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Abstract: The main purpose of this study is aimed at developing new criteria of the iterative
nature to test the asymptotic and oscillation of nonlinear neutral delay differential equations of third
order with noncanonical operator (a(ι)[

(
b(ι)[x(ι) + p(ι)x(ι− τ)]′)′]β)′ +

∫ d
c q(ι, µ)xβ(σ(ι, µ)) dµ = 0,

where ι ≥ ι0 and w(ι) := x(ι) + p(ι)x(ι− τ). New oscillation results are established by using the
generalized Riccati technique under the assumption of

∫ ι
ι0

a−1/β(s)ds <
∫ ι

ι0
1

b(s) ds = ∞ as ι→ ∞. Our
new results complement the related contributions to the subject. An example is given to prove the
significance of new theorem.

Keywords: oscillation; third-order; neutral differential equation; Riccati transformation; distributed
deviating arguments

1. Introduction

The objective of this paper is to provide oscillation theorems for the third order
equation as follows:(

a(ι)
[(

b(ι)[x(ι) + p(ι)x(ι− τ)]′
)′]β)′

+
∫ d

c
q(ι, µ)xβ(σ(ι, µ)) dµ = 0, (1)

where a(ι), b(ι), p(ι), q(ι) ∈ C([ι0,+∞)), a(ι), b(ι) > 0, a′(ι) ≥ 0, q(ι) ≥ 0, β ≥ 1 and
0 ≤ p(ι) ≤ p0 ≤ 1. The main results are obtained under the following assumptions:

(A1) q(ι, µ) ∈ C([ι0,+∞)× [c, d], [0,+∞)) and q(ι, µ) does not vanish identically for any
half line [ι∗,+∞)× [c, d], ι∗ ≥ ι;

(A2) σ(ι, µ) ∈ C([ι0,+∞)× [c, d], [0,+∞)), σ(ι, µ) + τ ≤ ι, σ(ι, µ) is nondecreasing with
respect to ι and µ respectively, lim inf

ι→+∞
σ(ι, µ) = ∞ and lim inf

ι→+∞
τ(ι) = ∞.

We set

w(ι) := x(ι) + p(ι)x(ι− τ)

and

A(ι, ι0) =
∫ ι

ι0
a−1/β(s)ds, B(ι, ι0) =

∫ ι

ι0

1
b(s)

ds.

We intend that for a solution of (1), we mean a function x(ι) ∈ C([Tx, ∞)), Tx ≥ ι0,
which has the property w′ ∈ C1([Tx, ∞)), b w′ ∈ C1([Tx, ∞)), a ((b w′)′)β ∈ C1([Tx, ∞)) and
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satisfies (1) on [Tx, ∞). We only consider those solutions x of (1) which satisfy sup{|x(ι)| :
ι ≥ T} > 0 for all T ≥ Tx. We start with the assumption that Equation (1) does possess a
proper solution. A proper solution of Equation (1) is called oscillatory if it has a sequence
of large zeros lending to ∞; otherwise, we call it non-oscillatory.

Neutral/delay differential equations of the third order are used in a variety of prob-
lems in economics, biology, and physics, including lossless transmission lines, vibrating
masses attached to an elastic bar, and as the Euler equation in some variational problems;
see Hale [1]. As a result, there is an ongoing interest in obtaining several sufficient condi-
tions for the oscillation or non-oscillation of the solutions of different kinds of differential
equations; see [2–24] as examples of instant results on this topic.

However, to the best of our knowledge, only a few papers have studied the oscillation
of nonlinear neutral delay differential equations of third order with distributed deviating
arguments; see, for example, [2–5]. Recently, Haifei Xiang [6] and Haixia Wang et. al [7]
studied the oscillatory behavior of Equation (1) under the following assumption:

A(ι, ι0) = ∞, B(ι, ι0) = ∞ as ι→ ∞.

Motivated by this above observation, in this paper, we extend the results under the
following assumption:

A(ι, ι0) < B(ι, ι0) = ∞ as ι→ ∞. (2)

Motivated by these reasons mentioned above, in this paper, we extend the results using
generalized Riccati transformation and the integral averaging technique. We establish
criteria for Equation (1) to be oscillatory or converge to zero asymptotically with the
assumption of (2). As is customary, all observed functional inequalities are assumed to
support eventually; that is, they are satisfied for all ι that are large enough.

