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Abstract: The present paper is devoted to the properties of entire vector-valued functions of bounded
L-index in join variables, where L : Cn → Rn

+ is a positive continuous function. For vector-valued
functions from this class we prove some propositions describing their local properties. In particular,
these functions possess the property that maximum of norm for some partial derivative at a skeleton
of polydisc does not exceed norm of the derivative at the center of polydisc multiplied by some
constant. The converse proposition is also true if the described inequality is satisfied for derivative in
each variable.
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1. Introduction

The present paper is devoted to the properties of entire vector-valued functions of
bounded L-index in joint variables (see Definition 1 below) where L : Cn → R.+ is
some positive continuous function. Recently, F. Nuray and R. Patterson [1] introduced
a concept of bounded index (i.e., L(z) ≡ 1) for entire bivariate functions from C2 onto
Cn by replacing the absolute value in the definition of an entire function of bounded
index by the maximum of the absolute values of the components. If the components of
a Cn-valued bivariate entire function are of bounded index, then the function is also of
bounded index. They presented sufficient conditions providing index boundedness of
bivariate vector-valued entire solutions of certain system of partial differential equations
with polynomial coefficients.

This class of functions is interesting with its connections with value distribution
theory [2,3] and analytic theory of differential equation [1,4,5]. For example, every entire
function has bounded value distribution if and only if its derivative has bounded index [6].

S. Shah proved that any entire function of bounded index [7] is a function of expo-
nential type. Generalizing a notion of bounded index for entire functions of two vari-
ables F. Nuray and R. Patterson [8] obtained some sufficient conditions that ensure that
exponential type is preserved. Another interesting application of this notion concerns
summability methods. Recently F. Nuray [9] presented necessary and sufficient conditions
on four-dimensional matrix transformations that preserve entireness, bounded index, and
absolute convergence of double sequences. He obtained general characterizations for four-
dimensional RH-regular matrix transformations for the space of entire, bounded index,
and absolutely summable double sequences.
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Of course, there are papers on analytic curves of bounded l-index. This class of
functions naturally appears if we consider systems of differential equations and investigate
properties of their analytic solutions. A concept of bounded index for entire curves was
introduced with the sup-norm [10] and with the Euclidean norm [11]. In these papers
the authors replaced the modulus of function by the appropriate norm in the definition.
Later there was proposed a definition of bounded ν-index [12] for entire curves with these
norms. In this definition, R. Roy and S. M. Shah replaced p! by p!|z|p and so on. Also
M. T. Bordulyak and M. M. Sheremeta [13,14] studied curves of bounded l-index which
are analytic in arbitrary bounded domain on a complex plane. These mathematicians
found sufficient conditions providing l-index boundedness of every analytic solutions for
some system of ordinary differential equations. They obtained some growth estimates and
described local behavior of the solutions.

As we wrote above, the first attempt to study analytic vector-valued solutions of
partial differential equations system by the notion of bounded index belongs to F. Nuray
and R. Patterson [1]. They considered only systems with polynomial coefficients and used
the notion of bounded index. In view of results from [7,8] such entire solutions are functions
of exponential type. It is known [15] that for any entire function F : Cn → C with bounded
multiplicities of zero points there exists a positive continuous function L : Cn → Rn

+ such
that F has bounded L-index in joint variables. Therefore, the usage of auxiliary functions L
in the definition allows to study very wide class of functions. We hope that similar fact will
be true for vector-valued entire functions. But for analog of the result and for application
of the notion of bounded index to system of partial differential equations we need many
propositions having a special separate interest in function theory. Therefore, there was
posed a general problem in paper [16] to construct theory of bounded index for entire
vector-valued functions. In this paper, we continue investigations from [16] and obtain
some new local properties of vector-valued entire functions from this class. We assume that
in future these results will help to study properties of entire vector-valued solutions for
system of partial differential equations as in the case of scalar-valued entire functions of
several complex variables (see details for the last case in [5]).

2. Notations and Definitions

We need some notations and definitions. Let us consider a class of vector-valued
entire functions

F = ( f1, . . . , fp) : Cn → Cp.

For this class of functions there is introduced a notion of boundedness of L-index in
joint variables (see [16]).

Let | · |p be a norm in Cp. Let L(z) = (l1(z), . . . , ln(z)), where lj(z) : Cn → R+ is a
positive continuous function.

