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Abstract: In this work, we investigate the ill-conditioned problem of a separable, nonlinear least
squares model by using the variable projection method. Based on the truncated singular value
decomposition method and the Tikhonov regularization method, we propose an improved Tikhonov
regularization method, which neither discards small singular values, nor treats all singular value
corrections. By fitting the Mackey–Glass time series in an exponential model, we compare the
three regularization methods, and the numerically simulated results indicate that the improved
regularization method is more effective at reducing the mean square error of the solution and
increasing the accuracy of unknowns.

Keywords: separable nonlinear least squares; variable projection method; Tikhonov regularization
method; L-curve method; LM algorithm

1. Introduction

Many problems in physics, chemistry, machine learning, computer vision, signal
processing and mechanical engineering can only be described by a specialized type of
nonlinear regression model, which is a linear combination of nonlinear functions. In
particular, given the sequence of the observed values {(ti, yi), i = 1, 2, · · · , m}, a fitting
model can be established as follows:

η(θL, θN ; ti) :=
n

∑
j=1

aj ϕj(θN ; ti) (1)

where θL = (a1, a2, · · · , an)
T is the linear parameter, θN = (b1, b2, · · · , bk)

T is the nonlinear
parameter and ϕj(θN ; ti) is a quadratic differentiable nonlinear function, which depends
on θN and ti. With the least squares method, it reduces to the following nonlinear function.

v(θL, θN) =
m

∑
i=1

(yi − η(θL, θN ; ti))
2 (2)

which can be rewritten in the matrix form

v(θL, θN) = ‖y−Φ(θN)θL‖2 (3)

where y = (y1, y2, · · · , ym)
T , t = (t1, t2, · · · , tm)

T and φj(θN ; t) = (ϕj(θN ; t1), · · ·
ϕj(θN ; tm))

T . Additionally, Φ(θN) = (φ1(θN ; t), · · · φn(θN ; t)) is a matrix function, and
‖ · ‖2 denotes the Euclidean norm.

The minimization problem (3) is a nonlinear least squares problem that does not
consider the properties of the parameters. The Gauss–Newton (GN) algorithm [1], the
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Levenberg–Marquardt (LM) algorithm [2,3] and the iterative embedding points algo-
rithm [4] are commonly used to solve such problems. In fact, there are two sets of mutually
dependent parameters in this model: the linear parameter and the nonlinear parameter.
Golub and Pereyra [5,6] refer to this type of data-fitting problem as a separable nonlinear
least squares (SNLLS) problem. In consideration of the specialized separable structure of
this type of model, they proposed the variable projection (VP) algorithm. The general aim
of implementing this algorithm is to eliminate linear parameters and obtain a simplified
problem with only nonlinear parameters. For any given nonlinear parameter θN , θL can be
obtained by solving the following linear least squares problem.

θL = argmin
θL
‖y−Φ(θN)θL‖2 (4)

The least squares solution of Equation (4) is

θ̂L =
(

Φ(θN)
TΦ(θN)

)−1
Φ(θN)

Ty = Φ(θN)
+y (5)

where Φ(θN)
+ is the pseudo-inverse of Φ(θN). By substituting θ̂L into (3), we obtain

v(θN) = ‖y−Φ(θN)Φ(θN)
+y‖2

= ‖
(

I −Φ(θN)Φ(θN)
+
)

y‖
2
= ‖

(
I − PΦ(θN)

)
y‖

2
= ‖P⊥Φ(θN)y‖

2
(6)

where PΦ(θN) = Φ(θN)Φ(θN)
+ is the orthogonal projection on the linear space spanned by

the column vectors of Φ(θN), and P⊥Φ(θN) = I − PΦ(θN) is the projector on the orthogonal
complement of the column space of Φ(θN).

Equation (6) is the revised residual function, in which the linear parameter is elimi-
nated. The VP algorithm reduces the dimensionality of the parameter space and increases
the probability of finding the global optimal solution. It is an effective method for solving
the SNLLS problem.

The VP algorithm has been significantly improved and widely applied since it was
proposed. For example, Kaufman [7] proposed an improved VP algorithm based on the
trapezoidal decomposition of a matrix, and provided a simplified Jacobian matrix of the
VP method. Ruhe et al. [8] analyzed the asymptotic convergence of the simplified VP
algorithm. O’Leary and Rust [9] subsequently discovered that a VP algorithm with a
complete Jacobian matrix requires fewer iterations than Kaufman’s simplified algorithm.
Alternatively, Ruano et al. [10] proposed a more simplified Jacobian matrix for the VP
algorithm, and an improved VP algorithm that entailed applying QR decomposition to
the sparse nonlinear function matrix. They found that their method effectively increased
computational efficiency. Gan et al. [11] compared the separation algorithms for different
Jacobian matrices and concluded that a VP algorithm with the complete Jacobian matrix
is more stable than the simplified algorithm proposed by Kaufman. Gan and Li [12]
proposed a VP algorithm that utilizes the classic Gram–Schmidt (GS) matrix decomposition
method to treat cases in which the number of observations is significantly larger than the
number of linear parameters; their algorithm was found to reduce the computational cost.
Alternatively, Chen et al. [13] employed a modified GS method in their development of a
more robust VP algorithm for SNLLS problems; they reported that the combination of a VP
algorithm and the L–M method is more effective than a combination of the VP algorithm
and the G–N method.