2. Main Results

For our further reference, let us denote the following:

E0w = w, E1w = b(E0w)′, E2w = a((E1w)′)β, E3w = (E2w)′, (3)

and

C(ι, ι0) =
∫ ι

ι2

A(s, ι1)

b(s)
ds, D(ι) :=

∫ ∞

ι

1
a1/β(s)

ds, σ1(ι) = σ(ι, c),

q1(ι) = (1− p0)
β
∫ d

c
q(ι, µ) dµ, ϕ′+(ι) = max{0, ϕ′(ι)}.

Theorem 1. Assume (A1)− (A2) and (2) hold. If there exists a ϕ ∈ C1([ι0, ∞),R), such that
ι1 ≥ ι0 for some ιm > ι1, we have the following:

lim sup
ι→∞

∫ ι

ι3

(
ϕ(s)q1(s)

Cβ(σ1(s), ι2)

Aβ(σ1(s), ι1)
− 1

(1 + β)1+β

a(s)(ϕ′+(s))1+β

ϕβ(s)

)
ds = ∞, (4)

∫ ∞

ι4
b−1(v)

∫ ∞

v

(
a−1(u)

∫ ∞

u

∫ d

c
q(s, µ)dµ ds

)1/β

du dv = ∞, (5)

and

lim sup
ι→∞

∫ ι

ι6

(
Dβ(s)q1(s)Bβ(σ1(s), ι5)−

(
β

β + 1

)β+1 1
Dβ(s)a1/β(s)

)
ds = ∞, (6)

Then, every solution x(ι) of (1) is either oscillatory or tends to 0.
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Proof. Suppose that (1) has a non-oscillatory solution x. Now, we may take x(ι) > 0,
x(ι− τ) > 0 and x(σ(ι, µ)) > 0 for ι ≥ ι1 some ι1 ≥ ι0 and µ ∈ [c, d]. By condition (2), there
exist three possible cases:

(I) w(ι) > 0, w′(ι) > 0, (b(ι)w′(ι))′ > 0,
(

a(ι)[(b(ι)w′(ι))′]β
)′

< 0,

(II) w(ι) > 0, w′(ι) < 0, (b(ι)w′(ι))′ > 0,
(

a(ι)[(b(ι)w′(ι))′]β
)′

< 0, or

(III) w(ι) > 0, w′(ι) > 0, (b(ι)w′(ι))′ < 0,
(

a(ι)[(b(ι)w′(ι))′]β
)′

< 0, for ι ≥ ι1, ι1 is large
enough.

Assume first the case (I) holds for ι ≥ ι2. From the definition of w(ι), w(ι) ≥ x(ι) for
ι ≥ ι2 and

w(σ(ι, µ)) ≥ w(σ(ι, µ)− τ) ≥ x(σ(ι, µ)− τ), ι ≥ ι3 ≥ ι2, (7)

and
x(ι) = w(ι)− p(ι)x(ι− τ) ≥ w(ι)− p(ι)w(ι− τ) ≥ (1− p0)w(ι). (8)

Thus from (1) and (8), we have the following:

E3w(ι) = −
∫ d

c
q(ι, µ)xβ(σ(ι, µ)) dµ

≤ −(1− p0)
β
∫ d

c
q(ι, µ)wβ(σ(ι, µ)) dµ

≤ −(1− p0)
βwβ(σ(ι, c))

∫ d

c
q(ι, µ) dµ

= −q1(ι)wβ(σ1(ι)). (9)

Using the fact that w′(ι) > 0, we have the following:

E1w(ι) ≥
∫ ι

ι1

a1/β(s)(E1w(s))′

a1/β(s)
ds ≥ a1/β(ι)(E1w(ι))′A(ι, ι1).

Thus, we have the following:

w(ι) = w(ι2) +
∫ ι

ι2

E1w(s)
A(s, ι1)

A(s, ι1)

b(s)
ds ≥ E1w(ι)

A(ι, ι1)

∫ ι

ι2

A(s, ι1)

b(s)
ds.

Then, we have the following:

w(σ1(ι))

E1w(σ1(ι))
≥ C(σ1(ι), ι2)

A(σ1(ι), ι1)
, (10)

and

E1w(σ1(ι))

E1w(ι)
≥ A(σ1(ι), ι1)

A(ι, ι1)
(11)

We define a function as follows:

ψ(ι) := ϕ(ι)
E2w(ι)

Eβ
1 w(ι)

, (12)

and note that ψ(ι) > 0 for ι ≥ ι1. Differentiating (12), we obtain the following:

ψ′(ι) =
ϕ′(ι)

ϕ(ι)
ψ(ι) + ϕ(ι)

E3w(ι)

Eβ
1 w(ι)

− βϕ(ι)a(ι)
[
(E1w(ι))′

E1w(ι)

]β+1

. (13)
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It follows from (9), (12), and (13) that the following holds:

ψ′(ι) ≤ ϕ′(ι)

ϕ(ι)
ψ(ι)− ϕ(ι)q1(ι)

(
w(σ(ι))

E1w(ι)

)β

− β
ψ

(β+1)
β (ι)

[ϕ(ι)a(ι)]1/β

=
ϕ′(ι)

ϕ(ι)
ψ(ι)− ϕ(ι)q1(ι)

(
w(σ1(ι))

E1w(σ1(ι)))

E1w(σ1(ι)))

E1w(ι))

)β

− β
ψ

(β+1)
β (ι)

[ϕ(ι)a(ι)]1/β
. (14)

Now, (10) and (14) implies the following:

ψ′(ι) ≤
ϕ′+(ι)

ϕ(ι)
ψ(ι)− β

ψ
(β+1)

β (ι)

[ϕ(ι)a(ι)]1/β
− ϕ(ι)q1(ι)

Cβ(σ1(ι), ι2)

Aβ(σ1(ι), ι1)
. (15)

Then, using (15) and inequality, we have the following:

Bu− Au(m+1)/m ≤ mm

(m + 1)m+1
Bm+1

Am . (16)

We find the following:

ψ′(ι) ≤ −ϕ(ι)q1(ι)
Cβ(σ1(ι), ι2)

Aβ(σ1(ι), ι1)
+

1
(1 + β)1+β

a(ι)(ϕ′+(ι))
1+β

ϕβ(ι)
.

Integrating the last inequality from ι3 (> ι2) to ι gives

lim sup
ι→∞

∫ ι

ι3

(
ϕ(s)q1(s)

Cβ(σ1(s), ι2)

Aβ(σ1(s), ι1)
− 1

(1 + β)1+β

a(s)(ϕ′+(s))1+β

ϕβ(s)

)
ds ≤ ψ(ι3), (17)

which contradicts (4).
Next, if (II) holds. Since w(ι) > 0 and w′(ι) < 0, we have w(ι)→ l ≥ 0. If L > 0, then

for ε = L(1−p0)
2p0

> 0, there exists ι4 ≥ ι1 such that L < w(ι) < L + ε for ι ≥ ι4. Then, for
ι ≥ ι4, we have the following:

x(ι) = w(ι)− p(ι)x(ι− τ) > L− p0w(ι) > L− p0(L + ε) = L1

Using the above inequality, which we obtained from (9), we have the following:

E3w(ι) > −Lβ
1

∫ d

c
q(ι, µ) dµ

Integrating from ι(≥ ι4) to ∞ and using the fact that a(ι)
[(

b(ι)w′(ι)
)′]β

is positive
and decreasing, we obtain the following:

(E1w(ι))′ ≥ L1

(
1

a(ι)

∫ ∞

ι

∫ d

c
q(s, µ)dµds

)1/β

.

Again integrating the following,

E1w(ι) ≥ −L1

∫ ∞

ι

(
1

a(u)

∫ ∞

ι

∫ d

c
q(s, µ)dµ ds

)1/β

du,

and again with the integration from ι4 to ∞, we obtain the following:

w(ι4) ≥ L1

∫ ∞

ι4

1
b(v)

∫ ∞

ι

(
1

a(u)

∫ ∞

ι

∫ d

c
q(s, µ)dµ ds

)1/β

du dv,
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which contradicts (5) and shows that L = 0, i.e., w(ι)→ 0. Since 0 < x(ι) < w(ι), we have
x(ι)→ 0 as ι→ ∞.

Finally, assume that case (III) holds, E3w(ι) ≤ 0, and is non-increasing. Thus, we
obtain the following:

E2w(s) ≤ E2w(ι), s ≥ ι ≥ ι5. (18)

for some ι5 ≥ ι0. Dividing (18) by a(s) and integrating from ι to l, we obtain the following:

E1w(l) ≤ E1w(ι) + a1/β(ι) (E1w(ι))′ A(l, ι).

Letting l → ∞, we have the following:

− a1/β(ι)(E1w(ι))′

E1w(ι)
D(ι) ≤ 1. (19)

Define function φ by the following:

φ(ι) :=
E2w(ι)

Eβ
1 w(ι)

, ι ≥ ι5. (20)

Then φ(ι) < 0 for ι ≥ ι5. Hence, from (19) and (20), we obtain the following:

−Dβ(ι)φ(ι) ≤ 1. (21)

Differentiating (20) gives the following:

φ′(ι) =
E3w(ι)

Eβ
1 w(ι)

− βa(ι)
[
(E1w(ι))′

E1w(ι)

]β+1

.

