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Abstract: The frequency of a nonlinear vibration system is nonlinearly related to its amplitude,
and this relationship is critical in the design of a packaging system and a microelectromechanical
system (MEMS). This paper proposes a straightforward frequency prediction method for nonlinear
oscillators with arbitrary initial conditions. The tangent oscillator, the hyperbolic tangent oscillator, a
singular oscillator, and a MEMS oscillator are chosen to elucidate the simple solving process. The
results, when compared with those obtained by the homotopy perturbation method, exhibit a good
agreement. This paper introduces a very convenient procedure for attaining quick and accurate
insight into the vibration property of a nonlinear vibration system.

Keywords: nonlinear vibration; period-amplitude relationship; He’s frequency formulation; tangent
oscillator; homotopy perturbation method; microelectromechanical system (MEMS)

1. Introduction

Vibration absorption and vibration attenuation are two critical factors in designing a
nonlinear vibration system; for example, a low amplitude is always considered in the design
of the packaging system [1–4] and the seismic design of architecture [5]. Active vibration
control [6] has received a lot of attention in the industrial and academic communities, and
many mathematicians are working to predict the periodic property of a practical vibration
system. Generally, a nonlinear vibration equation is written as

mw′′ + h(w) = 0, w(0) = a, w′(0) = b (1)

where w is the displacement, m is the mass, h is the nonlinear restoring force, and a and
b are constants. For a linear vibration system, one can choose h(w) = kw, k is the spring
coefficient, this is the well-known harmonic oscillation. When h(w) = k tan w, we have
the well-known tangent oscillator arising in packaging systems [1–4]. The amplitude
is determined by the initial conditions and the frequency of the system. There are nu-
merous analytical methods for solving Equation (1), such as the Li–He method or its
modifications [4,7,8], He’s variational approach [9], He’s Energy Balance Method [10], the
iteration perturbation method [11], the exact solution method [12], the homotopy per-
turbation method (HMP) [13,14], the Gamma function method [15], and the variational
method [16–18]. The goal of this paper is to suggest a simple method [19,20] for gaining a
timely and efficient glimpse into the frequency–amplitude relationship of Equation (1) with
arbitrary initial conditions. The comparison with the aforementioned existing methods
shows that this work would be greatly challenging for nonlinear vibration theory.
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2. The Frequency Formulation

In Equation (1), h(w)/w > 0 is required for a periodic solution. Equation (1) can be
rewritten as follows:

w′′ + h(w) = 0, w(0) = a, w′(0) = b (2)

In terms of frequency formulation [19,20] is

ω2 =
h(w)

w

∣∣∣∣
w=±NA

(3)

where A is the amplitude, it can be approximated calculated as

A =

√
a2 +

b2

ω2 (4)

In Equation (3) N was recommended as
√

3/2 in [19] for non-singular oscillator and
0.8 in [20] for singular oscillators. The frequency can be calculated using Equations (3)
and (4). In the literature [21–23], Equation (3) is referred to as He’s frequency formulation,
and there have been numerous modifications [24–27]; the original formulation began with
an ancient Chinese algorithm [28], which led to He’s frequency formulation [19,20] for
nonlinear vibration systems and Chun-Hui He’s algorithm [28,29] in numerical methods.

3. Tangent Oscillator

The tangent oscillator [3] is

w′′ + ω2
0 tan w = 0, w(0) = a, w′(0) = b (5)

One can choose N =
√

3/2 in Equation (3). We have

ω2 =
ω2

0 tan(
√

3A/2)√
3A/2

(6)

where A is given in Equation (4). For given parameters of ω0, a, and b, the frequency can
be calculated easily from Equation (6). To obtain an explicit formulation, one can consider
the case of A << 1. In that case, we have

tan w ≈ w +
1
3

w3 (7)

Equation (6) becomes

ω2 =
ω2

0 tan(
√

3A/2)√
3A/2

= ω2
0(1 +

1
4

A2) (8)

In view of Equation (4), we can convert Equation (8) to the form

ω2 = ω2
0

[
1 +

1
4
(a2 +

b2

ω2 )

]
(9)

or
4ω4 − (4 + a2)ω2

0ω2 − b2ω2
0 = 0 (10)

