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Abstract: Modeling uncertainties with spherical linear Diophantine fuzzy sets (SLDFSs) is a robust
approach towards engineering, information management, medicine, multi-criteria decision-making
(MCDM) applications. The existing concepts of neutrosophic sets (NSs), picture fuzzy sets (PFSs),
and spherical fuzzy sets (SFSs) are strong models for MCDM. Nevertheless, these models have
certain limitations for three indexes, satisfaction (membership), dissatisfaction (non-membership),
refusal/abstain (indeterminacy) grades. A SLDFS with the use of reference parameters becomes an
advanced approach to deal with uncertainties in MCDM and to remove strict limitations of above
grades. In this approach the decision makers (DMs) have the freedom for the selection of above three
indexes in [0, 1]. The addition of reference parameters with three index/grades is a more effective
approach to analyze DMs opinion. We discuss the concept of spherical linear Diophantine fuzzy
numbers (SLDFNs) and certain properties of SLDFSs and SLDFNs. These concepts are illustrated
by examples and graphical representation. Some score functions for comparison of LDFNs are
developed. We introduce the novel concepts of spherical linear Diophantine fuzzy soft rough set
(SLDFSRS) and spherical linear Diophantine fuzzy soft approximation space. The proposed model of
SLDFSRS is a robust hybrid model of SLDFS, soft set, and rough set. We develop new algorithms
for MCDM of suitable clean energy technology. We use the concepts of score functions, reduct, and
core for the optimal decision. A brief comparative analysis of the proposed approach with some
existing techniques is established to indicate the validity, flexibility, and superiority of the suggested
MCDM approach.

Keywords: spherical linear diophantine fuzzy set (SLDFS); spherical linear diophantine fuzzy soft
rough set (SLDFSRS); score function; core; reduct; MCDM

1. Introduction an Literature Review

Conventional Mathematics is not always helpful to tackle real world problems due to
hesitations and ambiguities present in their nature. Zadeh [1] established the perception of
fuzzy set by assigning the satisfaction grades to alternatives from [0, 1]. Zadeh [2] estab-
lished the idea of linguistic variable to relate real world situations and verbal information
to Mathematical language and Mathematical modeling. Atanassov [3–6] presented an
advanced perception of intuitionistic fuzzy sets (IFSs) by introducing dissatisfaction grades
of alternatives with the existing satisfaction grades in fuzzy sets fulfilling the constraint
that sum of these two grades are always less than unity. After that Yager initiated the
novel perception of Pythagorean fuzzy sets (PyFS) [7,8] with q-rung orthopair fuzzy sets (q-
ROFSs) [9] as generalizations of IFSs. Smarandache [10] originated the idea of neutrosophic
set with the addition of indeterminacy grades in IFSs, satisfying the constraint that sum
of all the three grades less than 3. This structure creates an independency between all the
grades to deal real world problems more efficiently. In these applications the information
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cannot be inadequate between yes or no generally but it can be yes, no, abstain, and refusal.
Cuong [11–13] introduced picture fuzzy set (PiFS) in 2013 for these circumstances. In this
model, the alternatives can be represented by satisfaction, abstinence, dissatisfaction and
refusal degrees. A PiFS to human nature and handle uncertainties of decision-making
problems in a better way. Mahmood et al. [14] studied the notion of T-spherical fuzzy set
(T-SFS) as an advancement of spherical fuzzy set (SFS). They established these concepts
as generalizations of PFSs similar as the extension ideas of PGFSs and q-ROFSs, which
were the generalizations of IFSs. Some new AOs on cubic hesitant fuzzy numbers (CHFNs)
were introduced by Mahmood et al. [15]. Numerous extensions of fuzzy sets have been
originated for solving MCDM problems, medical diagnosis and image processing [16,17],
radar images and image segmentation analysis [18–23], fuzzy analysis [24–29], iris image
analysis [30,31], image classification [32,33].

Molodtsov [34] invented the new idea of soft sets to deal with the uncertainties
by using parameterizations. Maji et al. [35] proposed several results of soft set setting.
Rough set was first initiated by Pawlak [36] in 1982. This model gives us a new method
to handle vague ideas caused by indiscernibility with incomplete data set. Rough sets
replace vagueness with the upper and lower approximations of the assembling under an
equivalence relation After that Pawlak and Skowron [37] originated several extensions on
rough sets. Various mathematicians considered diverse hybrid fusion of rough sets, fuzzy
sets, and soft sets for applications in engineering, information management, medicine,
multi-criteria decision-making (MCDM) applications. Ali [38] developed new results of
q-ROFSs and their orbits classification. Some logical connectors listed as implications,
t-norms and t-conorms was considered by Ali and Shabir [39] for development of fuzzy
soft set and soft set as extension of crisp set theory.