Although many considerable efforts have been dedicated to developing methods to
solve SNLLS problems, there are few studies on ill-conditioned problems with iterative pro-
cesses. It can be seen that the least squares solution given as Equation (5) is conditioned on

the fact that
(

Φ(θN)
TΦ(θN)

)−1
Φ(θN)

T is computable—that is, the matrix Φ(θN)
TΦ(θN)

is invertible. However, when the equation is ill-conditioned, the smallest characteristic root

of the matrix Φ(θN)
TΦ(θN) is near zero; therefore, the elements of

(
Φ(θN)

TΦ(θN)
)−1

will
become significantly large. Small changes in the observation value will significantly affect
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the least squares solution, causing it to become unstable. Thus, a regularization method
needs to be introduced to convert the ill-posed problem into a relatively mild or benign
problem [14–16] before proceeding. There are many regularization methods, including
Tikhonov regularization (TR) [17,18], truncated singular value decomposition (TSVD) regu-
larization [19,20], kernel-based regularization [21,22] and l1-regularization [23]. Generally,
a regularization method is applied to improve the condition of the ill-conditioned matrix by
introducing regularization parameters. Common methods for determining regularization
parameters include ridge-tracing, generalized cross-check and L-curve-based methods.
The TSVD method is significantly popular because it is relatively well developed, and can
be applied to solve computationally complex problems. Zeng et al. [24] estimated the linear
parameters in a separable least squares parameter optimization process by implementing
regularization parameter detection techniques in the TR and TSVD methods. In their
attempt to regularize SNLLS ill-posed problems using a VP algorithm, Chen et al. [25]
developed a weighted generalized cross-validation method to determine TR parameters.
The effectiveness of the algorithm was verified through experimentation. Wang et al. [26]
separated linear and nonlinear regularization parameters using a singular value decom-
position (SVD)-based VP algorithm. They also estimated the linear parameters by using
both the LS method and an L-curve-based spectral correction method. Their experiments
confirmed that the algorithm can effectively solve ill-conditioned problems.

In this paper, an improved TR optimization method is proposed for the parameter
estimation problem of SNLLS models. With the VP method as the basic framework,
the algorithm was developed to take into account the specialized structure of the linear
combination of nonlinear functions and separate the linear and nonlinear parameters.
The linear parameters are estimated by using an improved TR method, whereas the
nonlinear parameters are optimized by using the LM method. Regarding the iterative
process, the simplified Jacobian matrix proposed by Kaufman is implemented in the VP
algorithm. Numerical simulations were performed to compare the improved TR method to
the original TR and TSVD regularization methods. The effectiveness of the VP algorithm
with the improved TR method was verified, and the accuracies of different linear parameter
estimation methods were evaluated.

We begin this paper by summarizing the VP method and the existing problems related
to solve SNLLS problems. The methods of nonlinear parameter estimation and linear
parameter estimation are explained based on an improved VP algorithm derived from
SVD, and the steps to solve SNLLS problems are then detailed. Thereafter, we compare
and evaluate the performances of the method proposed in this paper and the conventional
regularized VP algorithm by numerical simulations.

2. Parameter Estimation Method
2.1. Regularization Algorithm for Linear Parameter Estimation

With no loss of generality, the model is abbreviated as

y = ΦθL (7)

Then, as a result of applying SVD, Φ can be rewritten as

Φ = USVT =
l

∑
i=1

uiσivT
i (8)

where U = (u1, u2, · · · , um) and V = (v1, v2, · · · , vn) are composed of the eigenvectors
ΦTΦ and ΦΦT respectively; and U ∈ Rm×m , V = Rn×n , UTU = I and VTV = I.
S = diag(σ1, · · · , σl , σl+1, · · · , σn) is a diagonal matrix with diagonal elements that are
singular values of Φ, where σ1 ≥ σ2 ≥ · · · ≥ σl > 0 and σl+1 = σl+2 = · · · = σn = 0. l is
the rank of Φ.
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The Moore–Penrose inverse of Φ is given as Φ+ =
l

∑
i=1

uT
i vi
σi

. The least squares solution

of the linear parameter, according to Equation (5), is given as

θ̂L =
l

∑
i=1

uT
i yvi

σi
(9)

