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Abstract: The current work examines the application of the viscous potential flow to the Kelvin-
Helmholtz instability (KHI) of a planar interface between two visco-elastic Walters’ B fluids. The
fluids are fully saturated in porous media in the presence of heat and mass transfer across the
interface. Additionally, the structure is pervaded via a uniform, normal electrical field in the absence
of superficial charges. The nonlinear scheme basically depends on analyzing the linear principal
equation of motion, and then applying the appropriate nonlinear boundary-conditions. The current
organization creates a nonlinear characteristic equation describing the amplitude performance of
the surface waves. The classical Routh–Hrutwitz theory is employed to judge the linear stability
criteria. Once more, the implication of the multiple time scale with the aid of Taylor theory yields
a Ginzburg–Landau equation, which controls the nonlinear stability criteria. Furthermore, the
Poincaré–Lindstedt technique is implemented to achieve an analytic estimated bounded solution
for the surface deflection. Many special cases draw upon appropriate data selections. Finally, all
theoretical findings are numerically confirmed in such a way that ensures the effectiveness of various
physical parameters.

Keywords: nonlinear EHD stability; Walters’ B fluids; viscous potential theory; porous media;
Ginzburg–Landau equation; Poincaré–Lindstedt technique

1. Introduction

Electrohydrodynamics (EHD) can be described by the classical theory of magnetism
and electricity and it has drawn a great deal of attention from many authors. Furthermore,
EHD is of supreme significance to several problems in practical engineering, especially
with the departure of charge particles occurring in colloids, Deoxyribonucleic acid proteins,
cells, and numerous additional elements of organic concentration. Devitt and Melcher [1]
showed that the field coupled surface wave happens at the interface between two fluids
when it is stressed by an electric field. El-Sayed [2] used the multiple-time scales, technique
to explore the nonlinear modulation of the interfacial waves of two superposed dielectric
fluids with uniform depths and horizontal borders under the influence of a uniform normal
electric field. He discovered that a nonlinear Schrödinger equation can describe quasi-
monochromatic travelling waves. Papageorgiou and Vanden-Broeck [3] examined the
surface waves along with the action of a uniform horizontal field. The fluid was taken as an
inviscid, incompressible and nonconducting, and the controlled waves were numerically
calculated for arbitrary wavelengths and amplitudes. Furthermore, the numerical tech-
nique was grounded on considering a system of integro-differential nonlinear equations.
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Grandison et al. [4] studied the interfacial capillary waves in the presence of electric fields.
Their nonlinear solutions were computed by using the boundary integral methods. The
investigation included both the symmetric and anti-symmetric modes. The EHD nonlinear
surface wave instability through porous media under the influence of a uniform field was
investigated by El-Sayed [5]. It was found that the surface of separation is administrated
by a Schrödinger type. Consequently, the nonlinear stability profile was examined along
with the coefficients of Schrödinger equation. Aldini and Seyed-Yagoobi [6] investigated
how the EHD instability induction pumps can express itself in a rapid drop/jump in
pump output. As a result of the instability, alternating/bidirectional flow might occur. A
non-dimensional stability analysis of EHD induction pumping of liquid film in a vertical
annular configuration in the presence of an external load for the repulsion mode was car-
ried out. Burcham and Saville [7] examined EHD stability of a liquid bridge suspended in a
dielectric gas by Taylor–Melcher theory. Amer and Moatimid [8] have recently investigated
EHD instability of a streaming dielectric liquid jet. The system was pervaded by a uniform
axial electrostatic field. They demonstrated that the ratio between the basic velocities plays
a dual role in the instability configuration.

Fluids are all around us. From a practical point of view, the fluid behaviour is indis-
pensable, i.e., aircrafts and ships travel through fluids; lubricants for mechanical maneuvers
are fluids; the atmosphere and the weather are administrated by fluid dynamics. One
of the most important branches of fluids is non-Newtonian fluids. In recent decades, a
great deal of interest has been drawn to the comprehensive examination of the rheological
influences happening during the flow of the non-Newtonian fluids which are saturated in
porous media. This phenomenon has become of special interest to oil reservoir engineer-
ing. Subsequently, it has become the rheological application of non-Newtonian supplant
and expatriate fluids is vital to oil extraction. Numerous technical procedures include
the analogous flow of fluids with different density, viscosity, and elasticity throughout
permeable media. Such flows appear in petroleum engineering, boiling in porous media,
packed bed reactors, chemical industry, and in several additional procedures. The unstable
interface causes a considerable growth in the resistance to the flow occurs. EHD surface
wave stability between two superimposed visco-elastic Walters’ B fluids that are saturated
in porous media was investigated by El-Sayed [9]. Under the influence of a tangential
electric field, El-Sayed [10] investigated the EHD Kelvin–Helmholtz instability of planner
interface between two uniform suspended viscous and flowing dielectric fluids penetrated
with suspended particles through porous media. He found that the presence of both
streaming and tangential electric field had an effect on the disturbances. A nonlinear sta-
bility of surface wave between two conducting fluids was examined by Zakaria et al. [11].
Based on the multiple scale approach, they derived a nonlinear Schrödinger equation with
complex coefficients. Consequently, the stability criteria were accomplished. In the same
vein, such instabilities lead to emulsion formation in petroleum production engineering.
Therefore, the information about the circumstances of the instability will allow us to guess
the restrictive process circumstances. As known, the flow in porous media is of utmost
importance to oil engineers and geophysical fluid. The stability of a horizontal interface
between two fluids of different densities is named the Rayleigh–Taylor instability (RTI).
KHI of Oldroydian visco-elastic fluids in a permeable medium finds its main usefulness
in biochemical technology and geophysical fluid dynamics. It is also assumed to be more
suitable for use in the oil industry. El-Sayed [12] examined EHD atomization instability and
Rayleigh regimes for dielectric liquid jet emitting a parabolic velocity profile into a station-
ary dielectric gas through a porous medium. Moatimid and Zeky [13] examined the EHD
nonlinear stability of a cylindrical interface between two visco-elastic fluids of Walters’ B
type. The flow was saturated in porous media. The nonlinear instability approach resulted
in a Ginzburg–Landau type. Therefore, the instability standards were analytically attained
and numerically confirmed. Additionally, along with the nonlinear expanded frequency,
an analytic bounded approximate solution of the surface deflection was originated.
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Typically, in practical engineering, the understanding of the mechanism of heat and
mass transfer has become of great importance. It has bearing on the vehicles, electronic
devices, and structures. The inclusion of the energy/concentration equations takes into
account the governing momentum equation. The interface stability phenomenon is exam-
ined under the presumption that the two-fluids are immiscible. Consequently, no mass
transfer at the interface happens. Simultaneously, thermal influence acts as a portion of
slight roles, so the impact of heat transmission is canceled. Indeed, mass and heat transfer
through the interface is of paramount importance in a wide range of fields of practical
engineering and physics. If heat transfer across the interface occurs, mass transfer also
happens. Commonly, the latent heat becomes very large. Thomas and Hartnett proposed
an adequate approximation of immiscible fluids [14]. Taking these considerations into ac-
count, and apart from the treatment of concentration with an energy equation, a shortened
formulation of the problem of heat and mass at the interface stability has been modeled
by Hsieh [15]. Hsieh [15] applied this simplification to examine the RTI. A complicated
dispersion relation was achieved in understanding these problems. Furthermore, despite
the validity of the traditional stability criterion, Hsieh [16] formulated the influence of
heat and mass transfer, which simplified the stability configuration. It was shown that
the stability criterion, in the case of KHI, is substantially modified due to the influence of
heat and mass transmission. The nonlinear RTI in the action of heat and mass transfer was
examined by Hsieh [17]. It is shown that when this transfer is sufficient enough, the char-
acteristically unstable profile is stabilized in accordance with the nonlinear effect. Many
authors followed Hsieh’s simplified formulation to examine the stability problems under
the influence of mass and heat transfer; for illustration, see Nayak and Chakraborty [18].
It was shown that KHI has a destabilizing influence on the stability profile. Moreover,
KHI is less in a plane than in cylindrical geometry. Lee [19] investigated the nonlinear
Rayleigh–Taylor stability of a cylindrical contact between vapor and liquid phases of a
fluid. The investigation was conducted using the multiple time scale expansion method.
The regions of stability/instability were graphically depicted. Özgen [20] investigated the
stability and transition difficulties of two-dimensional boundary-layers with hot malls
numerically using linear stability theory. An effective shoot–search strategy was used to
solve the equations found.