Numerous results and applications on generalized IFSSs was established by Agarwal
et al. [40]. Garg [41] established various hybrid AOs using Einstein operations in the
context of PyFSs with their applications in DM. Chen and Tan [42] studies vague set theory
and investigated MCDM methods on it. Tversky and Kahneman [43] established certain
fusion in the prospect model for progressive illustration of vagueness. Jose and Kuri-
askose [44] studied and investigated some properties of aggregation operators for MCDM.
Wang et al. [45] operated on SV-neutrosophic sets and discussed it applications. Peng
and Yang [46] introduced certain novel features of PFSs. Peng and Garg [47] developed
new algorithms for IVFS-sets in emergency decision-making using new information mea-
sure and WDBA and CODAS techniques. Xu [48–50] proposed several AOs for IFSs and
HFSs. Ye [51] invented neutrosophic cubic linguistic numbers with applications in MADM
problems. In some recent years, various mathematicians established some operations
and introduced different aggregations operators on PFSs. Jana et al. [52] established PiF-
Dombi’s AOs and its applications to MADM problems. Xu et al. [53] established a method
to picture fuzzy MADM by using Muirhead mean operators. Wang et al. [54] developed
diverse methods for picture fuzzy Muirhead mean operators to solve DM-complication.
Wang and Li [55] introduced picture fuzzy hesitant set and presented its applications in
MCDM glitches. Khan et al. [56,57] introduced logarithmic aggregation operators for PiFNs
for MADM problems. They considered Einstein operations and established aggregation
operators based on PiFSs with its applications.

Zhang et al. [58] proposed the idea of covering based IFRSs. They presented various
applications related to these ideas in MADM. Zhang et al. [59] proposed the novel percep-
tion of IFSRSs with applications. Zhang et al. [60] established a consensus based MAGDM
methodology for failure mode and effect analysis. They used linguistics to present effect
analysis and failure mode. They introduced a comparative study for consensus efficiency.
Zhang et al. [61] established certain Dombi Heronian AOs by using PFSs with applica-
tions to MADM problems. Zhang et al. [62–64] defined novel concepts of the priority
weights, deriving priority weights, and multiplicative preference relations with MCGDM
applications. Zhang et al. [65] created a programmed mechanism under MCGDM method
to support consensus reaching. Feng et al. [66] suggested new concepts of generalized
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intuitionistic fuzzy soft sets. Guo [67] investigated IF-values, information behavior analysis,
ranking of IFNs. Liu and Wang [68] introduced several new AOs with q-ROFNs, related
properties, numerous results, and advanced approach to MADM.

In 2019, Riaz and Hashmi [69] established the idea of linear Diophantine fuzzy sets
(LDFSs) with the accumulation of reference or control parameters. This structure enlarge
the valuation space of existing models and categorize the problem with the help of con-
trol parameters. Riaz and Hashmi [70] introduced the idea of soft rough Pythagorean
m-PFSs. Riaz et al. [71] introduced green supplier chain management approach with q-ROF
prioritized aggregation operators. Vashist [72] developed new algorithm for detecting
the core and reduct of the consistent dataset. Wang et al. [73] presented some PiF geo-
metric AOs based MADM. Soft rough covering concept and related results introduced
by Zhan and Alcantud [74]. Riaz et al. [75] introduced various interesting properties of
topological structure on soft multi-sets and their applications in MCDM. Sahu et al. [76]
developed a career selection picture fuzzy set and rough set theory method for students
with hybridized distance measure measures. Ali et al. [77] introduced Einstein geometric
aggregation operators using a novel complex interval-valued pythagorean fuzzy setting.
Alosta et al. [78] suggested AHP-RAFSI approach for developing method for the location
selection problem. Yorulmaz et al. [79] suggested an approach economic development by
using extended TOPSIS technique. Pamucar and Ecer [80] proposed weights prioritizing
fuzziness approach for evaluation criterion. Ramakrishnan and Chakraborty [81] presented
a green supplier selection criteria with improved TOPSIS model. Kishore et al. [82] de-
veloped a framework for subcontractors selection MCDM model for project management.
Zararsiz [83] introduced similarity measures of sequence of fuzzy numbers and fuzzy risk
analysis. Zararsiz [84] developed entropy measures of QRS-complexes before and after
training program of sport horses with ECG.

The objectives and advantages of this research work are expressed as follows.

1. A spherical linear Diophantine fuzzy set (SLDFS) can not deal with the multi-valued
parameterizations, roughness of crisp data, and approximation spaces. A rough set
with lower and upper approximation spaces is a strong mathematical approach to
deal with vagueness in the data. To deal with real-life problems having uncertainties,
vagueness, abstinence of the input, lack of information, we introduce novel concept
of spherical linear Diophantine fuzzy soft rough set (SLDFSRS).

2. In fact, a SLDFSRS is a robust hybrid model of spherical linear Diophantine fuzzy set,
soft set, and rough set. Due to the effectiveness of reference parameters, the proposed
models of SLDFSs and SLDFSRSs are more productive and amenable rather than some
existing approaches. When we change the physical judgment of reference parameters
then the MCDM obstacles generate different categories. Due to the association of
reference parameters, SLDFS meets the spaces of certain existing structures and
expands the valuation space for satisfaction, abstinence, and dissatisfaction grades.