Clearly, if some small singular values are significantly close to zero, even a small error
will produce a significantly large discrepancy between the least square solution and the true
value, making the solution unstable. To avoid this problem, a filter factor was introduced
to suppress the error term in the ill-conditioned solution. Thus, the approximate solution
can be obtained as

θ̂L =
l

∑
i=1

ϕ
uT

i yvi

σi
(10)

2.1.1. TSVD Method

The TSVD method removes the disturbing influence of small singular values on the
LS solution, thereby allowing a stable solution to be achieved. This is achieved by setting
a threshold and then setting any singular value smaller than this threshold to equal zero.
Generally, an appropriate threshold can be determined by setting a cutoff ratio coefficient
α, such that, if σi < ασ1, then σi is set to zero. The corresponding TSVD filter factor is

ϕα =

{
1 σi ≥ ασ1
0 σi < ασ1

(11)

At this point, the TSVD regularization solution is given as

θ̂L =
l

∑
i=1

ϕα
uT

i yvi

σi
=

k

∑
i=1

uT
i yvi

σi
(12)

where k ≤ l is the cutoff point for the singular value, which is typically implemented as the
regularization parameter in the TSVD method.

2.1.2. TR Method

The TR method is currently the preferred method for solving ill-conditioned problems.
The method entails the use of a regularization parameter µ to constrain the solution and
construct a secondary optimization problem as follows:

θL = argmin
θL

{
‖y−Φ(θN)θL‖2 +

1
2

µ2‖θL‖2
}

(13)

where µ is the regularization parameter. When θN is fixed, the solution of Equation (13)
becomes

θ̂L =
(

Φ(θN)
TΦ(θN) + µ2 I

)−1
Φ(θN)

Ty (14)

Subsequently, applying SVD to the matrix yields

θ̂L =
l

∑
i=1

ϕµ
uT

i yvi

σi
=

l

∑
i=1

σ2
i

σ2
i + µ2

uT
i yvi

σi
(15)

Thus, the TR filter factor can be expressed as ϕµ =
σ2

i
σ2

i +µ2 .
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2.1.3. Improved TR Method

The TSVD and TR methods are essentially the same. However, there is a difference
in the extent to which either method can reduce the influence of small singular values on
the solution. Specifically, the TR method changes all singular values, which may cause the
approximated solution to be over-smoothed. Alternatively, the TSVD method sets a small
portion of the singular values to zero, which not only reduces the variance, but also affects
the resolution of the solution, resulting in low accuracy. However, the improved TR method
only changes small singular values by enabling the determination of the regularization
matrix [27]. Given that the differences between the larger and smaller singular values of
the ill-conditioned matrix are large, the singular values are determined to be small singular
values with a significant influence when the sum of the standard components of small
singular values accounts for more than 95% of the standard deviation. Consequently, they
are regularized to reduce the influence on the standard deviation. This condition can be
expressed as follows [28]:

l

∑
i=k

σ0

σi
≥ 95%

l

∑
i=1

σ0

σi
(16)

Thus, the regularization parameter k can be obtained. Then, with the filter factor set as

ϕk,µ =

{
1 1 < i ≤ k
σ2

i
σ2

i +µ2 k < i ≤ l
, when 1 ≤ i ≤ k, ϕk,µ = ϕα; when k ≤ i ≤ l, ϕk,µ = ϕµ. The

solution of the improved TR method is

θ̂L =
l

∑
i=1

ϕk,µ
uT

i yvi

σi
(17)

The improved TR method is a combination of the TSVD and TR methods. Unlike
the TSVD method, the improved TR method does not disregard small singular values;
furthermore, it yields a more accurate solution. Additionally, unlike the conventional TR
method, the improved TR method only modifies the small singular values, keeping the
large singular values unchanged, to ensure high accuracy.

A regularization method is employed to determine the appropriate regularization
parameters. The L-curve method was adopted in this work. This method entails selecting
different µ values to obtain a set of points

(
‖y−Φθ̂L‖

2
, ‖θ̂L‖

)
; subsequently, an L-shaped

curve is constructed with ‖y−Φθ̂L‖
2

as the abscissa and ‖θ̂L‖ as the ordinate. Finally, the
corresponding µ regularization parameter value is determined by locating the point of
maximum curvature.