Definition 1. An entire vector-valued function F : Cn → Cp is said to be of bounded L-index (in
joint variables), if there exists n0 ∈ Z+ such that for every z ∈ Cn and for all J ∈ Zn

+ one has

|F(J)(z)|p
J!LJ(z)

≤ max

{
|F(K)(z)|p
K!LK(z)

: K ∈ Zn
+, ‖K‖ ≤ n0

}
, (1)

where F(J)(z) = ( f (J)
1 (z), . . . , f (J)

p (z)), f (J)
k (z) =

∂‖J‖

∂zj1
1 . . . ∂zjn

n
fk(z), J = (j1, . . . , jn), ‖J‖ =

j1 + . . . + jn, J! = j1! · . . . · jn!, LJ(z) = l j1
1 (z) · . . . · l jn

n (z).

The least such integer n0 is called the L-index in joint variables and is denoted by
N(F, L).
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We assume the function L : Cn → Rn
+ such that 0 < λ1,j(R) ≤ λ2,j(R) < ∞ for any

j ∈ {1, 2, . . . , n} and ∀R ∈ Rn
+, where

λ1,j(R) = inf
z0∈Cn

inf
{

lj(z)/lj(z0) : z ∈ Dn[z0, R/L(z0)]
}

,

λ2,j(R) = sup
z0∈Cn

sup
{

lj(z)/lj(z0) : z ∈ Dn[z0, R/L(z0)]
}

and Dn[z0, R] = {z = (z1, . . . , zn) ∈ Cn : |z1 − z0,1| < r1, . . . , |zn − z0,n| < rn} is the poly-
disc with z0 = (z0,1, . . . , z0,n), R = (r1, . . . , rn). The class of such functions L we will denote
by Qn. For simplicity, we will use the notation Λs(R) = (λs,1(R), λs,2(R), . . . , λs,n(R)),
s ∈ {1, 2}.

In [16], V. Baksa and A. Bandura obtained the following result.

Theorem 1 ([16]). Let |A|p = max{|aj| : 1 ≤ j ≤ p} for A = (a1, . . . , ap) ∈ Cp, L ∈ Qn. An
entire vector-valued function F : Cn → Cp has bounded L-index in joint variables if and only if
for every R ∈ Rn

+ there exist n0 ∈ Z+, p0 > 0 such that for all z0 ∈ Cn there exists K0 ∈ Zn
+,

‖K0‖ ≤ n0, satisfying inequality

max

{
|F(K)(z)|p
K!LK(z)

: ‖K‖ ≤ n0, z ∈ Dn[z0, R/L(z0)]

}
≤ p0

|F(K0)(z0)|p
K0!LK0(z0)

. (2)

This theorem is an analog of Fricke’s Theorem obtained for entire functions of bounded
index of one complex variable in [17].

This theorem implies the following corollary.

Corollary 1 ([16]). Let L ∈ Qn and ‖ · ‖0 be some norm in Cp. An entire vector-function
F : Cn → Cp has bounded L-index in joint variables in the sup-norm | · |p if and only if it
has bounded L-index in joint variables in the norm ‖ · ‖0 where the sup-norm is defined as
|A|p = max{|aj| : 1 ≤ j ≤ p} for A = (a1, . . . , ap) ∈ Cp.

Corollary 1 shows that a choice of norm has not influence by the boundedness of the
L-index in joint variables for entire vector-valued functions.

We will use Theorem 1 and Corollary 1 in our proofs.
For A = (a1, . . . , an) ∈ Rn, B = (b1, . . . , bn) ∈ Rn, we will use formal notations with-

out violation of the existence of these expressions: AB = (a1b1, . . . , anbn),
A/B = (a1/b1, . . . , an/bn), AB = ab1

1 · . . . · abn
n ), and the notation A < B means that aj < bj,

j ∈ {1, . . . , n}; the relation A ≤ B is defined in the similar way.

3. Connection between Scalar-Valued and Vector-Valued Entire Functions of Bounded
L-Index

The following proposition was obtained for entire curves in [14]. Here, we deduce it
for vector-valued entire functions F : Cn → Cp.