The perturbation methods [21] were initially established for treating the weak non-
linear phenomenon. Therefore, numerous investigators aimed to incorporate them in
nonlinear aspects. All of the classical perturbation techniques need the presence of small
parameter. In light of perturbation theory, Lindstedt–Poincaré (L–P) method is a technique
to obtain a uniform analytic approximate periodic solution to an ordinary differential
equation, which cannot be reached by the classical perturbation approaches. The method
eliminates secular terms present in the straightforward presentation of perturbation theory
that is applied to a weakness nonlinear problem with a finite oscillatory solution. The
method is named after Henri Poincaré (1893) and Anders Lindstedt (1882). The L–P tech-
nique was the most commonly utilized analytical approach in analyzing some problems of
nonlinear oscillations with a small parameter. Conversely, there are several nonlinear prob-
lems that do not include small parameters. Consequently, a new analytical technique would
be industrialized so that the constraint slight parameters can be disregarded. Burton [22]
offered an adapted form of L–P technique aimed to manage strong nonlinear oscillators.
Cheung et al. [23] modified the L–P technique. Nevertheless, all the improved varieties
remain actual operative for the Duffing oscillator. Alam et al. [24] aimed to use the modified
L–P technique for numerous nonlinear oscillators. The beginning of these formulations
and their operations for penetrating a proper approximate solution are very easy.

In accordance with the aforementioned aspects, the stability problem of the two visco-
elastic fluids is of great importance. Therefore, the current problem is concerned with a
nonlinear EHD instability problem. Two fluids are assumed to obey the Walters’ B type. A
uniform vertical electric field is acted upon by the two media. Due to the wide practical
applications of porous media, the media under consideration represent a limited amount
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of porous media. Additionally, the upper and lower boundaries remain deliberated to be
horizontally rigid porous plates. The presence of constant suction/injection velocities is
also included. Therefore, the plates were steaming normal uniform velocities. To facilitate
mathematical manipulation, the hypothesis of the viscous potential are considered. To
simplify the performance of the problem, the rest of the manuscript is structured as
follows: Section 2 presents the methodology of the theoretical model and includes the
foremost equations of motion and the consistent suitable nonlinear boundary conditions.
Furthermore, the technique of clarification by the resources of the normal mode analysis is
given in this Section. The linear dispersion relation and stability analysis are introduced
in Section 3. The linear stability analysis of the linear methodology is conducted in this
Section. The nonlinear stability yields a Ginzburg–Landau equation, and the hypothetical
and numerical calculations are obtained in Section 4. In accordance with the P–L technique,
an analytic bounded approximate solution of the surface deflection is derived in Section 5.
Furthermore, a numerical approximation of the surface wave elevation is introduced in this
Section. The results of the study are summed up as concluding observations in Section 6.
This Section includes the physical findings yielded from the analysis of linear/nonlinear
stability profile, together with an annotation about a future work.

2. Methodology

A scheme consisting of two standardized, dielectric, incompressible, and streaming
visco-elastic fluids of Walters’ B type in infinite and parallel flows is considered. The
fluids are considered as uniform, isotropic, and fully saturated in porous media. Dynamic
viscosities, dielectric constants, and a single medium permeability are presumed. For
simplicity, the porosity is taken as unity in both media. A statically stable situation
is supposed in such a way that the upper fluid is assumed to be light (vapor or gas);
meanwhile, the lower one is assumed to be heavier (liquid). For more convenience, the
Cartesian coordinates will be utilized. Unlike the mainstream in mathematical analyses,
only two-dimensional motion is tackled in the current study. The undisturbed interface
between the two fluids is presupposed to be well addressed and is originally horizontal to
yield the plane y = 0. Moreover, the two fluids are considered as moving with uniform
parallel velocities during the two superimposed permeable media. The upper together with
the lower boundaries are considered as horizontally rigid permeable plates. The presence
of a constant suction/injection streaming at the lower and upper plates is deliberated.
Therefore, the plates permit a steaming velocity in the orthogonal direction of the flow
channel. The gravitational force acts perpendicularly downwards. The upper fluid is
bounded by plane y = h2 , which is raised to a uniform potential. The lower liquid is
restricted by an earthed conducting plane at y = −h1. The potential difference between the
two rigid plates generates a uniform, vertical electric field E0j. Additionally, the rigid plates
are reserved at constant temperatures. Meanwhile, the undisturbed interface y = 0 is kept
at a uniform temperature. Therefore, the influence of mass and heat transfer is analyzed,
for simplicity, in light of the Hsieh [15,16] simplified formulation. The theoretical physical
model is sketched below in Figure 1.

Figure 1. Sketches the theoretical physical model.
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After assuming a slight disturbance, the boundary function develops as follows:

Σ(x, y, t) = y− η(x; t) (1)

Henceforth, the unit outward normal vector is given as

n
−
= ∇Σ/|∇Σ| = 1√

1 + (∂η/∂x)2

(
−∂η

∂x
e
−x

+ e
−y

)
(2)

Characteristically, as argued by Funada and Joseph [25–27] and others, it has been
demonstrated that the potential flow, in the case of an incompressible fluid, is considered
by v
−

= −∇ϕ. It follows that the Navier–Stokes equation exhibits similar behavior to

Euler’s. Consequently, the term µ∇2 v
−

will disappear from the substance of the fluid. In a

few words, along with the potential flow, the pressure and velocity are the same as in the
inviscid flow. On the other hand, the viscosity of the fluids enters only at the surface of
separation. Consequently, the equation of a viscous incompressible fluid, in the case of the
potential flow through the porous media, obeys Brinkman–Darcy equation as given by the
following momentum equation:

ρj

∂v
−j

∂t
+ (v
−j
·∇)v

−j

 = −∇Pj −
µj

κ
v
−j
− ρjg e

−y
, j = 1, 2. (3)

The frictional forces are a consequence of the interactions between the fluid and the
porous media. It is comparable to the flow velocity which is represented by the term

µj
κ v
−j

.

The zero-order solution of Equation (3) yields

P0j = −
µj

κ
(Vjy + Ujx)− ρjgy + λj, (4)

In accordance with the viscous potential theory and the incompressibility condition of
the two fluids, the potentials ϕ1(x, y; t) and ϕ2(x, y; t) should satisfy the following Laplace’s
equations:

∇2 ϕ1 = 0, −h1 < y < η(x, t) (5)

and
∇2 ϕ2 = 0, η(x, t) < y < h2 (6)

The integration of the linear equation of motion as given in Equation (3) results in
Bernoulli’s formulation, which gives the following distribution function of the pressure:

Pj = −ρj

(
∂ϕj

∂t
+ Vj

∂ϕj

∂y
+ Uj

∂ϕj

∂x

)
−

µj

κ
ϕj (7)

Typically, in EHD problems, it is usually assumed that the quasi-static approximation
is effective [28]. Therefore, the electrical equations are

∇·ε E
−
= 0, (8)

and
∇× E

−
= 0. (9)

As a result of the potential difference between the planes y = h2 and y = − h1, a
normal electric field is created in two regions. Hence, the electric field may be written as:

E
−j

= −E0j e
−y
−∇ψj . (10)
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It follows that the electrostatic potentials satisfy the following Laplace equations:

∇2ψ1 = 0, −h1 < y < η(x, t) (11)

and
∇2ψ2 = 0, η(x, t) < y < h2. (12)

To complete the considered nonlinear boundary-value problem, the solutions for the
above principal equations must satisfy the following boundary conditions.