2.2. LM Algorithm for Nonlinear Parameter Estimation

After values for the linear parameters have been determined, Equation (6) contains
only nonlinear parameters, the values of which can be determined by using the LM
algorithm. The iteration strategy is

θk+1
N = θk

N + αkdk (18)

where αk is the step length, which ensures that the objective function is in a descending
state, and dk is the search direction. αk can be obtained by employing a line search
method for imprecise searches. Let mk be the smallest non-negative integer m satisfying
r(θk

N + ρmdk) ≤ r(θk
N) + σρmgT

k dk in the kth iteration process. Then,

αk = ρmk (19)

where dk can be determined by solving the following equation:[
J(θk

N)
T

J(θk
N) + γk I

]
dk = −J(θk

N)
T

F(θk
N) (20)
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where γk is the damping parameter that controls the magnitude and direction of dk. When
γk is sufficiently large, the direction of dk is consistent with the negative gradient direction
of the objective function. When γk tends toward zero, dk tends toward the G–N direction.
In the LM algorithm implemented here, γ is adjusted by employing a strategy similar to
adjusting the radius of the trust region [29]. A quadratic function is defined at the current
iteration point as follows:

q(d) = r(θk
N) + (J(θk

N)F(θk
N))

T
d +

1
2

dT(J(θk
N)F(θk

N))d (21)

The ratio of the objective function to the increment of q(d) is denoted by ηk as follows:

ηk =
∆r(dk)

∆q(dk)
=

r(θk+1
N )− r(θk

N)

(J(θk
N)F(θk

N))
Tdk +

1
2 dT

k (J(θk
N)F(θk

N))dk

(22)

In each step of the LM algorithm, γk is first assigned an initial value to calculate dk,
such as the corresponding previous iteration value. Then, γk is adjusted according to the
value of ηk; dk is subsequently calculated according to the adjusted γk, and a line search
is performed. Clearly, when ηk is close to one, γ should be relatively smaller; this can be
achieved by using the LM method to solve the nonlinear problem. When ηk is close to zero,
the modulus length of dk must be reduced, and γ should be relatively larger. When ηk is
neither close to one nor zero, the value of the parameter γk is determined to be suitable.
The critical values of η are typically 0.25 and 0.75. Accordingly, the update rule of γk is
given as

γk+1 :=


0.1γk, ηk > 0.75,
γk, 0.25 ≤ ηk ≤ 0.75,
10γk, ηk > 0.25.

(23)

In Equation (20), J(θk) is the Jacobian matrix of the residual function, which, according
to the simplified Jacobian matrix calculation method proposed by Kaufman [7], is given as

JKAU = −P⊥Φ DΦΦ−y (24)

where DΦ is the Fréchet derivative of the matrix Φ, and Φ− is the symmetric generalized
inverse of Φ. In [30], PΦ = ΦΦ−, where Φ− satisfies:

ΦΦ−Φ = Φ, (ΦΦ−)T
= ΦΦ− (25)

Thus, Φ+ is not needed to calculate PΦ.
Applying SVD to decompose matrix Φ yields

Φ = USVT = [U1, U2]

[
Σ 0
0 0

]
[V1, V2]

T (26)

where Σ is the lth diagonal matrix, and the diagonal elements are the singular values of Φ.
Note that rank(U1) = rank(V1) = l, where l is the rank of Φ. Accordingly, we obtain

Φ− = [V1, V2]

[
Σ−1 0

0 0

]
[U1, U2]

T = V1Σ−1UT
1 (27)

Then

PΦ = ΦΦ− = [U1, U2]

[
Ir 0
0 0

]
[U1, U2]

T (28)

Thus, the corresponding residual function is

r(θN) = ‖P⊥Φ y‖2
= ‖[U1, U2]

[
0 0
0 Im−r

]
[U1, U2]

Ty‖
2

= ‖U2UT
2 y‖2

(29)
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and the Jacobian matrix is

JKAU = −P⊥Φ DΦΦ−y = −U2UT
2 DΦV1Σ−1UT

1 y (30)

2.3. Algorithm Solution Determination

Here, we describe an improved TR optimization method for the SNLLS problem. This
method entails the implementation of the VP algorithm to separate the variables, followed
by the use of the improved TR method to update the linear parameters, and the LM method
to search for nonlinear parameters. We compared the performance of the improved TR
regularization method to those of the conventional TR method and TSVD regularization
method to verify the effectiveness of the method. The model is given as

(θ̂L, θ̂N) = arg

{
min

θN
‖y−Φ(θN)θ̃L‖

2
, θ̃L =

l

∑
i=1

ϕ
uT

i yvi

σi

}
(31)

A summary of the steps used for obtaining the solution is given as follows:

Step 1: Take the initial value of the nonlinear parameter θ
(0)
N , the maximum number of

iteration steps M and set k = 0.
Step 2: The initial nonlinear parameter value θ

(0)
N is used to calculate the initial values of

the linear parameters θ
(0)
L via the TR, TSVD or improved TR method. Then the

residual function r(θN) and approximate Jacobian matrix JKAU are obtained.
Step 3: The iterative step length αk and search direction dk are determined by solving

Equations (19) and (20), respectively; thereafter, the nonlinear parameters are
updated according to Equation (18).

Step 4: The linear and nonlinear parameters are cross-updated until k > M; then, the
calculation is terminated.