Proposition 1. Let L(z) = (l1(z), . . . , ln(z)) be a positive continuous function in Cn. If each
component f j of an entire vector-valued function F = ( f1, . . . , fp) : Cn → Cp is of bounded
L-index N(L, fs) in joint variables in the sup-norm, then F is of bounded L-index in joint variables
in every norm in Cn, in particular, in the sup-norm and

N(F, L) ≤ max{N( fs, L) : 1 ≤ s ≤ p}

and also F is of bounded L∗-index in the Euclidean norm with L∗(z, w) ≥ √pL(z, w) and

NE(F, L∗) ≤ max{N( fs, L) : 1 ≤ s ≤ p},



Axioms 2022, 11, 31 4 of 9

where NE(F, L∗) is the L∗-index in joint variables for the function F with the Euclidean norm ‖ · ‖E
instead | · |p in inequality (1).

Proof. For all J = (j1, . . . , jn), ‖J‖ ≥ N = max{N( fs, L) : 1 ≤ s ≤ p}, and
K = (k1, . . . , kn), ‖K‖ ≤ N, we have

|F(J)(z)|p
J!LJ(z)

=
max{| f (J)

s (z)| : 1 ≤ s ≤ p}
J!LJ(z)

≤ max
{

max
{ | f (K)s (z)|

K!LK(z)
: 1 ≤ s ≤ p

}
: 0 ≤ ‖K‖ ≤ N

}
≤ max

{
|F(K)(z)|p
K!LK(z)

: 0 ≤ ‖K‖ ≤ N

}
,

that is N(L; F) ≤ N = max{N(L; fs) : 1 ≤ s ≤ p}. Also by definition of N( fs, L)

‖F(J)(z)‖E

J!LJ(z)
=

√
∑

p
s=1 | f

(J)
s (z)|2

J!LJ(z)
=

√√√√ p

∑
s=1

( | f (J)
s (z)|

J!LJ(z)

)2

≤

√√√√ p

∑
s=1

(
max

{
| f (K)s (z)|
K!LK(z)

: 0 ≤ ‖K‖ ≤ N

})2

.

Since ‖A‖E ≤
√

p max{|aj| : 1≤ j ≤ p} for A = (a1, . . . , ap), as = max
0≤‖K‖≤N

| f (K)s (z)|
K!LK(z)

,

we have

‖F(J)(z)‖E

J!LJ(z)
≤ √p max

{
| f (K)s (z)|
K!LK(z)

: 0 ≤ ‖K‖ ≤ N, 1 ≤ s ≤ p

}

≤ √p max

{
‖F(K)(z)‖E

K!LK(z)
: 0 ≤ ‖K‖ ≤ N

}
. (3)

We put IN := {K ∈ Zn
+ : ‖K‖ = N}, BK := {J ∈ Zn

+ : J ≥ K, J 6= K}. Then,

{J ∈ Zn
+ : ‖J‖ ≥ N + 1} =

⋃
K∈IN

BK.

Thus, for every J = (j1, . . . , jn) ∈ BK, ‖J‖ ≥ N + 1 and any K = (k1, . . . , kn), ‖K‖ ≤ N
there exists m, 1 ≤ m ≤ n such that jm ≥ km + 1. Hence,

LJ(z)

LJ
∗(z)

· LK
∗ (z)

LK(z)
=

(
L(z)
L∗(z)

)J−K

=
( l1(z)

l1∗(z)

)j1−k1
· · ·
( ln(z)

ln∗(z)

)jn−kn
≤ lm(z)

lm∗(z)
≤ p−1/2, (4)

where L(z) = (l1(z), . . . , lp(z)), L∗(z) = (l1∗(z), . . . , lp∗(z)). Therefore, inequality (4) holds
for all J, ‖J‖ ≥ N + 1, and for every K, ‖K‖ ≤ N. From inequality (3) by using of (4) we
now obtain

‖F(J)(z)‖E

J!LJ
∗(z)

≤ √p max

{
LJ(z)

LJ
∗(z)

· LK
∗ (z)

LK(z)
· ‖F

(K)(z)‖E

K!LK(z)
: 0 ≤ ‖K‖ ≤ N

}

≤ max

{
‖F(K)(z)‖E

K!LK∗ (z)
: 0 ≤ ‖K‖ ≤ N

}
,

that is N(L∗, F) ≤ max{N(L, f j) : 1 ≤ j ≤ p}. Thus, Proposition 1 is proved.
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Example 1. Let us consider the following entire vector-valued function

F(z, w) = (w + ez, ewz, ez3
).