3. In some real-life circumstances, the total of satisfaction grade, abstinence grade,
and dissatisfaction grade of an alternative granted by the decision-maker (DM) may
be superior to 1 (e.g., 0.8 + 0.7 + 0.4 > 1). So PiFSs fail to hold. Likewise, the sum of
squares of these grades may also be superior to 1 (e.g., 0.82 + 0.72 + 0.42 > 1). Then the
spherical fuzzy sets (SFSs) fail in such circumstances. The generalized model of T-SFSs
overcome these deficiencies by using the condition 0 ≤ T̈n + Z̈n + S̈n ≤ 1. For very
small values of “n”, we cannot deal with these grades independently. In certain
practical applications, when all the three degrees are equal to 1 (i.e., T̈ = Z̈ = S̈ = 1 ),
we obtain 1n + 1n + 1n > 1 which opposes the constraint of T-SFS. MCDM techniques
with T-SFS fail in these circumstances. It influences the optimum judgment and
executes the MCDM restricted. Spherical linear Diophantine fuzzy set (SLDFS) can
deal with these circumstances and provides a wide range of applications to the
MCDM applications.

4. In decision analysis the membership grades are not enough to analyze objects in
the universe. The addition of reference parameters provide freedom to the decision



Axioms 2021, 10, 185 4 of 28

makers in selecting these grades. SLDFS with associated reference parameter provides
a robust approach for modeling uncertainties.

5. Firstly, we fill the research hollow using the intended model of SLDFSs. The alterna-
tives having the characteristics like PF-value, SF-value, T-SF-value, and neutrosophic
value can be efficiently supervised by using SLDFSs with the representatives of
reference parameters. (For instance for (0.60 + 0.90 + 0.70 > 1), we can propose
control parameters such that (0.60)(0.30) + (0.90)(0.20) + (0.70)(0.10) < 1, where
〈0.30, 0.20, 0.10〉 can be taken as reference parameters for satisfaction, abstinence and
dissatisfaction grades).

6. The next purpose is to examine the role of reference parameters in SLDFSs. The PFSs,
SFSs, T-SFSs, and neutrosophic sets cannot dispense with parameterizations. The rec-
ommended structure intensifies the present methodologies and the decision-maker
(DM) can openly select the degrees without any restriction. The feature of the dynamic
sense of reference parameters classifies the difficulty.

7. Another objective is to assemble another novel structure with the combination of
SLDFSs, soft sets, and rough sets named as SLDFSRSs. This concept can deal with the
roughness, vagueness, uncertainty, and ambiguities of information data at the same
time. This hybrid idea is strong, valid, and superior as compared to some existing
models.

8. Our ultimate objective is to assemble an influential association among suggested
models and MCDM obstacles. We generate two innovative algorithms to dispense
with the vagueness in the information data following parameterizations. We utilize
core, upper and lower reducts, multiple accuracy functions and score functions,
and for the selection of feasible alternatives in the MCDM methods. It is fascinating
to record that both algorithms generate the identical optimal alternative.

The organization of this manuscript is ordered as follows: Section 2 implements
some elementary ideas of fuzzy sets, IFSs, neutrosophic sets, PFSs, SFSs, T-SFSs, soft
sets, and rough sets. In Section 3, we originate the contemporary notion of SLDFSs.
We exhibit perfection and comparison of the intended model with certain existing struc-
tures. We present various examples to relate our structure with the real-life circumstances.
In Section 4, we impersonate a comparison by using graphical representations of some
existing structures with the SLDFSs. We discuss about the drawbacks of existing oper-
ations and AOs on PFSs and establish some new operations on PFNs. We define some
operations on SLDFNs. We impersonate multiple score and accuracy functions for the
ranking of SLDFNs with distinct classifications. In Section 5, we establish another new idea
of SLDFSRSs with its upper and lower approximation operators. We present some results
on upper and lower approximation operators. In Section 6, we intend the approach of the
MCDM obstacle for the election of clean energy technology with the help of SLDFSRSs and
its approximations. We correlate the outcomes received from the suggested two innovative
algorithms. We offer a brief association between the intended theories and certain present
models. Eventually, the conclusion of this analysis is reviewed in Section 7.

2. Background

Initially, we examine some elementary ideas including fuzzy sets, IFSs, PFSs, SFSs,
and T-SFSs. In the entire article, we utilize K̈ as a fixed reference set.

Definition 1 ([1]). The mapping ḟ : K̈ → [0, 1] defines a fuzzy set F in K̈, where ḟ (D̈) represents
the satisfaction grade to which the alternative D̈ belongs to F for all D̈ ∈ K̈. Alternatively, it can
be represented as

F = {(D̈ , ḟ (D̈)) : D̈ ∈ K̈}.