Solving ω from Equation (10) and ignoring the meaningless root gives

ω =

√√√√ (4 + a2)ω2
0 +

√
(4 + a2)2

ω4
0 + 16b2ω2

0

8
(11)
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The approximate solution reads

w = A cos(ωt + ϕ) (12)

where ϕ is determined by the initial conditions

ϕ = arctan(− b
aω

) (13)

In order to reveal the accuracy of the approximate solution, we resolve the prob-
lem by the homotopy perturbation method [19]. For small amplitude, Equation (5) is
approximated as

w′′ + ω2
0(w +

1
3

w3) = 0, w(0) = a, w′(0) = b (14)

The homotopy equation is

x′′ + ω2x + h
[

ω2
0x−ω2x +

1
3

ω2
0x3
]
= 0 (15)

where h is the homotopy parameter, 0 ≤ h ≤ 1. When h = 1, Equation (15) becomes
Equation (14). We assume that the solution is written as

w = w0 + hw1 + h2w2 + · · · (16)

Following the method’s standard steps, we have

w′′ 0 + ω2w0 = 0, w0(0) = a, w′0(0) = b (17)

w′′ 11 + ω2w1 + ω2
0w0 −ω2w0 +

1
3

ω2
0w3

0 = 0, w1(0) = 0, w′0(0) = 0 (18)

Equation (17) is a linear differential equation; its solution is

w0 = A cos(ωt + ϕ) (19)

where A and ϕ are given, respectively, in Equations (4) and (13). Now Equation (18) is
updated as

w′′ 1 + ω2w1 + (ω2
0 −ω2)A cos(ωt + ϕ) +

1
3

ω2
0 A3 cos3(ωt + ϕ) = 0 (20)

or

w′′ 1 + ω2w1 + (ω2
0 −ω2 +

1
4

ω2
0 A2)A cos(ωt + ϕ) +

1
12

ω2
0 A3 cos(3ωt + 3ϕ) = 0 (21)

The solution of Equation (21) is

w1 = − 1
2ω

(ω2
0 −ω2 +

1
4

ω2
0 A2)At sin(ωt + ϕ) +

1
96ω2 ω2

0 A3 cos(3ωt + 3ϕ) + C (22)

where C is an integral constant. In Equation (22), the term of t sin(ωt + ϕ) is not periodic
when t tends to infinity, so its coefficient has to be zero to have a periodic solution, that is

ω2
0 −ω2 +

1
4

ω2
0 A2 = 0 (23)

or

ω = ω0

√
1 +

1
4

A2 (24)
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This result can also be obtained by the multiple scales method [24], and it is exactly the
same as that given in Equation (9). Considering the initial conditions, w1(0) = 0, w′0(0) = 0,
Equation (22) becomes

w1 =
1

96ω2 ω2
0 A3[cos(3ωt + 3ϕ)− cos(ωt + ϕ)] (25)

The first-order approximate solution is obtained by setting h = 1 in Equation (16), that is

w = w0 + w1 = A cos(ωt + ϕ) +
1

96ω2 ω2
0 A3[cos(3ωt + 3ϕ)− cos(ωt + ϕ)] (26)

Comparison of the approximate solution, w = A cos(ωt + ϕ), with ω given in
Equation (11), with the exact solution for various cases is illustrated in Figure 1, where
ω0 = 1.

Figure 1. The approximate solution of Equation (12) vs. the exact one of Equation (5).
(a) (a,b) = (0, 0.2); (b) (a,b) = (0.3, 0); (c) (a,b) = (0.5, 0.3); and (d) (a,b) = (0.8, 0.3).

4. Hyperbolic Tangent Oscillator

The hyperbolic tangent oscillator reads [1]

w′′ + ω2
0tanhw = 0, w(0) = a, w′(0) = b (27)

We can immediately obtain the following frequency–amplitude relation:

ω2 =
ω2

0tanh(
√

3A/2)√
3A/2

(28)

where A is defined in Equation (4).
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For small amplitude, tanh w can be approximated as

tanhw ≈ w− 1
3

w3 (29)

Equation (28) becomes:

ω2 =
ω2

0tanh(
√

3A/2)√
3A/2

= ω2
0(1−

1
4

A2) (30)

In view of Equation (4), Equation (30) turns out to be

ω2 = ω2
0

[
1− 1

4
(a2 +

b2

ω2 )

]
(31)

or
4ω4 − (4− a2)ω2

0ω2 + b2ω2
0 = 0 (32)

Solving ω from Equation (32) and ignoring the meaningless root gives

ω =

√√√√ (4 − a2)ω2
0 +

√
(4 − a2)2

ω4
0 − 16b2ω2

0

8
(33)

This is the same as that obtained by the homotopy perturbation method [1]. Compari-
son of the approximate solution with the exact solution for various cases is illustrated in
Figure 2, where ω0 = 1.