3. Numerical Simulation
3.1. Predicting the Mackey-Class Time Series Using an RBF Neural Network

Numerical Mackey–Glass time-series simulations were performed for the validation
experiment. In the experiment, the LM algorithm was separately implemented in the TSVD-
based VP method (VPTSVD), the TR-based VP method (VPTR) and the improved TR method
(VPTSVD-TR) to fit a time-series image. This experiment was also performed to reveal the
advantages and disadvantages of the aforementioned VP algorithms. The experimental
environment was MATLAB R2016a running on a 1.80 GHz PC with Windows 7.

The exponential model is given as

η(a, α; x) = a1 +
n

∑
j=2

aje
−λj‖x−zj‖2

(32)

where a = (a1, a2, · · · an) is the linear parameter set, and α =
(
λ2, λ3, · · · , λn; zT

2 , zT
3 , · · · , zT

n
)T

is the nonlinear parameter set, for the functions ϕ1(α; x) ≡ 1, ϕj(α; x) = e−λj‖x−zj‖2
, and

j = 2, 3, · · · , n. This model was used to fit the chaotic Mackey–Glass time series generated by
the following delay differential equation:

dy(t)
dt

=
ay(t− τ)

1 + yc(t− τ)
− by(t) (33)

where a = 0.2, b = 0.1, c = 10, τ = 17. The initial value condition was set as y(0) = 1.2, and
the time interval was set to 0.1. The Runge–Kutta method was used to solve the differential
equation and generate 500 data points, as shown in Figure 1. Among these 500 data points,
300 were extracted from the generated data as follows:

[y(t− 24), y(t− 18), y(t− 12), y(t− 6), y(t)]
(
t =

[
24 323

])
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Figure 1. Chaotic Mackey–Glass time series.

Using these 300 data points, VPTSVD+LM, VPTR+LM and VPTSVD-TR+LM were applied
to estimate the parameters for the model; the remaining data were used for prediction.

When n = 2, the exponential model yielded 24 nonlinear parameters and 19 linear
parameters. Given the same initial iterative value, the fits of the curves derived from the
training and prediction data points output by the three algorithms are shown in Figure 2.
The red circles correspond to data points extracted from the time-series images. It can be
intuitively determined from the figure that the curve fitted by the VPTSVD-TR+LM algorithm
is in good agreement with the data generated.
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Table 1 presents the results—the number of iterations, the number of calculated
functions, the second norm of the vector formed by the residuals of each point and the root
mean square error (RMSE t) of the objective function with respect to the original data—
for the three iterative methods. Figure 3 shows the convergences of the corresponding
nonlinear parameters for the three iterative algorithms.

From the results in Table 1, we can see that the VPTSVD method required the most iter-
ations, and had the highest RMSE-t value. However, the VPTR and the VPTSVD-TR methods
were improved significantly and optimized in the iterative process due to fewer iterations,
fewer function calculations and smaller RMSEs. Although the numbers of iterations and
function evaluations were similar, the results obtained by using the VPTSVD-TR method to
calculate the model parameters were considerably more accurate.
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Table 1. Simulated results for a Mackey–Glass time series.

Number of Iterations Function Evaluation Number Second Norm of
Residual Vector RMSE-t

VPTSVD 75 1953 0.34373 0.27918
VPTR 5 135 0.36427 0.19919

VPTSVD-TR 7 185 0.05818 0.09653
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From Figure 3, it is evident that all three methods yielded converging results with the
same initial values. However, the results of the VPTSVD+LM method began to approach
the optimized solution around the 40th iteration, whereas the VPTSVD-TR+LM algorithm
began slowly approaching the optimized parameter values at the third iteration, indicating
a higher rate of convergence.

Every 10 points were grouped, beginning at the 400th point in the Mackey–Glass
time series, to obtain several time-series predictions. The RMSE results for each group are
shown in Figure 4.
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It can be seen from Figure 4 that the RMSE values for the VPTSVD+LM method
increased with the number of predictions, indicating decreasing prediction accuracy and
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degrading prediction ability. Conversely, in the case of the VPTSVD-TR+LM method, there
was a minimal increase in the RMSE, proving the superior stability of the method. These
results also indicate that the proposed method features a higher prediction accuracy.

3.2. Height Anomaly Fitting

A height anomaly is the difference in elevation between the surface of the reference
ellipsoid and a quasi-geoid. As we can see in Figure 5, the height anomaly ξ can be
expressed as ξ = H − Hnormal . The geodetic height of a point can be calculated by the GPS
positioning technique. The normal height can be calculated as long as the height anomaly
is determined in the certain area.
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A multi-surface function model was used, and its expression had the characteristic that
the linear and nonlinear parameters could be separated. The TSVD method, TR method
and improved algorithm were applied to solve the parameters of the model according to
the height anomaly values of known control points. The model is best expressed as:

ξi =
n

∑
i=1

aiQi(X, Y, Xi, Yi) (34)

where Qi(X, Y, Xi, Yi) =
√
(X− Xi)

2 + (Y−Yi)
2 + b2

i . The example data, coordinates,
geodetic heights, normal heights and height anomaly values of the known points are
shown in Table 2.