The idea of satisfaction with dissatisfaction degrees was suggested by Atanassov [3]
satisfying the constraint that the total of both grades cannot be superior to 1.
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Definition 2 ([3]). An IFS I in K̈ is scripted as

I = {〈D̈ , T̈I (D̈), S̈I (D̈)〉 : D̈ ∈ K̈},

where the mappings T̈I : K̈ → [0, 1] and S̈I : K̈ → [0, 1] are called the satisfaction and
dissatisfaction functions, respectively. It is required that that 0 ≤ T̈I (D̈) + S̈I (D̈) ≤ 1 for
all D̈ ∈ K̈. The indeterminacy degree of D̈ to I is given by π̇(D̈) = 1− (T̈I (D̈) + S̈I (D̈)).
Graphically it can be characterized as Figure 1. This is basically a two dimensional idea and we can
observe the behavior of alternatives in a plane (as Figure 1).

Figure 1. Graph of satisfaction and dissatisfaction grades of IFS.

Definition 3 ([10]). A neutrosophic set Ṅ in K̈ is described by a satisfaction function T̈ , an inde-
terminacy membership function İ and a dissatisfaction function S̈. T̈ (D̈), İ(D̈) and S̈(D̈) are
elements of ]0−, 1+[. It can be scripted as

Ṅ = {(D̈ , 〈T̈ (D̈), İ(D̈), S̈(D̈)〉) : D̈ ∈ K̈}

such that 0− ≤ T̈ (D̈) + İ(D̈) + S̈(D̈) ≤ 3+.

To eradicate the drawbacks of existing models, Cuong [11–13] proposed the idea
of picture fuzzy set (PFSs). This concept is closer to human nature and handle real life
situations as compared to existing models.

Definition 4 ([11–13]). A PiFS Ṗ f in K̈ is scripted as

Ṗ f = {(D̈ , 〈T̈ (D̈), Z̈(D̈), S̈(D̈)〉) : D̈ ∈ K̈}

where, 0 ≤ T̈ (D̈), Z̈(D̈), S̈(D̈) ≤ 1 represents the satisfaction, uncertainty (or abstinence),
and dissatisfaction grades respectively, with the constraint 0 ≤ T̈ (D̈) + Z̈(D̈) + S̈(D̈) ≤ 1.
The value Ṙ(D̈) = 1− (T̈ (D̈) + Z̈(D̈) + S̈(D̈)) is called refusal grading for D̈ in K̈.

A picture fuzzy number can be written as a triplet 〈T̈ (D̈), Z̈(D̈), S̈(D̈)〉, for D̈ ∈ K̈.

Definition 5 ([14]). A SFS Ṡ in K̈ is defined by

Ṡ = {(D̈ , 〈T̈s(D̈), Z̈s(D̈), S̈s(D̈)〉) : D̈ ∈ K̈}

where, 0 ≤ 〈T̈s(D̈), Z̈s(D̈), S̈s(D̈)〉 ≤ 1 represents the membership, uncertainty (or abstinence),
and dissatisfaction grades, respectively, such that

0 ≤ T̈ 2
s (D̈) + Z̈2

s (D̈) + S̈2
s (D̈) ≤ 1

The value
Ṙs(D̈) =

√
1− (T̈ 2

s (D̈) + Z̈2
s (D̈) + S̈2

s (D̈))
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is called refusal grading for D̈ in K̈ A spherical fuzzy number (SFN) can be expressed as a triplet
〈T̈s(D̈), Z̈s(D̈), S̈s(D̈)〉, for D̈ ∈ K̈.

Definition 6 ([14]). A T-SFS Ṫ in K̈ is scripted as

Ṫ = {(D̈ , 〈T̈t(D̈), Z̈t(D̈), S̈t(D̈)〉) : D̈ ∈ K̈}

where, 0 ≤ T̈t(D̈), Z̈t(D̈), S̈t(D̈) ≤ 1 represents the membership, uncertainty (or abstinence),
and dissatisfaction grades, respectively, such that

0 ≤ T̈ n
t (D̈) + Z̈n

t (D̈) + S̈n
t (D̈) ≤ 1; (n = 1, 2, 3, . . .)

The expression

Ṙt(D̈) = n
√

1− (T̈ n
t (D̈) + Z̈n

t (D̈) + S̈n
t (D̈))

gives the refusal grade for D̈ in K̈. A T-spherical fuzzy number (T-SFN) can be communicated as a
triplet 〈T̈t(D̈), Z̈t(D̈), S̈t(D̈)〉, for D̈ ∈ K̈.

3. Spherical Linear Diophantine Fuzzy Sets (SLDFSs)

In this section, we inaugurate the novel notion of SLDFSs. In the field of number
theory, we have the concept of linear Diophantine equation for three variables given as
ax + by + cz = d. The intended structure has a correspondence with this equation, so we
described it as SLDFS. With a comprehensive comparative study, we found that neutro-
sophic sets, T-SFSs, PiFSs, and SFSs have various restrictions on satisfaction, abstinence,
and dissatisfaction degrees. To eliminate these restrictions, we originate the notion of
SLDFS with the extension of reference parameters. Due to the impact of reference parame-
ters a decision-maker (DM) can smoothly take the degrees according to the circumstances
and suitable principles. This procedure categorizes the obstacle and provides us a variety
of alternatives and attributes. We examine the construction of SLDFS, mathematically and
graphically with the help of illustrations. In the entire article, we shall use T̈ , Z̈ and S̈ for
satisfaction, uncertainty or abstinence and dissatisfaction degrees, respectively, and α, β, η
as reference or control parameters corresponding to T̈ , Z̈ and S̈ respectively.