Nonlinear Boundary Conditions

The overall solutions for the velocity and electric potential distributions must satisfy
the applicable nonlinear boundary conditions. These circumstances may be categorized
into two distinctive groups as follows:

On the Rigid Restrictions y = h2 and y = −h1.

1. As the rigid boundaries are isolated, the tangential components of the electric field
must vanish; it follows that

∂ψ1

∂x
= 0, y = −h1, (13)

and
∂ψ2

∂x
= 0, y = h2. (14)

2. The suction/injection velocities in the normal direction at the permeable boundaries
require

∂ϕ1

∂y
= V1, y = −h1, (15)

and
∂ϕ2

∂y
= V2, y = h2. (16)

At the Perturbed Boundary at y = η(x, t).
The tangential components of the electric field are continuous at the interface. This

may be written as follows:

n
−
×
∥∥∥∥E
−

∥∥∥∥ = 0
−

, (17)

where ‖∗‖ represents the jump across the interface.
Equation (17) gives

∂η

∂x

∥∥∥∥E0j +
∂ψj

∂y

∥∥∥∥+ ∥∥∥∥∂ψj

∂x

∥∥∥∥ = 0 (18)

In the absence of the free surface currents, it follows that the normal components of
the electric induction vector are continuous, which gives

n
−
·
∥∥∥∥ε E
−

∥∥∥∥ = 0 (19)

Once more, the Equation (19) yields

∂η

∂x

∥∥∥∥ ε j
∂ψj

∂x

∥∥∥∥− ∥∥∥∥ ε j
∂ψj

∂y

∥∥∥∥ = 0. (20)

One may consider v
−j

= Uj e
−x

+ Vj e
−y

+∇ϕj to be the velocity vector field of the fluid

particles. Following Hsieh [15–17], one gets the following conditions:
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The conservation of mass across the surface of separation yields∥∥∥∥ρj

(
∂S
∂t

+ v
−j
·∇S

)∥∥∥∥ = 0. (21)

This interfacial condition of energy transfer, in the nonlinear form, was given by
Moatimid et al. [6] to yield

ρ1

(
∂S
∂t

+ v
−1
·∇S

)
= α1

(
η + α2η2 + α3η3

)
, (22)

where heat and transfer coefficients are given as follows:

α1 =
G
L

(
1
h1

+
1
h2

)
, α2 =

1
h2
− 1

h1
, and α3 =

1
h2

2
− 1

h1 h2
+

1
h2

1
, (23)

where G = K2(T0−T2)
h2−y = K1(T1−T0)

h1+y indicate that, in the steadiness formal, the heat changes
are equal through the interface in the two fluids.

In accordance with these conditions, the solutions of the velocities and electric poten-
tials may be written as follows:

ϕ1(x, y, t) =
cosh(k(y + h1))

k (1− i ηxcothkh1)sinhkh1

(
U1ηx + ηt +

α1

ρ1
(η + α2η2 + α3η3)

)
, (24)

ϕ2(x, y, t) = − cosh(k(y− h2))

k (1 + i ηxcothkh2 )sinhkh2

(
U2ηx + ηt +

α1

ρ2
(η + α2η2 + α3η3)

)
, (25)

ψ1(x, y, t) =
i
ε∗

ε2(ε1 − ε2)sinh[k(y + h1)] ηx (cosh kh2 + i ηxsinhkh2 ) Φ (26)

and

ψ2(x, y, t) =
i
ε∗

ε1(ε1 − ε2)sinh[k(y− h2)]ηx (cosh kh1 − i ηx sinhkh1 ) Φ (27)

where

ε∗ = k(h1ε2 + h2ε1) [ε1 (1− i ηxtanhkh1)(tanhkh2 + iηx) + ε2 (1 + i ηxtanhkh2)(tanhkh1 − i ηx)] cosh kh1 cosh kh2,

and

E01 − E02 =
(ε1 − ε2)

(ε2h1 + ε1h2)
Φ

It should be noted that the above equations are compatible with the earlier results
obtained by Moatimid et al. [6] in the special case where the electric field is taken as
a horizontal one. In addition, as the linear terms are ignored, the velocity potential
distributions are in agreement with those obtained by Awasthi et al. [29]. It should be
noted that the aforementioned distributions of the potential functions ψj and ϕj contain
the nonlinear terms in the restriction η. This nonlinearity occurs in accordance with the
nonlinear boundary conditions that are exemplified overhead.

To examine the stability of the physical model, the remaining boundary condition
arises from the normal component of the stress tensor. In agreement with the occurrence
of the quantity of surface tension, the normal component must be discontinuous. The
visco-elastic force of the Walters’ B type is given by Tonekaboni et al. [30] as

σviscoelastic
ij = −Pδij + 2

(
µj − µ′ j

∂

∂t

)
e
−ij

, (28)



Axioms 2021, 10, 258 8 of 26

e
−ij

=
1
2

(
∇v +∇vT

)
, (29)

The interfacial condition for the preservation of momentum is referred to by Moatimid
et al. [6] and Kumar [31]. Therefore, one gets

ρ1[v1·∇S]
(

∂S
∂t + v1 · ∇S

)
= ρ2[v2·∇S]

(
∂S
∂t + v2 · ∇S

)
+( ∥∥Pj

∥∥− 2
∥∥∥∥(µj − µ′ j

∂
∂t

)
n
−
·
[

n
−
· e
−ij

] ∥∥∥∥− 1
2

∥∥ε(E2
n − E2

t )
∥∥ + σ ∇ · n

−

)
|∇S|2

at y = η, (30)

The pressure will be eliminated by making use of Bernoulli’s equation. Considering
the Darcy’s model of the flow throughout porous media, Equation (30) may be written as

a0ηtt + a1ηxt + a2 ηxx +(a3 + i b1) ηx +(a4 + i b2) ηt +(a5 + i b3) η = N1(η)+ N2(η), (31)

where the coefficients ai and bi are real constants; they are given in the Appendix A. In
addition, the nonlinear terms N1(η) and N2(η) represent the quadratic and cubic nonlinear
terms in the variable η.

The zero-order interfacial condition of the conservation of momentum gives

x
κ
(ζ1U1 − ζ2U2) +

1
2

(
ε2 E2

02 − ε1 E2
01

)
+ λ2 − λ1 = 0 (32)

In what follows, ignoring the right hand side of Equation (31), the linear stability
approach will be introduced throughout the next Section.

3. Linear Stability Analysis

In accordance with of this approach, the linearized analysis of the nonlinear equation
given in Equation (31) is obtained when the nonlinear terms of the surface deflection
are disregarded. Consequently, the linearized dispersion equation may be formulated as
follows:

ηtt + a1ηxt + a2 ηxx + (a3 + i b1) ηx + (a4 + i b2) ηt + (a5 + i b3) η = 0 . (33)

Therefore, in view of the normal modes analysis, one may accept a constant wave
train solution for Equation (33) in the following form:

η(x; t) = γ ei(k x−ω t) + c·c , (34)

For a nontrivial solution of Equation (33), the dispersion relation then becomes

ω2 + (F1 + i G1) ω + (F2 + i G2) = 0, (35)

where the coefficients F1, G1, F2 and G2 are known of the background of the problem.
To shorten the numerical evaluations, it is preferable to work out the distinguishing

equation in terms of the following appropriate non-dimensional quantities. This can be
completed in different ways depending mainly on the selectivity of the physiognomies

of time and length. For this purpose, consider the parameters
√

ρ1h3
1/σ, h1 and ρ1h3

1
to indicate the characteristics of time, length and mass, respectively. The other non-
dimensional quantities might be assumed as:

ρ2 = ρ ρ1, µ2 = µ µ1, µ′2 = µ′ µ′1, U2 = ŨU1, V2 = VV1, ε2 = ε ε2, h2 = h h1, and Φ∗2 = Φ2 ε1h1/σ.

