Proof. Suppose that P = uwv is a 1-thread in G where u is adjacent to v. Let u′ (resp. v′) be
the neighbor of u (resp. v) not on P. Note that G′ = G\w is a subcubic graph with minimum
degree 2. By our assumption on G, G′ has good coloring φ. Since dG′(u) = dG′(v) = 2,
φ(uv) /∈ Sφ(u′) and φ(uv) /∈ Sφ(v′). It is easy to see that if u′ is a 3-vertex, |Aφ(uw)| ≥ 3
and if u′ is a 2-vertex, |Aφ(uw) ≥ 2. By symmetry, |Aφ(vw)| ≥ 2. So we can assign two
distinct colors to uw and vw to obtain a good coloring of G, a contradiction.

The case when P is a 2-thread can be proved in a similar manner.

Lemma 5. Let uvxyu be a 4-cycle of G. If dG(u) = dG(x) = 3 and dG(v) = dG(y) = 2, then G
is isomorphic to K̂2,3.

Proof. Let u′ ( resp. x′) be the neighbor of u (resp. x) other than v and y.
First we assume that u′ = x′. In this case, if dG(u′) = 2, then G ∼= K2,3, contrary to our

assumption that χ′⊂(G) ≥ 7. If dG(u′) = 3, let w be the neighbor of u′ other than u, x, then
the edge u′w lies in a separating k-thread with k ≥ 0, contrary to Lemma 2. Hence, u′ 6= x′.
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Let φ be a good coloring of G′ = G\v. Then Aφ(uv) = C\(Fφ(uv, u) ∪ Sφ(x)). So if
one of u′ and x′ is a 3-vertex, then by Lemma 1, one of uv and vx has at least two colors
available and the other one has at least one color available. So they can both be colored.
Therefore, dG(x′) = dG(u′) = 2.

Note that if u′ is adjacent to x′, then G ∼= K̂2,3. So we may assume that u′ is not
adjacent to x′. Let G′ be the graph obtained by adding the edge u′x′ in G\{u, v, x, y}.
Clearly δ(G′) ≥ 2. So G′ has a good coloring φ′. Since dG′(u′) = dG′(x′) = 2, the edges
u′u′′, u′x′, x′x′′ receive different colors, where u′′ (resp. x′′) be the neighbor of u′ (resp.
x′). We may assume that φ(u′u′′) = 1, φ(u′x′) = 2, φ(x′x′′) = 3, then we color the
edges uu′, uv, uy, vx, xy, xx′ as follows: φ(uu′) = φ(xx′) = 2, φ(uv) = 3, φ(vx) = 4,
φ(xy) = 5, φ(uy) = 6. It is easy to see that this coloring is a good coloring of G, contrary to
our assumption.

Recall that Balister et al. [13] showed that a 3-regular graph has an AVD chromatic
index of at most 5. Since the inclusion chromatic index is the same as the AVD chromatic
index for regular graphs, every 3-regular graph has an inclusion chromatic index of at most
5. Since χ′⊂(G) ≥ 7 by our assumption, G must have at least one 2-vertex. By Lemma 3,
G contains either a 1-thread or a 2-thread. Let P be a k-thread with k = 1 or 2, and let G′

be the graph obtained from G by deleting all internal vertices of P. By Lemma 2, G′ is
connected. Clearly, G′ is a subcubic graph with minimum degree 2 and is smaller than G.
By our assumption on G, G′ has a good coloring φ. We will extend φ to a good coloring of
G by assigning appropriate colors for all edges on the thread P.

Lemma 6. If P is a 2-thread in G, then G is isomorphic to K̂2,3.

Proof. Suppose that P = uu′v′v is a 2-thread where dG(u′) = dG(v′) = 2 and
dG(u) = dG(v) = 3. By Lemma 2, u 6= v, and by Lemma 4, u is not adjacent to v.
Let u1 and u2 be the neighbors of u other than u′ and let v1 and v2 be the neighbors of v
other than v′.