Definition 7. A SLDFS SK̈ in the universe K̈ is defined as

SK̈ =
{(

D̈ , 〈T̈K̈(D̈), Z̈K̈(D̈), S̈K̈(D̈)〉, 〈αK̈(D̈), βK̈(D̈), ηK̈(D̈)〉
)

: D̈ ∈ K̈
}

where, T̈K̈(D̈), Z̈K̈(D̈), S̈K̈(D̈), αK̈(D̈), βK̈(D̈), ηK̈(D̈) ∈ [0, 1] are membership, uncertainty or
abstinence, non-membership and reference parameters corresponding to these grades respectively.
These grades satisfy the constraints

0 ≤ αK̈(D̈)T̈K̈(D̈) + βK̈(D̈)Z̈K̈(D̈) + ηK̈(D̈)S̈K̈(D̈) ≤ 1 ; (∀D̈ ∈ K̈)

0 ≤ αK̈(D̈) + βK̈(D̈) + ηK̈(D̈) ≤ 1.

During the scheme of establishing or analyzing a particular system in the input information,
the reference parameters play an essential role. The system can be classified by altering the dynamic
function of these parameters. Restrictions can be excluded due to the increase in the valuation space.
The refusal part can be estimated as

πK̈(D̈)ṘK̈ = 1− (αK̈(D̈)T̈K̈(D̈) + βK̈(D̈)Z̈K̈(D̈) + ηK̈(D̈)S̈K̈(D̈)),
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where πK̈(D̈) is the reference parameter related to degree of refusal. Simply

ð̈ =

(
〈T̈K̈, Z̈K̈, S̈K̈〉, 〈αK̈, βK̈, ηK̈〉

)
is called SLDFN. Graphically SLDFS can be seen as Figure 2.

Figure 2. Graph of satisfaction, abstinence, and dissatisfaction grades of SLDFS.

Definition 8. A SLDFS in K̈ of the form

1S K̈ = {(D̈ , 〈1, 0, 0〉, 〈1, 0, 0〉) : D̈ ∈ K̈}

is called absolute SLDFS, and

0S K̈ = {(D̈ , 〈0, 1, 1〉, 〈0, 0, 1〉) : D̈ ∈ K̈}

is called empty or null SLDFS.

3.1. Digital Image Processing

There are various applications of SLDFSs in diverse fields such as engineering, medical
sciences, agriculture, artificial intelligence, business, MADM problems. The wide spectrum
of these applications can be examined in this article.

We discuss about the three main levels of image processing given below as:

• Low-Level Processes.
• Mid-Level Processes.
• High-Level Processes.

These three phases correlate to the SLDFS grades of satisfaction, abstinence, and dis-
satisfaction. The addition of reference parameters improves the procedure’s efficiency
while also providing specifics on how to deal with the associated grades.

3.2. Medication

Every medication has multi purposes and used to treat different infections due to
physical and chemical combinations of salts in it. Consider the assembling of some
medicines, which are suitable for different infections given as Q = {D̈1, D̈2, D̈3, D̈4, D̈5}.
These medicines used to cure pneumonia, sinusitis, bronchitis, ear infection and skin
infections. We can classify the data on the basis of diseases with good or bad effects of
medicines. If we select the reference parameters as:

αK̈ = suitable or effective against bronchitis

βK̈ = not highly effected to bronchitis (uneffected or neutral)

ηK̈ = having some side efffects or bad effects against bronchitis

The Table 1 shows SLDFS.
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Table 1. SLDFS.

SK̈
(
〈T̈K̈(D̈), Z̈K̈(D̈), S̈K̈(D̈)〉, 〈αK̈, βK̈, ηK̈〉

)
D̈1 (〈0.952, 0.451, 0.413〉, 〈0.64, 0.13, 0.11〉)
D̈2 (〈0.873, 0.345, 0.532〉, 〈0.64, 0.11, 0.21〉)
D̈3 (〈0.631, 0.234, 0.811〉, 〈0.38, 0.12, 0.11〉)
D̈4 (〈0.684, 0.456, 0.715〉, 〈0.29, 0.24, 0.21〉)
D̈5 (〈0.882, 0.566, 0.712〉, 〈0.49, 0.11, 0.21〉)

A doctor/conslutant suggests a medicine to the patient that is exactly related to
condition or severeness of disease. We can characterize the information system with control
parameters which indicate how significant that factor is for the treatment, and their degrees
indicate the advantages of keeping those parameters in treatment. If we switch parameter
αK̈ = “best effect against skin infection”, βK̈ = “not highly affected or neutral to skin
infection”, and ηK̈ = “side effects against skin infection” or αK̈ = “less or low side effects”,
βK̈ = “medium side effects” and ηK̈ = “high side effects”, etc. then we can establish
more SLDFSs on the similar set of alternatives. This arrangement enables a physician in
recommending to a patient the most effective and appropriate medicine for his sickness.