For straightforwardness, the “∗” mark may be ignored in the subsequent analysis.
Subsequently utilizing this selection, the succeeding non-dimensional numbers will seem
in the dispersion relation as follows:

• Weber numbers WeŨ = ρ1 U2
1 h1/σ and WeV = ρ1 V2

1 h1/σ, for the horizontal and
vertical velocities, respectively, distinguish the proportion of the disturbing hydrody-
namic forces from the soothing surface tension;
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• Ohnesorge number Oh = µ1/
√

σ ρ1h1 relates the viscous forces to an inertial and sur-
face tension force, where, µj = ρjζ j represents the dynamic viscosity and ζ j represents
the kinematic viscosity;

• Darcy number Da = κ/h2
1 signifies the comparative conclusion of the permeability of

the medium against its cross-sectional area;
• Elasticity numbe El = µ′/ρ1h2

1 characterizes the capability of a frame to attack a miss
representing effect and to return to its original magnitude and form, when the impact
of force is disregarded;

• Bond number Bo = h2
1 ρ1 g/σ represents the ratio of gravitational force to surface

tension force;
• Potential Bond number Φ2 ε1h1/σ represents the ratio between the electric potential

and the surface tension force.

The stability standards of the dispersion relation (35) are referred to by the Routh–
Hrutwitz theory; for illustration, see Zahreddin and El-Shehawey [32]. It follows that the
stability criteria may be written as:

F1 > 0 (36)

and
F2

1 F2 + F1G1G2 − G2
2 > 0. (37)

Although the calculation showed that F1 is independent of Φ2, it will be taken
into consideration in the forgoing numerical analysis. According to the non-dimensional
chosen data, the inequality (36) is satisfied in domains k < 0.0119 and k > 0.0604. The
distributions are discussed numerically and illustrated graphically in the region k > 0.0605.
Instantaneously, the additional inequality of Equation (37) might be correlated to Φ2 in the
subsequent equation:

A Φ2 + B > 0, (38)

where A and B are known from the context.
As specified beforehand, the repercussion of the inequality in Equation (38) must be

encompassed. Consequently, all the succeeding figures are planned in a definite domain,
where the condition of Equation (37) is automatically verified. In addition, the evaluations
designated that the parameter A is continuously of negative implication. This displays
a destabilizing effect of the normal electric field, which is an early result. It is confirmed
by numerous authors; for instance, see Dvitt and Melcher [1], and many references cited
therein.

To this end, our interest focuses on the inequality of Equation (38). For this objective,
the potential Bond number Log Φ2 will be designed against the wavenumber k of the sur-
face waves. In the following figures, the stable region is referred to by letter S. Meanwhile,
letter U stands for the unstable region. It is suitable to designate the impact of several
physical parameters on the stability configuration. The following figures are designed for a
system, taking the subsequent specifics:

Bo = 1, ρ = 0.25, µ = 0.5, ε = 0.1, µ′ = 10, Ũ = −15, h = 2.5, α1 = 2.4, Oh = 0.8, WeŨ = 2, WeV = 4, Da = 4, El = 30, V = −0.5.

Figure 2 illustrates the stability profile drawn over the range of the wavenumber. It is
found that the domain of the wave number is portioned into three parts as shown in the
figure: in the left region, where 0 < k < 0.0119, it is found that F1 > 0 and A > 0, which
shows that the potential Bound number plays a stability influence. In the middle part,
where 0.0119 < k < 0.0604, the term F1 < 0 shows that the stability criterion is not satisfied.
On the other hand, where k > 0.0604, the term F1 > 0 shows a destabilizing influence of
the normal electric field. As a conclusion, contrary to the previous studies of the inviscid
fluids, the normal electric field plays a dual role in the stability portrait.
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Figure 2. Plots of the stability bound for k versus Log Φ2.

Figure 3 indicates the inspection of the ratio between the two thicknesses on the
stability profile. As seen from this figure, as the thickness of the upper layer is greater than
the lower one, the stable region increases. This mechanism is enhanced for large values
of the wavenumber. This displays a stabilizing influence of this parameter of the selected
input parameters. Similar results were earlier gained by Moatimid and Zekry [13].

Figure 3. Plots of the stability bound for h for different values the parameter k versus Log Φ2.

As given throughout the non-dimensional procedure, the ratio between the viscosities
µ represents the ratio of the viscosity of the second fluid to the first one. The behavior of
this parameter is sketched in Figure 4. As seen in this figure, as the parameter µ increases,
the stable region also increases. This indicates a stabilizing effect of this limitation on
the designated input parameters. As in the previous figure, the stability mechanism is
enhanced for large values of the wavenumber of the surface waves. Similar results were
earlier obtained.

Figure 4. Plots of the stability bound for µ for different values the parameter k versus Log Φ2.

From the definition of WeŨ , it is noted that its increase may be produced by either
a growth of the liquid stream velocity, thicknesses, and density, or by reducing surface
tension. From the examination of Figure 5, the influence of WeŨ on the stability profile is
revealed. All physical parameters are held fixed except WeŨ . This figure shows that WeŨ
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plays a destabilizing influence. Actually, the increase of this parameter causes the initial
streaming to increase. The destabilizing influence of KHI is an early phenomenon verified
by many authors cited herein. More specifically, the consequence is in conformity with
those obtained earlier.

Figure 5. Plots of the stability bound for WeŨ for different values the parameter k versus Log Φ2.

Figure 6 designates the impacts of WeV on the stability representation. The physical
restrictions are entirely fixed, excluding WeV . As realized, the figure displays that WeV
exerts a stabilizing influence. Indeed, the increase of this parameter means an increase in
the suction/injection in the lower layer. This consequence agrees with the finding that has
been previously attained. The comparison between Figure 4; Figure 5 displays that the
Weber numbers have a dual role in the stability profile.

Figure 6. Plots of the stability bound for Wev for different values the parameter k versus Log Φ2.

Figure 7 indicates the influence of Darcy number Da on the stability profile. The
inspection of the figure shows that this parameter exerts a destabilizing influence. This
mechanism is enhanced great values of the wavenumber. This result is in conformity with
the findings that were previously found by Moatimid and Amer [33], El-Sayed et al. [34],
and many other researchers.

Figure 8 indicates the presence of the linear mass and heat transfer parameters α1 on
the stability picture. As illustrated from this figure, the stable region grows as mass and
heat transfer increases. This mechanism shows a stabilizing influence α1, especially at large
values of wave number k. This mechanism corresponds to the findings that were reported
earlier by Hsieh [16] and Elfenawy [35].
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Figure 7. Plots of the stability bound for Da for different values the parameter k versus Log Φ2.

Figure 8. Plots of the stability bound for α1 for different values the parameter k versus Log Φ2.

Figure 9 illustrates the effect of Bond number on the interfacial stability. It is found
that when the values of Bond number increase, the stability region increases too. As seen
from the mathematical formula of this parameter, it has the same properties of gravity.
Physically, this is an acceptable result which has been in agreement with that which was
earlier obtained by Chen and Chen [36].

Figure 9. Plots of the stability bound for Bo for different values the parameter k versus Log Φ2.