Note that the edge uu′ can be colored by any color not in Fφ(uu′, u). By Lemma 1,
|Aφ(uu′)| ≥ 2; by symmetry, |Aφ(vv′)| ≥ 2. The edge u′v′ can be colored by any color not
in Sφ(u) ∪ Sφ(v), so |Aφ(u′v′)| ≥ 2.

Assume that there exists a 3-vertex in {u1, u2, v1, v2}, say u1. Then by Lemma 1, the
edge uu′ forbids at most three colors, and hence, the edges on P can be colored in the order
of vv′, u′v′, and uu′. We obtain a good coloring of G, a contradiction.

Therefore, we have that dG(u1) = dG(u2) = dG(v1) = dG(v2) = 2. Note that if
{u1, u2} = {v1, v2}, then G is isomorphic to K̂2,3. So we may assume that |{u1, u2} ∩
{v1, v2}| ≤ 1.

Case 1: |{u1, u2} ∩ {v1, v2}| = 1.
By symmetry, assume that u1 = v1. Then, uu′v′vu1u form a 5-cycle, call it C1. Let

G′′ be the graph obtained from G\{u′, v′, u1} by identifying u and v. Let w be the new
identified vertex, and let u′2 (resp v′2) be the neighbor of u2 in G′′ other than w. Clearly,
G′′ is a subcubic graph with minimum degree 2 and is smaller than G. So G′′ has a good
coloring ψ′. We extend ψ′ to a good coloring ψ of G as follows: let ψ(uu2) = ψ′(wu2),
ψ(vv2) = ψ′(wv2), and ψ(e) = ψ′(e) for e ∈ E(G) ∩ E(G′′). Now we need to assign colors
to edges on C1: Since ψ′ is a good coloring of G′′, among the four edges uu2, u2u′2, vv2
and v2v′2, only u2u′2 and v2v′2 may share a same color. So we may assume that ψ(uu2) = 1,
ψ(vv2) = 2, ψ(u2u′2) = 3, and ψ(v2v′2) = 3 or 4. In both cases, we will set ψ(uu′) = 2,
ψ(vv′) = 1, ψ(uu1) = 4, ψ(vv1) = 5, and ψ(u′v′) = 6. It is easy to check that ψ is a good
coloring of G, a contradiction.

Case 2: N(u) ∩ N(v) = ∅.
For x ∈ {u, v} and i ∈ {1, 2}, let x′i be the neighbor of xi other than x. By Lemmas 5

and 2, u′1 6= u′2 and v′1 6= v′2. If u′ is adjacent to u′2, then by Lemma 2, one of them must have
degree 3, say dG(u′1) = 3. We claim that dG(u′2) = 3, as, otherwise, this can be reduced
to Case 1 by choosing the 2-thread uu2u′2u′1 to begin with. By Lemma 3, we may choose
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φ such that φ(u1u′1) = φ(u2u′2). Note that the edge uu′ can be assigned any color not in
Sφ(u1) ∪ Sφ(u2); so |Aφ(uu′)| ≥ 3. Similarly, |Aφ(u′v′)| ≥ 2 and |Aφ(vv′)| ≥ 2. So the
edges vv′, u′v′, and uu′ can be colored in that order.

Lemma 7. Let uwvu1u be a 4-cycle of G with d(u) = d(v) = d(u1) = 3 and d(w) = 2, and let
u2 (resp. v2) be the neighbor of u (resp. v) other than w and u1. If d(u2) = d(v2) = 2, then the
graph G′ = G\w has a good coloring φ so that φ(uu2) = φ(vv2).

Proof. Let u′1 be the neighbor of u1 other than u and v and let u′2 (resp. v′2) be the neighbor
of u2 (resp. v2) other than u (resp. v). By Lemma 2, u2v2 /∈ E(G). Since G′ is a subcubic
graph with minimum degree 2 and is smaller than G, G′ has a good coloring φ. Now we
remove the colors on the edges u2u′2, uu2, uu1, vu1, vv2, and v2v′2. Then |Aφ(uu2)| ≥ 3, and
|Aφ(vv2)| ≥ 3. Note that |Aφ(uu2) ∪ Aφ(vv2)| ≤ 5 since φ(u1u′1) /∈ Aφ(uu2) ∪ Aφ(vv2).
So Aφ(uu2) ∩ Aφ(vv2) 6= ∅. Choose a color α ∈ Aφ(uu2) ∩ Aφ(vv2) and assign it to edges
uu2 and vv2.