3.3. Selection of Best Optimal Choice

The reference parameters can be used to interpret the categories of various object with
respect to advantage or disadvantage. A high value of reference parameter indicate high
significance. The characteristics of reference parameters in the selection of car, mobile,
home appliances, may expressed as follows.

αK̈ = low cost or cheap

βK̈ = affordable

ηK̈ = high cost or expensive

Suppose that a person needs to buy a mobile phone. He wants to choose the most de-
sirable phone with lots of characteristics and having a low price. Let K̈ = {D̈1, D̈2, D̈3, D̈4}
be the set of some conventional mobile phones. The SLDFS is indicated as Table 2.

Table 2. SLDFS.

SK̈
(
〈T̈K̈(D̈), Z̈ K̈(D̈), S̈K̈(D̈)〉, 〈αK̈, βK̈, ηK̈〉

)
D̈1 (〈0.711, 0.452, 0.218〉, 〈0.42, 0.11, 0.34〉)
D̈2 (〈0.933, 0.653, 0.522〉, 〈0.31, 0.11, 0.47〉)
D̈3 (〈0.374, 0.677, 0.611〉, 〈0.29, 0.24, 0.27〉)
D̈4 (〈0.516, 0.345, 0.474〉, 〈0.31, 0.21, 0.33〉)

If we alter the dynamical denotation of reference parameters, then we can classify the
information data in another sense in the form of SLDFS. For second SLDFS we can utilize
the reference parameters as:

αK̈ = high battery timing

βK̈ = average or medium battery timing

ηK̈ = low battery timing

For the selected data the SLDF input information can be represented as Table 3.
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Table 3. SLDFS.

SK̈
(
〈T̈K̈(D̈), Z̈ K̈(D̈), S̈K̈(D̈)〉, 〈αK̈, βK̈, ηK̈〉

)
D̈1 (〈0.932, 0.234, 0.411〉, 〈0.54, 0.12, 0.11〉)
D̈2 (〈0.793, 0.435, 0.532〉, 〈0.34, 0.23, 0.21〉)
D̈3 (〈0.531, 0.456, 0.811〉, 〈0.38, 0.32, 0.11〉)
D̈4 (〈0.782, 0.236, 0.714〉, 〈0.29, 0.34, 0.21〉)

In this application, the control parameters present an essential role. They describe cer-
tain particular features about phones like it is cheap, affordable, expensive, high, medium
or low battery timings, easy to learn, medium to learn or difficult to learn, etc. The grades
T̈K̈(D̈), Z̈K̈(D̈) and S̈K̈(D̈) describe the grades of phone D̈ , which determines that how
much a phone is cheap, affordable or expensive, while parameters represent that how
much a machine should be cheap, affordable or expensive.

In SLDFSs three grades/indexes are assigned by the decision makers and estimated
from the uncertain data/information about alternatives while the reference parameters are
used to further analyze decision-makers opinion about three grades/indexes.

4. Graphical Representation of SLDFS

In this section, We present the graphical description of SLDFSs with reference or
control parameters. We graphically examine that how its space is larger than the space
of PFSs, SFSs, and T-SFSs. Figures 3–5 gives us the geometrical representation of PiFS,
SFS and SLDFS. Figures 6–10 shows the grap of PiFS, SFS, T-SFS with some values of “n”
and SLDFS.

Figure 3. Graph of three indexes of PiFS.

Figure 4. Graph of three indexes of SFS.
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Figure 5. Graph of three indexes of SLDFS.

Figure 6. Graph of three indexes of PFS.

Figure 7. Graph of three indexes of SFS.

Figure 8. Graph of three indexes of T-SFS with n = 5.
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Figure 9. Graph of three indexes of T-SFS with n = 100.

It can be observed form Figure 10 and the graph of three grades/indexes in SLDFS
provides a larger space than PiFS, SFS, and T-SFS. The addition of reference parameters pro-
vide freedom to the decision makers in selecting three grades/indexes. Thus a SLDFS with
addition of reference parameter provides a robust approach for modeling uncertainties.

Figure 10. Graph of three indexes of SLDFS for reference parameters αK̈ , βK̈ , ηK̈ ∈ [0, 1].

Operations on Spherical Linear Diophantine Fuzzy Numbers (SLDFNs)

In this subsection, we define some operations on SLDFNs. For the comparison of
SLDFNs, we develop various score functions and accuracy functions.