Figure 2. The approximate solution (w = A cos(ωt + ϕ)) vs. the exact one of Equation (27).
(a) (a,b) = (0, 0.2); (b) (a,b) = (0.5, 0); (c) (a,b) = (0.6, 0.2); and (d) (a,b) = (0.8, 0.3).
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5. Singular Oscillator

Now we consider a singular oscillator [9]

w′′ +
1

kw
= 0, w(0) = a, w′(0) = b (34)

For the singular oscillator, we choose N = 0.8 [20], that is

ω2 =
1

kw2

∣∣∣∣
w = NA

=
1

kN2 A2 =
1

kN2(a2 + b2

ω2 )
(35)

Simplifying Equation (35) gives

kN2(a2ω2 + b2) = 1 (36)

Solving ω from Equation (36) leads to the result

ω =
1
a

√
1

kN2 − b2 (37)

When b = 0 and N = 0.8, we have

ω =
1
a

√
1

kN2 = 1.25k−1/2a−1 (38)

The exact frequency for b = 0 is [9]

ωexact = 1.2533k−1/2a−1 (39)

The relative error is 0.26%. Figure 3 illustrates the accuracy of the approximate solution.

Figure 3. Cont.
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Figure 3. The comparison of approximate solution w = A cos(ωt+ ϕ) with exact one of Equation (34).
(a) (k,a,b) = (0.8, 0.4, 0.1); (b) (k,a,b) = (0.6, 0.8, 0.1); (c) (k,a,b) = (0.3, 0.5, 0.2); (d) (k,a,b) = (0.6, 0.7, 0.2);
and (e) (k,a,b) = (1, 0.5, 0).

6. MEMS Oscillator

The fast development of nanotechnology and material science have led to skyrocketing
interest in MEMS systems for the last decade [30–32]. We consider the following MEMS
oscillator [33]

y′′ + y− b
1− y

= 0, y(0) = 0, y′(0) = 0 (40)

where y is the dimensionless displacement, y < 1, and b is constant.
In order to use the above frequency formulation, we introduce a transformation:

y = A− x (41)

where A is the amplitude, Equation (40) becomes

x′′ + x +
b

1− A + x
− A = 0 (42)

where f (x) is the restoring force,

f (x) = x +
b

1− A + x
− A (43)

It requires f (0) = 0, that is
b

1− A
= A (44)

or

A =
1−
√

1− 4b
2

(45)

In view of Equation (44), we can rewrite Equation (43) in the form

f (x) = x− bx
(1− A)(1− A + x)

(46)

ω2 =
f (x)

x

∣∣∣∣
x=−0.8A

(47)
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This leads to the following formulation

ω2 = 1− b
(1− A)(1− A− 0.8A)

(48)

Solving ω from Equation (48), we obtain

ω =

√
1− 5.6b +

√
1− 4b

1− 3.6b +
√

1− 4b
(49)

Finally, we obtain the following approximate periodic solution:

x(t) = A cos(ωt) (50)

By the inverse transformation of Equation (41), we obtain

y(t) = A(1− cos(ωt)) = 2A sin2(
ω

2
t) (51)

where ω is given in Equation (49). Figure 4 shows a high accuracy of Equation (51) when
b < 0.15.

Figure 4. The MEMS oscillator with different values of b. (a) b = 0.05; (b) b = 0.10; and (c) b = 0.15.

7. Conclusions

He’s frequency formulation could be extended to fractal oscillators [34] as well as non-
conservative oscillators [35–37]. In engineering, a simple calculation is always appreciated;
the simpler the calculation, the better. This paper proposes possibly the simplest method
for quickly inspecting the frequency property of a nonlinear oscillator; the one-step solution
yields a highly accurate result, which is quite palatable.
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