Now w′(ι) > 0, so from (9) and (20), we have the following:

φ′(ι) ≤ −q1(ι)

[
w(σ1(ι))

E1w(ι)

]β

− β
φ

1+ 1
β (ι)

a1/β(ι)
. (22)

In case (III), we see that the following holds:

w(ι) ≥ b(ι)w′(ι)
∫ ι

ι5

ds
b(s)

= E1w(ι) B(ι, ι5). (23)

Hence [
w(ι)

B(ι, ι5)

]′
≤ 0,

which implies the following:

w(σ1(ι))

w(ι)
≥ B(σ1(ι), ι5)

B(ι, ι5)
. (24)

Using (23) and (24) in (22), we obtain the following:

φ′(ι) ≥ −q1(ι)Bβ(σ1(ι), ι5)− β
φ

1+ 1
β (ι)

a1/β(ι)
. (25)
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Hence from (25), we have the following:

φ(ι)Dβ(ι)− φ(ι6)Dβ(ι6) ≤ −
∫ ι

ι6
q1(s)Dβ(s)Bβ(σ1(s), ι5)ds

−
∫ ι

ι6
β

Dβ−1(s)φ(s)
a1/β(s)

ds−
∫ ι

ι6
β

Dβ(s)φ
1+ 1

β
(s)

a1/β(s)
ds,

or

φ(ι)Dβ(ι)− φ(ι6)Dβ(ι6) ≤ −
∫ ι

ι6
q1(s)Dβ(s)Bβ(σ1(s), ι5)ds

−
∫ ι

ι6
β

Dβ−1(s)φ(s)
a1/β(s)

+
Dβ(s)φ

1+ 1
β
(s)

a1/β(s)

ds. (26)

Set φ := −u(s) and using inequality

Au(β+1)/β − Bu ≤ − ββ

(β + 1)β+1
Bβ+1

Aβ
, A > 0,

we obtain the following:

∫ ι

ι6

[
q1(s)Dβ(s)Bβ(σ1(s), ι5)−

(
β

β + 1

)β+1 1
Dβ(s)a1/β(s)

]
ds ≤ −φ(ι)Dβ(ι) + φ(ι6)Dβ(ι6) (27)

Using (21) in (26) and then taking ι→ ∞, we obtain the following:

∫ ∞

ι6

[
q1(s)Dβ(s)Bβ(σ1(s), ι5)−

(
β

β + 1

)β+1 1
Dβ(s)a1/β(s)

]
ds ≤ 1 + φ(ι6)Dβ(ι6)

which contradicts (6). This completes the proof.

We will present an example to illustrate the main results.

Example 1. Consider the following 3rd-order equation:(
ι2[x(ι) + p(ι)x(ι− π)]′′

)′
+
∫ 3π/2

π
x(ι− µ)dµ = 0. (28)

where a(ι) = ι2, b(ι) = 1, τ(ι) = ι− π, p(ι) = 1, σ(ι, µ) = ι− µ, β = 1, a = π, b = 3π/2.
Moreover 0 < p(ι) ≤ p0 and ϕ(ι) = 1. Then, we obtain the following: q1(ι) = (1− p0)π/2,
D(ι) = 1/ι,

∫ ι−µ
ι5

ds
b(s) = ι− µ− ι5. The condition (4) becomes the following:

∫ ∞

ι3
Φ(s)ds =

π(1− p0)

2

∫ ∞

ι3

ι1
ι2
(ι− µ)2 − (ι− µ)(ι1 log(ι− µ) + ι1 log ι2 − ι2)

(ι− ι1 − µ)
= ∞,

and ∫ ∞

ι6

(
Dβ(s)q1(s)

∫ σ1(ι)

ι5

dv
b(v)

− 1
D(s)a1/β(s)

)
ds

=
π(1− p0)

2

∫ ∞

ι6

(
1− (µ− ι5 − 1)

s

)
ds = ∞,

so condition (6) also holds. Hence, by Theorem (1), it holds that every solution x of (28) is almost
oscillatory.
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3. A Concluding Remark

We established new oscillation theorems for (1) in this paper. The main outcomes
are proved via the means of the integral averaging condition, and the generalized Riccati
technique under the assumptions of

∫ ι
ι0

a−1/β(s)ds <
∫ ι

ι0
1

b(s)ds = ∞ as ι → ∞. Examples
are given to prove the significance of the new results. The main results in this paper
are presented in an essentially new form and of a high degree of generality. For future
consideration, it will be of great importance to study the oscillation of (1) when −∞ <
p(ι) ≤ −1 and |p(ι)| < ∞.
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