Definition 9. Let us consider ð̈℘ = (〈℘T̈K̈, ℘Z̈ K̈, ℘S̈K̈〉, 〈℘αK̈, ℘βK̈, ℘ηK̈〉) for ℘ ∈ ∆ (indexing
set) be an assembling of SLDFNs over the reference set K̈ and X > 0 then the fundamental
operations on SLDNFNs are the following

• ð̈c
℘ = (〈℘S̈K̈, 1− ℘Z̈ K̈, ℘T̈K̈〉, 〈℘ηK̈, ℘βK̈, ℘αK̈),

• ð̈1 = ð̈2 ⇔ 1T̈K̈ = 2T̈K̈, 1Z̈ K̈ = 2Z̈ K̈, 1S̈K̈ = 2S̈K̈, 1αK̈ = 2αK̈, 1βK̈ = 2βK̈,
1ηK̈ = 2ηK̈,

• ð̈1 ⊆ ð̈2 ⇔ 1T̈K̈ ≤ 2T̈K̈, 1Z̈ K̈ ≥ 2Z̈ K̈, 1S̈K̈ ≥ 2S̈K̈, 1αK̈ ≤ 2αK̈, 1βK̈ ≥ 2βK̈,
1ηK̈ ≥ 2ηK̈,

•
⋃

℘∈∆
ð̈℘ =

(
〈sup
℘∈∆

℘T̈K̈, inf
℘∈∆

℘Z̈ K̈, inf
℘∈∆

℘S̈K̈〉, 〈sup
℘∈∆

℘αK̈, inf
℘∈∆

℘βK̈, inf
℘∈∆

℘ηK̈〉
)

,

•
⋂

℘∈∆
ð̈℘ =

(
〈 inf
℘∈∆

℘T̈K̈, sup
℘∈∆

℘Z̈ K̈, sup
℘∈∆

℘S̈K̈〉, 〈 inf
℘∈∆

℘αK̈, sup
℘∈∆

℘βK̈, sup
℘∈∆

℘ηK̈〉
)

,

• ð̈1 ⊕ ð̈2 =
(
〈1T̈K̈ + 2T̈K̈ − 1T̈K̈

2T̈K̈, 1Z̈ K̈2Z̈ K̈, 1S̈K̈
2S̈K̈〉,

〈1− (1− 1αK̈)(1− 2αK̈),
1βK̈

2βK̈, (1ηK̈ + 1βK̈)(
2ηK̈ + 2βK̈)− 1βK̈

2βK̈〉
)

,

• ð̈1 ⊗ ð̈2 =
(
〈1T̈K̈

2T̈K̈, 1Z̈ K̈ + 2Z̈ K̈ − 1Z̈ K̈2Z̈ K̈, 1S̈K̈ + 2S̈K̈ − 1S̈K̈
2S̈K̈〉, 〈(1αK̈ + 1βK̈)

(2αK̈ + 2βK̈)− 1βK̈
2βK̈, 1βK̈

2βK̈, 1− (1− 1ηK̈)(1− 2ηK̈)〉
)

,
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• Xð̈1 =
(
〈1− (1− 1T̈K̈)

X, 1Z̈X
K̈, 1S̈

X
K̈〉, 〈1− (1− 1αK̈)

X, 1βK̈
X, (1ηK̈+

1βK̈)
X− 1βK̈

X〉
)

;
X > 0,

• ð̈X1 =
(
〈1T̈X
K̈, 1 − (1 − 1Z̈ K̈)X, 1 − (1 − 1S̈K̈)

X〉, 〈(1αK̈ + 1βK̈)
X − 1βK̈

X, 1βK̈
X, 1 −

(1− 1ηK̈)
X〉
)

; X > 0.

Proposition 1. Let ð̈1 = (〈1T̈K̈, 1Z̈ K̈, 1S̈K̈〉, 〈1αK̈, 1βK̈, 1ηK̈〉) and ð̈2 = (〈2T̈K̈, 2Z̈ K̈, 2S̈K̈〉,
〈2αK̈, 2βK̈, 2ηK̈〉) be two SLDFNs and X > 0, then ð̈c

1, ð̈1 ∪ ð̈2, ð̈1 ∩ ð̈2, ð̈1 ⊕ ð̈2, ð̈1 ⊗ ð̈2,Xð̈1
and ð̈X1 are also SLDFNs.

Proof. The proof follows by using Definition 9.

Example 1. Let ð̈1 = (〈0.93, 0.25, 0.31〉, 〈0.38, 0.21, 0.34〉) and ð̈2 = (〈0.83, 0.38, 0.32〉,
〈0.25, 0.26, 0.41〉) be two SLDFNs, then

• ð̈c
1 = (〈0.31, 0.75, 0.93〉, 〈0.34, 0.21, 0.38〉)

• Clearly by using Definition 9 ð̈2 ⊆ ð̈1

• ð̈1 ∪ ð̈2 = (〈0.93, 0.25, 0.31〉, 〈0.38, 0.21, 0.34〉) = ð̈1

• ð̈1 ∩ ð̈2 = (〈0.83, 0.38, 0.32〉, 〈0.25, 0.26, 0.41〉) = ð̈2

• ð̈1 ⊕ ð̈2 = (〈0.9881, 0.095, 0.0992〉, 〈0.535, 0.0546, 0.3139〉)
• ð̈1 ⊗ ð̈2 = (〈0.7719, 0.535, 0.5308〉, 〈0.2463, 0.0546, 0.6106〉)

If X = 0.1 then

• Xð̈1 = (〈0.2335, 0.7578, 0.8894〉, 〈0.0466, 0.8555, 0.0864〉)
• ð̈X1 = (〈0.9927, 0.0283, 0.0364〉, 〈0.0931, 0.8555, 0.0407〉)

Proposition 2. For two SLDFNs ð̈1 and ð̈2 with X > 0 then ð̈c
1, ð̈1 ∪ ð̈2, ð̈1 ∩ ð̈2,

ð̈1 ⊕ ð̈2, ð̈1 ⊗ ð̈2,Xð̈1 and ð̈X1 are also SLDFNs.