If either u′2 = v′2 or u′2 is adjacent to v′2, then each of u2u′2 and v2v′2 has at least two
colors available. So we will color them using different colors. Now each of uu1 and vu1 has
at least two colors available, so they can be colored as well. So we may assume that neither
u′2 = v′2 nor u′2 is adjacent to v′2, and hence, u2u′2 and v2v′2 may receive the same color.

Now we have that |Aφ(u2u′2)| ≥ 1, |Aφ(uu1)| ≥ 3, and |Aφ(vu1)| ≥ 3 and |Aφ(v2v′2)| ≥
1. We then color u2u′2 and v2v′2 independently. The edge uu1 (resp. vv1) may only lose
the color assigned to u2u′2 (resp. v2v′2). So both uu1 and vv1 still have at least two colors
available, and hence, they can be colored.

Finally we consider the case that P is a 1-thread.

Lemma 8. If P is a 1-thread in G, then G is isomorphic to K̂2,3.

Proof. Let P = uwv. Then by Lemma 4, u is not adjacent to v. Let u1, u2 be the neighbors of
u other than w, and let v1, v2 be the neighbors of v other than w. We consider the following
three cases.

Case 1: {u1, u2} = {v1, v2}.
Assume that u1 = v1 and u2 = v2. By Lemma 5, neither u1 nor u2 is a 2-vertex. So

dG(u1) = dG(u2) = 3. By Lemma 1, each of uw and vw forbids at most four colors. So they
both can be colored.

Case 2: |{u1, u2} ∩ {v1, v2}| = 1
Suppose that u1 = v1 and u2 6= v2. By Lemma 5, dG(u1) = 3. Note that the edge uw

can be assigned any color not in Fφ(uw, u) ∪ Sφ(v) and the edge vw can be assigned any
color not in Fφ(vw, v) ∪ Sφ(u). So if one of u2 and v2 is a 3-vertex, then by Lemma 1, one
of uw and vw has at least two colors available, while the other one has at least one color
available. So we can extend φ to a good coloring of G, a contradiction.

Therefore, we may assume that dG(u2) = dG(v2) = 2. Let u′1 be the neighbor or u1
other than u and v and let u′2 (resp. v′2) be the neighbors of u2 (resp. v2) other than u (resp.
v). By Lemma 7, the graph G′ = G\w has a good coloring φ so that φ(uu2) = φ(vv2). It is
easy to see that |Aφ(uw)| ≥ 2, and |Aφ(vw)| ≥ 2. Therefore, we may extend φ to a good
coloring of G, a contradiction.

Case 3: {u1, u2} ∩ {v1, v2} = ∅
Note that Aφ(uw) = C\(Fφ(uw, u) ∪ Sφ(v) and Aφ(vw) = C\(Fφ(vw, v) ∪ Sφ(u).

Therefore, if at least three of u1, u2, v1, and v2 are 3-vertices, then by Lemma 1, one of the
edges uw and vw has at least two colors available, while the other one has at least one color
available. So we can extend φ to a good coloring of G.

Therefore, at most, two of the vertices in {u1, u2, v1, v2} are 3-vertices. For i ∈ {1, 2}
we will use u′i (resp. v′i) to denote a neighbor of ui (resp. vi) different from u (resp. v). By
symmetry, it suffices to consider the following two subcases:

Subcase 3.1: both u1 and u2 are 2-vertices.
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Since G contains no 2-thread, each of u′1 and u′2 is a 3-vertex. By Lemmas 2 and 5,
u′1 6= u′2. So by Lemma 3, we can choose a good coloring φ of G\w with φ(u1u′1) = φ(u2u′2).
Then the edge uw has at least one color available. If the edge vw has at least two colors
available, then φ can be extended to a good coloring of G. Therefore, at least one of v1 and
v2 is a 2-vertex, say v1. Moreover, if Sφ(u) ∩ Sφ(v) 6= ∅, then one of uw and vw has two
available colors, while the other one has at least one available color, so φ can be extended
to a good coloring of G.