D01–D15 were used for fitting, and the rest were used to verify the reliability of the
parameters and the prediction abilities of the three algorithms. The iteration initial values
of the nonlinear parameters were set to 0.5. Model (34) and the algorithm proposed in
this paper were applied to fit the height anomalies, and the results are compared with the
results calculated by VPTSVD and VPTR.

The parameter estimations were obtained after alternative calculations between the
linear parameters and nonlinear parameters. The fitting images corresponding to the three
algorithms are shown in Figure 6. Table 3 shows the residual sum of squares, root mean
squared error and coefficient of determination values during the processes of fitting and
prediction. It can be concluded from Table 3 that all algorithms enabled the model to get
high fitting accuracy. During fitting and prediction, The order of magnitude of the root
mean square error for VPTSVD, VPTR and VPTSVD-TR is respectively 10−1, 10−2 and 10−3.
The accuracy of VPTSVD algorithm was slightly lower. The fitting accuracies of VPTR and
VPTSVD-TR were higher. It can be seen from SSRf and RMSEf that the improved algorithm
proposed in this paper had better performance in height anomaly prediction.
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Table 2. Coordinates, geodetic heights (H), normal heights (Hnormal) and height anomaly values (ξ).

No. Latitude Longitude H(m) Hnormal(m) ξ(m)

D01 343000.0000 1120000.0000 1001.5220 1056.5490 −55.0270
D02 343000.0000 1120230.0000 1009.1290 1063.9280 −54.7990
D03 343000.0000 1120500.0000 1012.3950 1067.2510 −54.8560
D04 343000.0000 1120730.0000 1070.1860 1125.3030 −55.1170
D05 343000.0000 1121000.0000 1025.2330 1080.2320 −54.9990
D06 343000.0000 1121230.0000 1019.4310 1074.4540 −55.0230
D07 343000.0000 1121500.0000 1026.7090 1081.7560 −55.0470
D08 343000.0000 1121730.0000 1067.9940 1123.1420 −55.1480
D09 343000.0000 1122000.0000 1157.7220 1212.5890 −54.8670
D10 343000.0000 1122230.0000 1017.5320 1072.6350 −55.1030
D11 343000.0000 1122500.0000 1004.0630 1058.9510 −54.8880
D12 343000.0000 1122730.0000 1004.3500 1059.1140 −54.7640
D13 342730.0000 1120000.0000 988.8130 1043.3570 −54.5440
D14 342730.0000 1120230.0000 975.3010 1029.7370 −54.4360
D15 342730.0000 1120500.0000 983.5130 1038.1040 −54.5910
D16 342730.0000 1120730.0000 988.8550 1043.5930 −54.7380
D17 342730.0000 1121000.0000 1108.9430 1163.7680 −54.8250
D18 342730.0000 1121230.0000 980.5940 1035.2260 −54.6320
D19 342730.0000 1121500.0000 964.1870 1018.5260 −54.3390
D20 342730.0000 1120000.0000 1001.5220 1056.5490 −55.0270

Table 3. Residual sum of squares (SSR, SSRf), root mean squared error (RMSE, RMSEf) and coefficient
of determination (R2) values.

Algorithms SSR (m2) SSRf (m2) RMSE (m) RMSEf (m) R2

VPTSVD 0.5004 0.9337 0.1826 0.4321 0.2599
VPTR 0.0850 0.3770 0.0753 0.2746 0.8744

VPTSVD-TR 0.0798 0.3545 0.0729 0.2663 0.8820

The normal height of each point was obtained according to Hnormal = H − ξ and the
height anomaly values fitted by three variable projection algorithms. The parameter esti-
mations were verified by the known normal height. Figure 7 shows the fitting effects, and
Table 4 lists the normal height fitting residual and RMSE of each point. It can be concluded
from Figure 7 and Table 4 that the differences between the normal heights estimated by the
three algorithms and the known example data are very small, and the three broken lines
are almost coincident, which indicates that the model well fit the normal heights of known
points. This is consistent with the conclusions drawn in Figure 6 and Table 3.

Table 4. Fitting residuals (r) and RMSEs of the normal heights.