The velocity V represents the ratio of the velocities of the upper plate to the lower one
of the suction/injection. The positive standards of V denote an injection at the permeable
upper layer y = h2 with a consistent suction at the wall y = −h1; meanwhile, the negative
values mean an injection at the permeable plate y = −h1 with a corresponding suction
on the other plate. To indicate the suction/injection phenomena, Figure 10; Figure 11
are drawn. Therefore, Figure 10 illustrates the result of suction/injection velocities on
the porous boundaries of the flow channel. The inspection of this figure shows that the
suction/injection at both boundaries has a stabilizing effect. On the other hand, if V1 and
V2 have the same sign, the value of the ratio V has a positive value. The effect of the
vertical velocity V ratio has been displayed in Figure 11. As the parameter V increases, the
disturbance will grow faster and the system becomes a destabilizing situation. Therefore,
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this restriction has a destabilizing effect on the stability behaviour. This shows that the
suction/injection plays a dual role in the stability picture.

Figure 10. Plots of the stability bound for V for different values the parameter k versus Log Φ2.

Figure 11. Plots of the stability bound for V for different values the parameter k versus Log Φ2.

Figure 12 designates the influence of the Ohnesorge number Oh on the stability
examination. All physical restrictions remain except the parameter Oh. This figure shows
that Oh has a stabilizing influence. A similar effect has been recently reported by Amer
and Moatimid [8] and many other researchers; see Kourmatzis et al. [37].
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Figure 12. Plots of the stability bound for Oh for different values the parameter k versus Log Φ2.

Figure 13 designates the influence of the elasticity quantity El on the stability outline.
All physical structures are maintained except for El. As represented in this figure, as the
values of elasticity number El increase, the stability region also increases. Therefore, the
elasticity number El has a stabilizing influence on the considered system in the occurrence
of a vertical electric field. This result is in conformity with that which was gained earlier by
El-Sayed et al. [38].
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Figure 13. Plots of the stability bound for El for different values the parameter k versus Log Φ2.

4. Nonlinear Ginzburg–Landau Equation

As specified throughout the linear stability analysis, the interface surface elevation
η = η(x, t) has a special form by substituting Equation (34) into Equation (31). Therefore,
the nonlinear characteristic equation in terms of the interfacial distance η may be formulated
as follows:

D(k, ω)η = γ(k, ω)η2 + β(k, ω)η3 (39)

The terms D(ω, k),γ(ω, k) and β(ω, k) are recognized from the background of the
problem. To avoid the excessive length of the article, they are all excluded.

The following exploration depends mainly on the multiple time scale approach [39].
This performance is contingent principally on a slight parameter. It processes the ratio
of a characteristic wavelength and/or periodic time of variation. Consequently, one may
accept that δ is a trivial limitation that describes the deliberate modulation. In the view of
this method, the independent variables x and t, which are addressed on the scale of the
characteristic wavelength and period time, can be represented as alternate and independent
variables,

Xn = δnx and Tn = δnt n = 0, 1, 2, . . . (40)

where

L
(

∂

∂x
,

∂

∂t

)
η = 0. (41)

Therefore, the independent variables X0, T0 characterize the fast distinctions. Mean-
wile, X1, T1, X2, T2 refer to the deliberate ones. The differential operators can be currently
connected as the following derivative expansions:

∂

∂x
≡ k

∂

∂θ0
+ δ

∂

∂X1
+ δ2 ∂

∂X2
+ . . . and

∂

∂t
≡ −ω

∂

∂θ0
+ δ

∂

∂T1
+ δ2 ∂

∂T2
+ . . . , (42)

where θ = kX0 −ωT0 denotes the lowermost order.
It is satisfactory to enlarge the operator L in the following form:

L
(
(ik,−iω) + iδ(

∂

∂X1
,

∂

∂T1
) + iδ2(

∂

∂X2
,

∂

∂T2
) + . . .

)
(43)

The operator L can be extended powers of δ. By means of Taylor’s explanation around
(k,−ω), we recall merely the terms up to O(δ2). Based on this explanation, one finds

L→ L0 + δ L1 + δ2L2 + . . . , (44)

where
L0 ≡ (−ω

∂

∂θ0
, k

∂

∂θ0
), (45)

L1 ≡ i
(

∂L0

∂ω

)
∂

∂T1
− i
(

∂L0

∂k

)
∂

∂X1
, (46)
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and

L2 ≡ i
(

∂L0

∂ω

)
∂

∂T2
− i
(

∂L0

∂k

)
∂

∂X2
− 1

2

(
∂2L0

∂ω2

)
∂2

∂T2
1
− 1

2

(
∂2L0

∂k2

)
∂2

∂X2
1
+

1
2

(
∂2L0

∂k ∂ω

)
∂2

∂X1∂T1
. (47)

Representing the development of the operator as given in Equation (44) into Equation (34),
one finds (

L0 + δ L1 + δ2L2

)
η = 0 . (48)

The abovementioned analysis, reviews the perturbation technique to attain a uniform
effective solution. Certainly, this concept needs invalidation of the secular terms.

The stability process of Equation (39) examined in detail in our preceding paper given
by Moatimid et al. [13]. Based on the previous findings in this reference, one obtains the
following Ginzburg–Landau equation:

i
∂γ

∂τ
+ (Pr + i Pi)

∂2γ

∂ζ2 = (Qr + i Qi) γ2γ, (49)

where γ is the complex conjugate of γ,

Pr + i Pi = − 1
2

(
∂D
∂ω

)−1(
V2

g
∂2D
∂ω2 + 2Vg

∂2D
∂ω ∂k +

∂2D
∂k2

)
,

Qr + i Qi =
(

∂D
∂ω

)−1( 2γ
Ω + 3β

)
,

ζ = δ(x−Vgt), τ = δ2t,

(50)

and the group velocity is given by Vg = − ∂D
∂ k

(
∂D
∂ω

)−1
.

The non-zero denominator Ω results from the linear dispersion function D(ω, k) by
replacing both ω and k by 2ω and 2k, correspondingly. The stability standards of the
Ginzburg–Landau as given in Equation (49) have been previously established by Lange
and Newell [40]. By putting the assumptions of linear perturbation into practice for
this equation, they postulated that the perturbation is stable throughout the subsequent
conditions:

Qi < 0, and Pr Qr + Pi Qi > 0. (51)

On the other hand, the system develops unstable. Accordingly, the evolution curves
that distinguish the stable from the unstable areas are equivalent to

Qi = 0, and Pr Qr + Pi Qi = 0. (52)

Before distributing the numerical calculations, the transition curves given by Equation (52)
must be inscribed in a convenient non-dimensional procedure. This can be prepared in a
number of methods fundamentally based on the special appearances of time, length and mass.
Consider that the parameters 1/ω, h1 and σ/ω2 denote the appearances of time, length and
mass, respectively.