For the first component f1(z, w) = w + ez of the function F we calculate partial derivatives:

∂j f1(z, w)

∂zj = ez for all j ∈ N,

∂ f1(z, w)

∂w
= 1,

∂j f1(z, w)

∂wj = 0 for j ≥ 2.

∂i+j f1(z, w)

∂zi∂wj = 0 for i ≥ 1, j ≥ 1.

In view of Definition 1 the component f1 has bounded L1-index in joint variables with
L1(z) = (1, 1) and N( f1, L1) = 1.

Similarly, it is easy to show that the second component f2(z, w) = ewz has bounded L2-index
in joint variables with L2(z) = (|w|+ 1, |z|+ 1) and N( f2, L2) = 0.

For the third component f3(z, w) = ez3
its L3-index in joint variables is equal to zero (i.e.,

N( f3, L3) = 0) with L3(z, w) = (3|z|2 + 1, 1).
Now we claim that the vector-valued function F(z, w) = (w + ez, ewz, ez3

) has bounded
L-index in joint variables (in the sup-norm) with

L(z, w)=
(

max{1, |w|+ 1, 3|z|2 + 1}, max{1, |z|+ 1, 1}
)
=
(

1 + max{|w|, 3|z|2}, |z|+ 1
)

and N(F, L) = 1 ≤ max{N( f j, L) : 1 ≤ j ≤ 3} ≤ max{N( f j, Lj) : 1 ≤ j ≤ 3} = 1.

4. Local Behavior of Entire Vector-Valued Functions at Skeleton of Polydisc

Theorem 2. Let L ∈ Qn. In order that an entire vector-valued function F : Cn → Cp be of
bounded L-index in joint variables it is necessary that for all R ∈ Rn

+ there exist n0 ∈ Z+, p1 ≥ 1
such that for all z0 ∈ Cn there exists K0 ∈ Zn

+, ‖K0‖ ≤ n0, satisfying inequality

max{|F(K0)(z)|p : z ∈ Dn[z0, R/L(z0)]}≤ p1|F(K0)(z0)|p (5)

and it is sufficiently that for all R ∈ Rn
+ there exist n0 ∈ Z+, p1 ≥ 1 ∀z0 ∈ Cn ∃K0

1 =
(k0

1, 0, . . . , 0), ∃K0
2 = (0, k0

2, 0, . . . , 0), . . . , ∃K0
n = (0, . . . , 0, k0

n) : k0
j ≤ n0, and (∀j, 1 ≤ j ≤ n) :

max{|F(K0
j )(z)|p : z ∈ Dn[z0, R/L(z0)]} ≤ p1|F

(K0
j )(z0)|p. (6)

Proof. Necessity. By Theorem 1 inequality (2)

max

{
|F(K)(z)|p
K!LK(z)

: ‖K‖ ≤ n0, z ∈ Dn[z0, R/L(z0)]

}
≤ p0

|F(K0)(z0)|p
K0!LK0(z0)

is valid for some K0. In view of definition class Qn, the following inequality holds for all
z ∈ Dn[z0, R/L(z0)]

LK(z)
LK(z0)

=
l1k1(z)
l1k1(z0)

· . . . ·
lp

kn(z)

lp
kn(z0)

≤ λk1
2,1(R) · . . . · λkn

2,n(R) = ΛK
2 (R).
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Hence, max
{

LK0 (z)
LK0 (z0)

: z ∈ Dn[z0, R/L(z0)]
}
≤ ΛK0

2 (R). Therefore, we obtain

max{|F(K0)(z)|p : z ∈ Dn[z0, R/L(z0)]}

= K0!LK0(z0)max

{
|F(K0)(z)|p
K0!LK0(z)

· LK0(z)
LK0(z0)

: z ∈ Dn[z0, R/L(z0)]

}

≤ K0!LK0(z0)Λ
K0
2 (R)max

{
|F(K0)(z)|p
K0!LK0(z)

: z ∈ Dn[z0, R/L(z0)]

}
.

Hence, by inequality (2)

max{|F(K0)(z)|p : z ∈ Dn[z0, R/L(z0)]}

≤ p0K0!LK0(z0)Λ
K0
2 (R)

|F(K0)(z0)|p
K0!LK0(z0)

= p0ΛK0
2 (R)|F(K0)(z0)|p.