No. Hnormal (m) rTSVD (m) rTR (m) rTSVD+TR (m)

D01 1056.5490 0.2871 0.1041 0.0902
D02 1063.9280 −0.0457 −0.0457 −0.0161
D03 1067.2510 0.1498 −0.0245 −0.0742
D04 1125.3030 0.1702 0.0015 0.0224
D05 1080.2320 −0.2271 −0.0266 0.0108
D06 1074.4540 −0.1912 −0.0084 −0.0399
D07 1081.7560 −0.0025 −0.0036 −0.0052
D08 1123.1420 0.2312 0.0942 0.1011
D09 1212.5890 0.0406 −0.1688 −0.1694
D10 1072.6350 0.2850 0.1092 0.1078
D11 1058.9510 −0.0049 −0.0108 −0.0069
D12 1059.1140 −0.2656 −0.0069 −0.0091
D13 1043.3570 −0.1411 −0.0576 −0.0701
D14 1029.7370 −0.2104 −0.0699 −0.0269
D15 1038.1040 −0.0726 0.1139 0.0854
D16 1043.5930 −0.1204 0.1882 0.0878
D17 1163.7680 −0.2611 0.2026 0.1069
D18 1035.2260 −0.4721 −0.0523 −0.1058
D19 1018.5260 −0.6528 −0.4140 −0.4319
D20 1056.5490 −0.4494 −0.3555 −0.3710

RMSE 0 0.2678 0.1520 0.1474
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4. Conclusions

Separable nonlinear models have been widely applied in many fields and studied by
many scholars all over the world. The VP method is one of the most effective algorithms for
solving related problems. However, the classical VP method may not be able to estimate the
parameters of ill-conditioned problems. As regularization is the most common method for
solving ill-conditioned problems, we proposed an improved regularized VP method for the
SNLLS problem. This method entails applying certain rules to determine the filter factors
necessary to correct small singular values, and using the L-curve method to determine
regularization parameters. The results of numerical simulations revealed that the mean
square error of the proposed regularized VP method was less than those of the TSVD and
TR methods. Furthermore, we found that combining a regularization method with the
LM algorithm-based nonlinear parameter estimation method results in a higher rate of
convergence. This improved regularized parameter estimation method was demonstrated
to have certain advantages in terms of its ability to mitigate the ill-conditioned problem
and improve parameter estimation accuracy. It was also found to be more stable when
applied to an SNLLS problem.

Author Contributions: Methodology, H.G.; software, L.W.; writing—original draft, H.G.; writing—
review and editing, G.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
no. 42074009).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

References
1. Okatani, T.; Deguchi, K. On the Wiberg algorithm for matrix factorization in the presence of missing components. Int. J.

Comput. Vis. 2007, 72, 329–337. [CrossRef]
2. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2,

164–168. [CrossRef]
3. Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM J. Appl. Math. 1963, 11,

431–441. [CrossRef]

http://doi.org/10.1007/s11263-006-9785-5
http://doi.org/10.1090/qam/10666
http://doi.org/10.1137/0111030


Axioms 2021, 10, 196 14 of 14

4. Hong, J.H.; Zach, C.; Fitzgibbon, A. Revisiting the variable projection method for separable nonlinear least squares problems. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 5939–5947.

5. Golub, G.H.; Pereyra, V. The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate.
SIAM J. Numer. Anal. 1973, 10, 413–432. [CrossRef]

6. Golub, G.H.; Pereyra, V. Separable nonlinear least squares: The variable projection method and its applications. Speech Commun.
2003, 45, 63–87. [CrossRef]

7. Kaufman, L. A variable projection method for solving separable nonlinear least squares problems. BIT Numer. Math. 1975, 15,
49–57. [CrossRef]

8. Ruhe, A. Algorithms for separable nonlinear least squares problems. SIAM Rev. 1980, 22, 318–337. [CrossRef]
9. O’Leary, D.P.; Rust, B.W. Variable projection for nonlinear least squares problems. Comput. Optim. Appl. 2013, 54,

579–593. [CrossRef]
10. Ruano, A.E.B.; Jones, D.I.; Fleming, P.J. A new formulation of the learning problem of a neural network controller. In Proceedings

of the 30th IEEE Conference on Decision and Control, Brighton, UK, 11–13 December 1991; pp. 865–866.
11. Gan, M.; Chen, C.L.P.; Chen, G.; Chen, L. On some separated algorithms for separable nonlinear least squares problems.

IEEE Trans. Cybern. 2018, 48, 2866–2874. [CrossRef]
12. Gan, M.; Li, H. An Efficient Variable Projection Formulation for Separable Nonlinear Least Squares Problems. IEEE Trans. Cybern.

2014, 44, 707–711. [CrossRef]
13. Chen, G.Y.; Gan, M.; Ding, F. Modified Gram-Schmidt Method Based Variable Projection Algorithm for Separable Nonlinear

models. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2410–2418. [CrossRef]
14. Böckmann, C. A modification of the trust-region Gauss-Newton method to solve separable nonlinear least squares problems.