The calculation of the transition curve given by Qi = 0 may be represented in a
third-degree polynomial of Φ2 as

L3 (Φ2)
3
+ L2 (Φ2)

2
+ L1 Φ2 + L0 = 0 . (53)

Meanwhile, the second transition curve given Pr Qr + Pi Qi = 0 can be arranged in a
fifth-degree polynomial on Φ2 as:

G5 (Φ2)
5
+ G4 (Φ2)

4
+ G3 (Φ2)

3
+ G2 (Φ2)

2
+ G1 Φ2 + G0 = 0 , (54)

where the coefficients given in Equations (53) and (54) are well recognized from the
background. To decrease the length of the paper, they will be crossed out.
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In order to exemplify the stability standards in this nonlinear stability methodology,
the characteristic curves that are arranged in Equations (53) and (54) will be numerically
analyzed. In what follows, the numerical calculations consider two different data choices
as follows:

Data A consider the following particular system:

ρ = 3, µ = 0.5, ε = 0.1, µ′ = 0.5, Ũ = −15, h = 2.5, α1 = 0.4, κ̂ = 4, V = −0.5, α2 = 10, and α3 = 25

Based on the choice of Data A, Equation (53) yields only one positive real root; meanwhile,
the additional double roots are complex conjugates. Essentially, this is an algebraic concept.
Therefore, only one transition curve can be graphed. On the other hand, Equation (54) also
results in one, real root. For this objective, one seeks a common domain of the wave number
at which both of the two roots occur. The other complex conjugate roots have no influence on
the stability profile. Consequently, Log Φ2 is planned versus the wave number of the surface
waves k throughout Figure 14. The transition curve that is given by Equation (53) is signified
by a purple curve. Meanwhile, the red curve refers to the transition curves that are given
in Equation (54). In contrast with the linear stability approach, these transition curves divide
the stability diagram into three regions. To address the nature of each region, we check the
occurrence of the inequalities that are given in (51). As seen from Figure 14, the plane is divided
into several parts of stability/instability regions.

Figure 14. Variation of Log Φ2 with k to depict the contribution of Equations (53) and (54) along with
data A.

Data B considers the following particular system:

ρ = 3, µ = 0.25, ε = 4.5, µ′ = 15, Ũ = 7, h = 2.5, α1 = 2.5, κ̂ = 0.3, V = 5, α2 = 30, and α3 = 1.6

Along with this choice, the numerical calculation showed, as before, that there is
only one real positive root of Equation (53). On the other hand, Equation (54) yields three
positive roots as follows: two of them are integrated to yield only one curve. The third one
gives a separate curve. The other roots of Equations (53) and (54) are complex conjugates.
Therefore, they have no implication in the stability diagram. Figure 15 shows these different
transition curves. As shown, the stability diagram is separated by numerous portions
of stability/instability constituencies. In order to illustrate the influences of the different
physical parameters along with the considered nonlinear approach, and for the sake of
simplicity, the chosen sample system will be compatible with data A.
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Figure 15. Variation of Log Φ2 with k to depict the contribution of Equations (53) and (54) along with
data A.

Figures 16–18 designate the influences of mass and heat transfer parameters α1, α2
and α3, respectively, on the stability picture. As shown from the theoretical procedure, the
parameter α1 appears along with the linear stability approach. Meanwhile, the parameters
α2 and α3 emerge due to the nonlinear sense. The inspection of Figure 16 shows that α1
plays a stabilizing role. This influence remains compatible with the linear stability approach
given in Figure 8. Depending on the nonlinear approach, Figure 17 shows that α2 also has a
stabilizing effect. On the other hand, Figure 18 demonstrates that α3 having a destabilizing
influence. Therefore, one can say that mass and heat transfer parameters have a dual role
in the stability criterion. These results are in agreement with the results that were earlier
obtained by Hsieh [16].

Figure 16. Variation of Log Φ2 with k to depict the contribution of Equations (53) and (54) along with
data A for different values the parameter α1.

Figure 17. Variation of Log Φ2 with k to depict the contribution of Equations (53) and (54) along with
data A for different values the parameter α2.

Figure 19 indicates the influences of the ratio of Walters’ B visco-elasticity µ′ on the
stability picture. As understood from this figure, the increase of this stricture enhances the
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instability regions. Therefore, it consumes a destabilizing consequence. This consequence
is in arrangement with the findings that were previously reported by El-Sayed et al. [41].

Figure 18. Variation of Log Φ2 with k to depict the contribution of Equations (53) and (54) along with
data A for different values the parameter α3.

Figure 19. Variation of Log Φ2 with k to depict the contribution of Equations (53) and (54) along with
data A for different values the parameter µ′.

Figures 20 and 21 illustrate the suction/injection influence throughout the nonlinear
stability approach. As previously seen, when V1 and V2 have the same sign, the ratio V has
a positive value. It is seen in Figure 20 that this parameter has a destabilizing effect on the
stability behaviour as revealed by our discussion in linear stability analysis.

Figure 20. Variation of Log Φ2 with k to depict the contribution of Equations (53) and (54) along with
data A for different values the parameter V.

On the other hand, Figure 21 indicates the consequence of suction/injection velocities
on the porous borders of the flow channel. We know that if V1 takes a negative value at
the lower plate and V2 takes a positive value at the upper plate; this condition is called the
suction velocity, while the inverse occurs for the injection velocity. The inspection of this
figure shows that the suction/injection at both boundaries has a stabilizing effect. This
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displays that the suction/injection plays a dual role through the non-linear stability profile.
Similar results were obtained earlier.

Figure 21. Variation of Log Φ2 with k to depict the contribution of Equations (53) and (54) along with
data A for different values the parameter V.

5. Profile Interface by Means of Poincaré–Lindstedt Technique

The aim of this Section is to achieve an approximate bounded solution for the surface
elevation. As shown in the aforementioned section, the nonlinear methodology results
in the nonlinear distinguishing relation that is given in Equation (31). It characterizes a
nonlinear second-order differential equation through complex coefficients of the interface
displacement η(x, t) . Really, the analysis of this equation, in its current form, is slightly
difficult. Physically, the behavior of the amplitude deflection η(x, t) is essentially a real
function. To simplify the subsequent calculations, one may consider only the time depen-
dent, i.e., η = η(0, t) = γ(t). Consequently, the previous distinguishing Equation (31) may
be divided into its real and imaginary parts as follows:

γ′′ + l1 γ′ + l2 γ + l3 γ2 + l4 γ γ′ + l5 γ γ′′ + l6 γ3 + l7 γ2 γ′ + l8 γ2 γ′′ = 0, (55)

and
m1 γ′ + m2 γ + m3 γ2 + m4 γ γ′ + m5 γ3 + m6 γ2 γ′ = 0, (56)

where li, mi (i = 1, 2, . . . .) are recognized from the context. To restrict the length of the
paper, they will be crossed out from the text.

To be more understandable, the mixture of Equations (55) and (56) may be attained by
terminating the term γ′, and the subsequent equation can be written as follows:

γ′′ + Ω2 γ + s1 γ2 + s2 γ3 = 0, (57)

where Ω2, si, (i = 1, 2) is recognized from the context. This amount affects the ordinary
frequency of the problem. Characteristically, it is necessarily positive. To decrease the
length of the paper, they will be omitted.

At this stage, the nonlinear amplitude as given in Equation (57) has real coefficients.
It signifies a comprehensive cubic nonlinear differential equation. It is sometimes called
Rayleigh-Duffing equation. The solution for this equation needs initial conditions. For this
purpose, the following original conditions may be introduced:

γ(0) = 1; and γ′(0) = 0. (58)

For this objective, the homotopy formulation of the considered parametric equation
becomes

γ′′ + Ω2 γ + χ
(

s1 γ2 + s2 γ3
)
= 0; χ ∈ [0, 1]. (59)

Typically, a new variable τ = v t is presented to substitute t, and then Equation (59)
develops

v2 ..
γ + Ω2 γ + χ

(
s1 γ2 + s2 γ3

)
= 0. (60)
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Herein v is recognized as the frequency of the oscillator, and the prime denotes
the differentiation with respect to τ. Allowing the L–P technique, see [42–48], and the
parameters γ and v may be expended as follows:

γ(τ) =
∞

∑
j=0

χjγj(τ) =γ0(τ) + χ γ1(τ) + χ2γ2(τ) + . . . . and v = 1 + χ v1 + χ2v2 + . . . . . . . . (61)

Substituting from Equations (61) into Equation (60) and identifying the coefficients of
the same powers of χ on both sides, one finds the subsequent grading equations:

χ0 : γ0(τ) = cos(Ω τ) , (62)