From this inequality it follows inequality (5) with p1 = p0ΛK0
2 (R). The necessity of

condition (5) is proved.
Sufficiency. Now we prove the sufficiency of (6). Suppose that for each R ∈ Rn there

exist n0 ∈ Z+, p1 ≥ 1 such that for every z0 ∈ Cn and some k0
j ∈ Z+ with k0

j ≤ n0,
(1 ≤ j ≤ n) inequalities (6) hold.

For each z0 ∈ Cn and for every S ∈ Zn
+ we write the Cauchy formula

(K0
j = (0, . . . , 0, k0

j , 0, . . . , 0))

F(K0
j +S)

(z0)

(K0
j + S)!

=
1

(2πi)n

∫
Tn(z0,R/L(z0))

F(K0
j )(z)dz

(z− z0)S+1 ,

where 1 = (1, . . . , 1) ∈ Rn
+, and Tn(z0, R) = {z ∈ Cn : |z1 − z0,1| = r1, . . . , |zn − z0,n| = rn}

denotes the skeleton of polydisc. We obtain that

|F(K0
j +S)

(z0)|p
(K0

j + S)!
≤ 1

(2π)n

∫
Tn(z0,R/L(z0))

|F(K0
j )(z)|p|dz|∣∣(z− z0)S+1

∣∣
≤ 1

(2π)n max
{
|F(K0

j )(z)|p : z ∈ Dn[z0, R/L(z0)]
}LS+1(z0)

RS+1

∫
Tn(z0,R/L(z0))

|dz|

=max
{
|F(K0

j )(z)|p : z ∈ Dn[z0, R/L(z0)]
}LS(z0)

RS .

We choose R > 1 and s0 such that
p1K0

j !

RS ≤ 1 for all S ∈ Zn
+, ‖S‖ ≥ s0. In view of (6)

max{|F(K0
j )(z)|p : z ∈ Dn[z0, R/L(z0)]} ≤ p1|F

(K0
j )(z0)|p,

we have

|F(K0
j +S)

(z0)|p
(K0

j + S)!LK0
j +S

(z0)
≤ p1|F

(K0
j )(z0)|p ·

1

RSLK0
j (z0)

=
|F(K0

j )(z0)|p
K0

j !LK0
j (z0)

·
p1K0

j !

RS ≤
|F(K0

j )(z0)|p
K0

j !LK0
j (z0)

. (7)
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For each J ∈ Zn
+, one of the following two possibilities holds: either J ≤ (k0

1 + s0, k0
2 +

s0, . . . , k0
n + s0), or there exists j, 1 ≤ j ≤ n, such that J ≥ K0

j + (s0, . . . , s0). Then from (7)
for every J ∈ Zn

+ we obtain

|F(J)(z0)|p
J!LJ(z0)

≤ max
{ |F(K)(z0)|p

K!LK(z0)
: 0 ≤ ‖K‖ ≤ max{k0

j + s0 : 1 ≤ j ≤ n}
}

Therefore, N(F, L) ≤ max{k0
j + s0 : 1 ≤ j ≤ n}.

The proof of Theorem 2 is completed.

Example 2. We will use the results from Example 1. For the function F(z, w) = (w + ez, ewz, ez3
)

we choose n0 = N(F, L) = 1. In view of proof of Theorem 2, the parameter p1 can be chosen as

p1 = p0ΛK0
2 (R),

where R ∈ Rn
+ and the parameter p0 is calculated in proof of Theorem 1 from [16]. There was

proved that

p0 = 2q
n

∏
j=1

(
(λ1,j(R))−N(λ2,j(R))N

)q

where

q = q(R) =
[
2(N + 1)

n

∏
j=1

((
λ2,j(R)

)N+1(
λ1,j(R)

)−N
)
(r1 + . . . + rn)

]
+ 1,

the notation [x] stands for the entire part of the real number x and N = N(F, L) = 1. One should
observe that λ1,j(R) = 1 and λ2,j(R) = 1 if L(z, w) =