J. Math. Syst. Estim. Control 1995, 5, 1–16.
15. Chung, J.J.; Nagy, G. An efficient iterative approach for large-scale separable nonlinear inverse problems. SIAM J. Sci. Comput.

2010, 31, 4654–4674. [CrossRef]
16. Li, X.L.; Liu, K.; Dong, Y.S.; Tao, D.C. Patch alignment manifold matting. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29,

3214–3226. [CrossRef]
17. Tikhonov, A.N.; Arsenin, V.Y. Solutions of ill-posed problems. SIAM Rev. 1979, 21, 266–267.
18. Park, Y.; Reichel, L.; Rodriguez, G. Parameter determination for Tikhonov regularization problems in general form. J. Comput.

Appl. Math. 2018, 343, 12–25. [CrossRef]
19. Hansen, P.C. The Truncated SVD as A Method for Regularization. BIT Numer. Math. 1987, 27, 534–553. [CrossRef]
20. Xu, P.L. Truncated SVD methods for Discrete Linear Ill-posed Problems. Geophys. J. Int. 1998, 1335, 505–514. [CrossRef]
21. Aravkin, A.Y.; Drusvyatskiy, D.; van Leeuwen, T. Efficient quadratic penalization through the partial minimization technique.

IEEE Trans. Autom. Control 2018, 63, 2131–2138. [CrossRef]
22. Pang, S.C.; Li, T.; Dai, F.; Yu, M. Particle Swarm Optimization Algorithm for Multi-Salesman Problem with Time and Capacity

Constraints. Appl. Math. Inf. Sci. 2013, 7, 2439–2444. [CrossRef]
23. Wang, X.Z.; Liu, D.Y.; Zhang, Q.Y.; Huang, H.L. The iteration by correcting characteristic value and its application in surveying

data processing. J. Heilongjiang Inst. Technol. 2001, 15, 3–6.
24. Zeng, X.Y.; Peng, H.; Zhou, F.; Xi, Y.H. Implementation of regularization for separable nonlinear least squares problems.

Appl. Soft Comput. 2017, 60, 397–406. [CrossRef]
25. Chen, G.Y.; Gan, M.; Chen CL, P.; Li, H.X. A Regularized Variable Projection Algorithm for Separable Nonlinear Least–Squares

Problems. IEEE Trans. Autom. Control 2019, 64, 526–537. [CrossRef]
26. Wang, K.; Liu, G.L.; Tao, Q.X.; Zhai, M. Efficient Parameters Estimation Method for the Separable Nonlinear Least Squares

Problem. Complexity 2020, 2020, 9619427. [CrossRef]
27. Fuhry, M.; Reichel, L. A new Tikhonov regularization method. Number Algorithms 2012, 59, 433–445. [CrossRef]
28. Lin, D.f.; Zhu, J.j.; Song, Y.C. Regularized singular value decomposition parameter construction method. J. Surv. Mapp. 2016,

45, 883–889.
29. Byrd, R.H.; Schnabel, R.B.; Shultz, G.A. A Trust Region Algorithm for Nonlinearly Constrained Optimization. SIAM J. Numer. Anal.

1987, 24, 1152–1170. [CrossRef]
30. Golub, G.H.; Styan, G.P.H. Numerical computations for univariate linear models. J. Stat. Comput. Simul. 1973, 2,

253–274. [CrossRef]

http://doi.org/10.1137/0710036
http://doi.org/10.1088/0266-5611/19/2/201
http://doi.org/10.1007/BF01932995
http://doi.org/10.1137/1022057
http://doi.org/10.1007/s10589-012-9492-9
http://doi.org/10.1109/TCYB.2017.2751558
http://doi.org/10.1109/TCYB.2013.2267893
http://doi.org/10.1109/TNNLS.2018.2884909
http://doi.org/10.1137/080732213
http://doi.org/10.1109/TNNLS.2017.2727140
http://doi.org/10.1016/j.cam.2018.04.049
http://doi.org/10.1007/BF01937276
http://doi.org/10.1046/j.1365-246X.1998.00652.x
http://doi.org/10.1109/TAC.2017.2754474
http://doi.org/10.12785/amis/070637
http://doi.org/10.1016/j.asoc.2017.07.006
http://doi.org/10.1109/TAC.2018.2838045
http://doi.org/10.1155/2020/9619427
http://doi.org/10.1007/s11075-011-9498-x
http://doi.org/10.1137/0724076
http://doi.org/10.1080/00949657308810051

	Introduction 
	Parameter Estimation Method 
	Regularization Algorithm for Linear Parameter Estimation 
	TSVD Method 
	TR Method 
	Improved TR Method 

	LM Algorithm for Nonlinear Parameter Estimation 
	Algorithm Solution Determination 

	Numerical Simulation 
	Predicting the Mackey-Class Time Series Using an RBF Neural Network 
	Height Anomaly Fitting 

	Conclusions 
	References