So we may assume that φ(uu1) = 1, φ(uu2) = 2, φ(vv1) = 3, φ(vv2) = 4, and
φ(u1u′1) = φ(u2u′2) = 5. If the color 5 /∈ Sφ(v1) ∪ Sφ(v2), or dG(v2) = 3 and 5 /∈ Sφ(v1),
then we may assign color 5 to vw and assign color 6 to uw to obtain a good coloring of G.
So we can assume that φ(v1v′1) = 5.

Observe that if {3, 4} * Sφ(u′1), say 3 /∈ Sφ(u′1), then by changing the color of uu1
from 1 to 3, we obtain that |Aφ(uw)| ≥ 2 and |Aφ(vw)| ≥ 1. So we can extend φ to a good
coloring of G. So we have that Sφ(u′1) = {3, 4, 5}. Similarly Sφ(u′2) = {3, 4, 5}.

Next we will show that v2 must be a 2-vertex. Assume that dG(v2) = 3. Note that
the color 3 /∈ Sφ(v2) since φ is a good coloring of G′. So if {1, 2} * Sφ(v′1), say 1 /∈ Sφ′(v′1),
then we may change the color of vv1 from 3 to 1, assign color 3 to vw and color 6 to uw; we
obtain a good coloring of G. So Sφ(v′1) = {1, 2, 5}. Now we can change the colors of uu1
and vv1 both to 6, and let φ(uw) = 1 and φ(vw) = 3, we obtain a good coloring of G.

Therefore, we know that dG(v2) = 2. Observe that v′2 is a 3-vertex. If Sφ(v′2) 6= {1, 2, 6},
then we can pick a color β ∈ {1, 2, 6}\Sφ′(v′2) and change the color of vv2 from 4 to β; if
β = 6, we will also change the color of uu1 from 1 to 6. Now we have Sφ(u) ∩ Sφ(v) 6= ∅,
so we can extend φ to a good coloring of G.

Therefore, we have that Sφ(v′2) = {1, 2, 6}. We construct a good coloring φ′ of
G′ = G\w as follows: for all e ∈ E(G′)\{vv1, vv2, v2v′2}, let φ′(e) = φ(e); for the edge
v2v′2, note that |Aφ′(v2v′2)| ≥ 2. So we can set φ′(v2v′2) 6= φ(v2v′2). Each of vv1 and vv2
has at least two colors available, so they can both be colored. In the new coloring φ′, since
|Sφ′(v2)\Sφ(v2)| = 1, Sφ′(v2) 6= {1, 2, 6}. Therefore, the coloring φ′ can be extended to a
good coloring of G.

Subcase 3.2: dG(u1) = dG(v1) = 3, dG(u2) = dG(v2) = 2.
Then |Aφ(uw)| ≥ 1 and |Aφ(vw)| ≥ 1. If one of |Aφ(uw)| and |Aφ(vw)| is at least 2,

or Aφ(uw) 6= Aφ(vw), then both uw and vw can be colored. So we may assume that
Aφ(uw) = Aφ(uw) = {6}. Without loss of generality, we may further assume that
φ(uu1) = 1, φ(uu2) = 2, φ(vv1) = 3, φ(vv2) = 4, φ(u2u′2) = φ(v2v′2) = 5.

By a similar argument used in Subcase 3.1, we deduce that Sφ(u′2) = {3, 4, 5} and
Sφ(v′2) = {1, 2, 5}. Then we can change the colors of uu2 and vv2 both to 6. Now we get a
good coloring of G by assigning color 2 to uw and color 4 to vw.

This completes our proof for Theorem 2.

3. Conclusions

In this paper, we present a slightly different proof of a result proved by Gu et al. [11].
Lemma 1 for forbidden colors is crucial for our proof, and it can be extended to a more
general setting. For ∆ ≥ 4, Conjecture 1 is still open. It will be interesting to consider the
case ∆ = 4 for our future work.
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