χ : γ1(τ) = L−1
T

{
S

S2 + Ω2

}
− L−1

T

{
S

S2 + Ω2 LT

{
s1γ2

0 + s2γ3
0 + 2v1

..
γ0

}}
, (63)

and

χ2 : γ2(τ) = L−1
T

{
S

S2 + Ω2

}
− L−1

T

{
1

s2 + Ω2 LT

{
2s1γ0γ1 + 3s2γ2

0γ1 + v2
1

..
γ0 + 2v2

..
γ0 + 2v1

..
γ1

}}
. (64)

On replacing Equation (60) into Equation (61), we find

γ1(τ) = L−1
T

[
1

S2+Ω2

]
− L−1

T

[
1

S2+Ω2 LT

{
1
4

(
2s1 + 3s2 cos( τ)− 8 Ω2v1 cos( τ) + 2s1 cos(2Ω τ) + s2 cos(3Ω τ)

)}]
. (65)

The development necessitates the termination of the secular terms. Consequently,
the coefficient of the function cos(Ω τ) must be omitted. Hence, the parameter v1 is
determined as

v1 =
3 s2

8Ω2 . (66)

It follows that the periodic solution γ1(τ) becomes

γ1(τ) =
s1

2Ω2 +

(
1 +

s2

32 Ω2 −
s1

3 σ2

)
cos(Ωτ) +

s1

6 Ω2 cos(2Ωτ)− s2

32 Ω2 cos(3Ωτ). (67)

Once more, replacing Equations (62) and (67) into Equation (64), the invalidation of
the secular term needs

v2 =
320s2

1 − 192s1s2 − 45s2
2 + 576s2Ω2

768 Ω4 . (68)

By similar arguments as assumed before, after a long, but straightforward calculations,
one finds the solution γ2(τ) is

γ2(τ) =
s1(32s1+63s2+96Ω2)

96Ω4 +

(
1 + 29s2

1
144Ω4 − 35s1s2

96Ω4 +
23s2

2
1024Ω4 − 2s1

3Ω2 +
3s2

32Ω2

)
cos(Ωτ) +

s1(s1−3s2−3Ω2)
9Ω4 cos(2Ωτ)+

8s2
1+12s1s2−9s2

2−36s2Ω2

384Ω4 cos(3Ωτ) + s1s2
96 Ω4 cos(4Ωτ) +

s2
2

1024 Ω4 cos(5Ωτ).
(69)

By the same token, the estimated circumscribed solution of the equation of motion
that is given in Equation (57) may be formulated as follows:

γ(t) = lim
χ→1

(
γ0(t) + χγ1(t) + χ2γ2(t)

)
, (70)

Though there are alternative approaches to Equation (57) numerically or analytically
(see [43–48]), the present method provides a simple but effective tool for the present
analysis.

In what follows, a numerical calculation of the theoretic consequences that are re-
ported in this section is completed. As stated before, the non-dimensional amounts are
actually useful in shortening the obtained results. For this purpose, consider the same
non-dimensional quantities given in the case presented in Section 4.
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Therefore, Figure 22 graphs the perturbed solution as given in Equation (70). This
figure characterizes the perturbed solution for a system, taking the subsequent specifics:

ρ = 9, µ = 0.1, ε = 0.4, µ′ = 5, Ũ = 2, h = 0.9, α1 = 0.5, κ̂ = 0.5, V = 8, α2 = 2, α3 = 0.6, k = 0.02 and E0 = 5.

Figure 22. The perturbed solution as given in Equation (70).

For more convenience, the analytical perturbed solution of the surface wave is graphed
along with the three-dimensions as shown in Figure 23.

Figure 23. The perturbed surface solution as given in Equation (70) in three dimensions.

6. Concluding Remarks

In accordance with the theory of the viscous potential, the behavior of nonlinear
interfacial waves between two horizontal immiscible liquids in the occurrence of a uniform
normal electric field is analyzed. A better quantitative and quantitative understanding of
heat and mass transfer mechanisms behind various food production, processing, preser-
vation, and storage. Therefore, the current paper includes the presence of mass and heat
transfer. For straightforwardness, the shortened model of Hsieh [15–17] has been em-
ployed. Recently, Zanutto et al. [49] involved the interfacial mass and heat transfer in their
work. Additionally, the coupling of the mass and heat transfer with viscoelastic Walters
B fluid was addressed by Ghasemi et al. [50]. Their governing equations of motion were
scrutinized by means of the homotopy analysis method. Many models explore fluids of
both elastic and viscous characteristics. These visco-elastic fluids are becoming increasingly
important in current technologies and industries. Therefore, the present study considered
visco-elastic Walters’ B fluid. Pandey et al. [51] investigated the initiation of convection
in a horizontal layer of Walter’ B visco-elastic nanofluid. Equation (57) can also be solved
by other analytical methods [52–56], especially He’s frequency formulation [55,56]. Due
to the practical implications of the porous media, the media are presumed to be fully
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saturated in porous structure. Furthermore, the two rigid barriers are considered as per-
meable, where the suction and injection velocities are taken into account. The nonlinear
approach is concerned with the linear equations of motion with the appropriate nonlinear
boundary conditions. This technique resulted in a nonlinear distinguishing differential
equation, which judges the surface elevation. By means of the Routh–Hrutwitz technique,
the stability criteria are obtained. Typically, a non-dimensional practice is utilized for a
good presentation of the stability benchmarks. Several non-dimensional numbers, such as
Weber, Ohnesorge, Darcy, Elasticity, Bond, and potential Bond numbers, are investigated.
The multiple scale method with the aid of the Taylor expansion are employed to provide
a Landau–Ginzburg equation. Therefore, the stability criteria are theoretically achieved
and numerically confirmed. Additionally, the profile of the surface waves is obtained like a
Rayleigh–Duffing equation. By resources from the L–P technique, an analytic approximate
bounded solution is derived.

Finally, the influences of various non-dimensional numbers on the different cases can
be summarized in the following table:

• In light of the linear approach

Physical Parameters Behavior

Weber numbers WeŨ U
Ohnesorge number Oh S
Darcy number Da U
Elasticity number El S
Bond number Bo S
The ratio of velocity V Dual role
Mass and heat transfer parameters α1 S
The ratio of viscosities µ S
The ratio between the two thicknesses
(h = h2/h1)

S

• In light of the nonlinear approach

Physical Parameters Behavior

Mass and heat transfer parameters α1 S
Mass and heat transfer parameters α2 S
Mass and heat transfer parameters α3 U
The ratio of Walters’ B visco-elasticity µ′ U
The ratio of velocity V Dual role

Due to the impact of suspended particles on the interface stability of superposed visco-
elastic fluids in porous media have importance in industrial and chemical engineering, as
a future work, it is it is worthy to examine the nonlinear stability analysis of well-known
models. The fact that information about the fluid–particle mixture is not commensurate
with their industrial and scientific significance is another motivator for future work.
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Nomenclature

In the following table, the subscripts j = 1, 2 denote the parameters that are associated with lower and upper fluids, respectively.