(
1 + max{|w|, 3|z|2}, |z|+ 1

)
. Therefore,

for R = (r1, r2) one has q(R) = [4(r1 + r2)] + 1, p0(R) = 2[4(r1+r2)]+1 and
p1(R) = 2[4(r1+r2)]+1. In view of Theorem 2, we claim that for any R = (r1, r2) ∈ R2

+ and
for every (z0, w0) ∈ C2 at least one from the following inequalities holds

max
{
|F(1,0)(z, w)|p : |z− z0| =

r1

1 + max{|w0|, 3|z0|2}
, |w− w0| =

r2

|w0|+ 1

}
≤ 2[4(r1+r2)]+1|F(1,0)(z0, w0)|p,

max
{
|F(0,1)(z, w)|p : |z− z0| =

r1

1 + max{|w0|, 3|z0|2}
, |w− w0| =

r2

|w0|+ 1

}
≤ 2[4(r1+r2)]+1|F(0,1)(z0, w0)|p,

max
{
|F(z, w)|p : |z− z0| =

r1

1 + max{|w0|, 3|z0|2}
, |w− w0| =

r2

|w0|+ 1

}
≤ 2[4(r1+r2)]+1|F(z0, w0)|p.

The notation L � L̃ means that there exist θ1 ∈ R+, θ2 ∈ R+ such that for all z ∈ Cn

θ1L̃(z) ≤ L(z) ≤ θ2L̃(z).

Proposition 2. Let L ∈ Qn, L � L̃. An entire vector-valued function F : Cn → Cp has bounded
L̃-index in joint variables if and only if it has bounded L-index in joint variables.

Proof. It is easy to prove that the conditions L ∈ Qn and L � L̃ imply that the function
L̃ ∈ Qn. Without loss of generality, we believe that θ1 ≤ 1 ≤ θ2.
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Let N(F, L̃) = ñ0 < +∞. Then for the function F we obtain

max

{
|F(K)(z)|p
K!LK(z)

: ‖K‖ ≤ ñ0, z ∈ Dn[z0, R̃/L̃(z0)]

}

=max

{
|F(K)(z)|p
K!L̃K(z)

L̃K(z)
LK(z)

: ‖K‖ ≤ ñ0, z ∈ Dn[z0, R̃/L̃(z0)]

}

≤ θ−ñ0
1 ·max

{
|F(K)(z)|p
K!L̃K(z)

: ‖K‖ ≤ ñ0, z ∈ Dn[z0, R̃/L̃(z0)]

}
. (8)

Since N(F, L̃) = ñ0 < +∞, by Theorem 1 for each R̃ ∈ Rn
+ there exists p̃ ≥ 1 such that

for all z0 ∈ Cn and some K0 with ‖K0‖ ≤ ñ0 inequality (2) is true with L̃ and R̃ instead of L
and R, respectively, i.e.

max

{
|F(K)(z)|p
K!L̃K(z)

: ‖K‖ ≤ ñ0, z ∈ Dn[z0, R̃/L̃(z0)]

}
≤ p̃
‖F(K0)(z0)‖
K0!L̃K0(z0)

. (9)

Substituting (9) in (8), we deduce

max

{
|F(K)(z)|p
K!LK(z)

: ‖K‖ ≤ ñ0, z ∈ Dn[z0, R̃/L̃(z0)]

}

≤ θ−ñ0
1 · p̃ ·

|F(K0)(z0)|p
K0!L̃K0(z0)

= θ−ñ0
1 · p̃ ·

|F(K0)(z0)|p
K0!LK0(z0)

· LK0(z0)

L̃K0(z0)

≤ θ
‖K0‖
2 θ−ñ0

1 · p̃ ·
|F(K0)(z0)|p
K0!LK0(z0)

. (10)

For given R ∈ Rn
+ we put R̃ = θ2R. Then R/L(z0) ≤ R̃/L̃(z0), hence

Dn[z0, R/L(z0)] ⊂ Dn[z0, R̃/L̃(z0)].

Therefore, in view of (10) by Theorem 1 we conclude that the vector-valued function F
has bounded L-index in joint variables.

5. Conclusions

In the paper, we obtained some results describing local properties of vector-valued
entire functions of several complex variables. We studied functions having bounded L-
index in joint variables. New results are needed to deduce analog of Hayman’s Theorem
for this class of functions and demonstrate its application to study properties entire vector-
valued solutions of partial differential equations system as it was done for entire scalar-
valued solutions in [5].
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