English Symbols Greek Symbols
Vj Uniform suction/injection velocities γ(ω, k) and β(ω, k) Nonlinear coefficients
V Ratio of a uniform suction/injection velocities δij Kronecker delta
E0j Uniform, normal electric field ε j Dielectric constants
E
−

Electric field intensity vector ε Ratio of dielectric constants

Uj Uniform horizontal velocities Φ Uniform electric potential
Ũ Ratio of horizontal velocities κ Common permeability
Tj Uniform temperatures at bounding rigid surfaces ζ j Kinematic viscosity
T0 Uniform temperatures at the interface η(z; t) Surface deflection
k Axial wave number µj Dynamic viscosities
e
−x

and e
−y

Unit vectors along x− and y− directions µ′ j Dynamic Walters’ B visco-elasticities

t Time µ Ratio of limiting viscosities
g Gravitational acceleration ρj Uniform densities
v
−j

= vj(x, y, t) Fluid velocity vector ρ Ratio of liquid densities

Pj Hydrostatic pressure ϕj(r, z; t) Scalar potential functions of velocities
c. c. Complex conjugate of the preceding term ψj(r, z; t) Scalar potential functions of electric field
h Ratio between the two thicknesses δ , χ Small parameters
h2 Thichness of the upper layer λj Arbitrary integration constant
h1 Thichness of the lower layer σ Surface tension coefficient
(x, y, z) Cartesian coordinates α1 , α2, α3 Heat and transfer coefficients
En Normal component of electric field T̃ Transpose of the matrix
Et Tangential component of electric field σviscoelastic

ij Stress tensor of the Walters B’ visco-elastic type
D(ω, k) Linear coefficient e

−ij
Strain rate tensor

Kj Thermal conductivities parameters σ
(elec)
ij Stress tensor of the electric field

L Latent heat of the transformation from the fluid σij Total stress tensor
n
−

Unit outward normal vector of the interface σ Surface tension coefficient

S Stable region γ Small amplitude of the wave train solution
U Unstable region γ Complex conjugate of γ

ω Natural frequency
v Frequency of the oscillator
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Appendix A

The coefficients of linear terms that appearing in Equation (31) may be listed as
follows:

a0 = − 1
k (ρ1coth [kh1] + ρ2coth [kh2]) + 2k(µ′1coth [kh1] + µ′2coth [kh2]),

a1 = − 1
k (ρ1U1coth [kh1] + ρ2U2coth [kh2]) + 2k(µ′1U1coth [kh1] + µ′2U2coth [kh2]),

a2 = σ, a3 = (−µ1U1 coth [kh1]− µ2U2 coth [kh2])
(

1
k κ + 2k

)
,

a4 =
(
− α1

k −
µ1
k κ +

2kα1µ′1
ρ1
− 2k µ1

)
coth [kh1] +

(
− α1

k −
µ2
k κ +

2kα1µ′2
ρ2
− 2k µ2

)
coth [kh2]−V1ρ1 + V2ρ2,

a5 = 2α1(V2 −V1) +
1
κ (V2µ2 −V1µ1) + g(ρ2 − ρ1)−

(
α1µ1

ρ1
coth [kh1] +

α1µ2
ρ2

coth [kh2]
) (

2k + 1
k κ

)
,

b1 = −U2
1 ρ1coth[kh1] + coth[kh2]

(
−U2

2 ρ2 − ε1ε2(ε1−ε2)
2 ϕ2

(h2 ε1+h1 ε2)
2(ε1+ε2coth[kh2]tanh[kh1])

)
,

b2 = −(ρ1U1coth [kh1] + ρ2U2coth [kh2]), and b3 = −α1 (U1coth [kh1] + U2coth [kh2]),

The nonlinear terms that appearing in Equation (31) may be listed as follows:

N1(η) = (a6 + i b4) η2 + (a7 + i b5) ηηx + a8 ηηt + (a9 + i b6) ηt ηx + i b7 ηx ηxt + i b8 ηx ηtt + (a10 + i b9) η2
x, η

N2(η) = (a11 + i b10) η3 + a12 η2ηt + (a13 + i b11) η2ηx + a14η2
xηxt + (a15 + i b12) η η2

x + i b13 η ηxηt+
a16ηttη

2
x + a17η2

xηxx + (a18 + i b14) η2
xηt + (a19 + i b15) η3

x,

where

a6 = 2α1α2(V1 −V2) + α2
1

(
1
ρ1
− 1

ρ2

)
+ α1α2

(
2k +

1
k κ

)(
µ1

ρ1
coth [kh1] +

µ2

ρ2
coth [kh2]

)
,

a7 = α1

(
−U1coth2 [kh1] + U2coth2 [kh2]

)
, a8 = α1α2

( [
1
k
− 2 k µ′1

ρ1

]
coth [kh1] +

[
1
k
− 2 k µ′2

ρ2

]
coth [kh2]

)
,

a9 = (−ρ1U1coth2 [kh1] + ρ2U2coth2 [kh2]), b4 = α1 α2 (U1coth [kh1] + U2coth [kh2]),

b5 = α1

(
4k
[
−µ1

ρ1
+

µ2

ρ2

]
+ V1coth [kh1] + V2coth [kh2] +

(
µ1

ρ1
coth2 [kh1]−

µ2

ρ2
coth2 [kh2]

)(
2k +

1
kκ

) )
,

b6 = 4k
(
−µ1 + µ2 +

α1µ′1
ρ1
− α1µ′2

ρ2

)
+ ρ1V1coth [kh1] + ρ2 V2coth [kh2]+(

α1
k + 2kµ1 +

µ1
kκ −

2kα1µ′1
ρ1

)
coth2 [kh1]−

(
α1
k + 2kµ2 +

µ2
kκ −

2kα1µ′2
ρ2

)
coth2 [kh2],

b7 = 4k
(
U1 µ′1 + U2 µ′2

)
+ U1

(ρ1

k
− 2kµ′1

)
coth2 [kh1]−U2

(ρ2

k
− 2kµ′2

)
coth2 [kh2],

b8 = 4k
(
µ′1 − µ′2

)
+
(ρ1

k
− 2kµ′1

)
coth2 [kh1]−

(ρ2

k
− 2kµ′2

)
coth2 [kh2],

b9 = 4k(−U1µ1 + U2 µ2) +
(

2k + 1
kκ

) (
U1µ1coth2 [kh1] + U2µ2coth2 [kh2]

)
+ ρ1 U1 V1coth [kh1] + ρ2 U2 V2coth [kh2] ,

a10 = −ρ1U2
1coth2 [kh1] + ρ2U2

2coth2 [kh2] +
ε1ε2(ε1−ε2) ϕ2

(h2ε1+h1ε2)
2 + ε1ε2(ε1 − ε2) ϕ2(6 ε2

1 cosh2[kh1]−
(4 + 3 cosh[2kh1] + 3 cosh[2kh2] + 2 cosh[2k(h1 + h2)] ) ε1ε2 + 6 ε2

2 cosh2[k h2] ) /
4(ε1 cosh[kh1]sinh[kh2]+ε2 cosh[kh2]sinh[kh1])

2(h2ε1 + h1ε2)
2,

a11 = 2α2
1 α2

(
1
ρ1
− 1

ρ2

)
+ 2α1 α3(V1 −V2) +

(
µ1

ρ1
coth [kh1] +

µ2

ρ2
coth [kh2]

) (
2k +

1
kκ

))
,

a12 = α1 α3

( (
1
k −

2 k µ′1
ρ1

)
coth [kh1] +

(
1
k −

2 k µ′2
ρ2

)
coth [kh2]

)
, a13 = α1 α2

(
−U1coth2 [kh1] + U2coth2 [kh2]

)
,

b13 = α1 α2

(
4k
[

µ′1
ρ1
− µ′2

ρ2

]
+

[
1
k
− 2 k µ′1

ρ1

]
coth2 [kh1]−

[
1
k
− 2 k µ′2

ρ2

]
coth2 [kh2]

)
,

a14 = U1
(
− ρ1

k + 2kµ′1
)
coth3 [kh1] + U2

(
− ρ2

k + 2kµ′2
)
coth3 [kh2], b12 = −α1

(
U1coth3 [kh1] + U2coth3 [kh2]

)
,

and

a15 = α1

(
−V1 + V2 −V1coth2 [kh1] + V2coth2 [kh2]−

(
µ1

ρ1
coth3 [kh1] +

µ2

ρ2
coth3 [kh2]

)(
2k +

1
kκ

))
,
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