Proof. Proof follows by using Definition 9.

Chen and Tan [42] invented the idea of score functions for IFSs. Before that Tversky
and Kahneman [43] proposed the same concept. We extend this idea for hybrid structures
and SLDFNs. We invented different mappings to calculate the scores due to different strate-
gies of approximation operators used in the proposed algorithms. These different score
and accuracy functions determine the behavior of SLDFNs and provide us an appropriate
optimal decision.

Definition 10. Let ð̈ = (〈T̈K̈, Z̈K̈, S̈K̈〉, 〈αK̈, βK̈, ηK̈〉) be a SLDFN, then the mapping P :
SLDFN(K̈)→ [−1, 1] define a score function (SF) on ð̈ scripted as

Pð̈ = P(ð̈) = 1
2
[(T̈K̈ − Z̈K̈ − S̈K̈) + (αK̈ − βK̈ − ηK̈)]

where SLDFN(K̈) is an assembling of SLDFNs over K̈.

Definition 11. The mapping ψ : SLDFN(K̈) → [0, 1] defines an accuracy function (AF)
scripted as

ψð̈ = ψ(ð̈) = 1
2

[( T̈K̈ + Z̈K̈ + S̈K̈
3

)
+ (αK̈ + βK̈ + ηK̈)

]
Definition 12. The mapping J : SLDFN(K̈)→ [−1, 1] defines a quadratic score function (QSF)
for SLDFN defined as

Jð̈ = J(ð̈) = 1
2
[(T̈2
K̈ − Z̈

2
K̈ − S̈2

K̈) + (α2
K̈ − β2

K̈ − η2
K̈)]
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Definition 13. The mapping φ : SLDFN(K̈)→ [0, 1] expresses the quadratic accuracy function
(QAF) for SLDFN scripted as

φð̈ = φ(ð̈) = 1
2

[( T̈2
K̈ + Z̈2

K̈ + S̈2
K̈

3

)
+ (α2

K̈ + β2
K̈ + η2

K̈)
]

Definition 14. The expectation score function (ESF) on SLDFN(K̈) and scripted by the mapping
M : SLDFN(K̈)→ [0, 1] such that

Mð̈ = M(ð̈) = 1
3

[ (T̈K̈ − Z̈K̈ − S̈K̈ + 2)
2

+
(αK̈ − βK̈ − ηK̈ + 2)

2

]
This is modified form of SF.

Definition 15. Let ð̈1 and ð̈2 be SLDFNs. The binary relation ≤(T̈,M) on SLDFN(K̈) can be
expressed as ð̈1 ≤(T̈,M) ð̈2 ⇔

(
(1T̈K̈ < 2T̈K̈) ∧ (1αK̈ < 2αK̈)

)
∨
(
(1T̈K̈ = 2T̈K̈) ∧ (1αK̈ =

2αK̈) ∧ (Mð̈1
≤Mð̈2

)
)
.

Definition 16. Let ð̈1 and ð̈2 be SLDFNs. The binary relation ≤(M,T̈) on SLDFN(K̈) can be
expressed as ð̈1 ≤(M,T̈) ð̈2 ⇔ (Mð̈1

< Mð̈2
) ∨

(
(Mð̈1

= Mð̈2
) ∧ (1T̈K̈ ≤ 2T̈K̈) ∧ (1αK̈ ≤

2αK̈)
)
.

5. Spherical Linear Diophantine Fuzzy Soft Rough Sets (SLDFSRSs)

Definition 17. Let K̈ be any set of objects, G̈ be the set of attributes, and take Ȯ ⊆ G̈. A spherical
linear Diophantine fuzzy soft set (SLDFSS) (δ̈, Ȯ) can be expressed by the mapping

δ̈ : Ȯ → SLDFS(K̈)

where SLDFS(K̈) is an assembling of all SLDF-subsets of K̈. A SLDFSS can be expressed as

(δ̈, Ȯ) =
{
(℘̇, δ̈(℘̇)) : ℘̇ ∈ Ȯ, δ̈(℘̇) ∈ SLDFS(K̈)

}
Definition 18. Let (δ̈, Ȯ) be a SLDFSS in K̈. Then a SLDF-subset Ë of K̈ × G̈ is called spherical
linear Diophantine fuzzy soft relation (SLDFSR) from K̈ to G̈ scripted as

Ë =

{
((D̈ , ℘̇), 〈T̈Ë (D̈ , ℘̇), Z̈Ë (D̈ , ℘̇), S̈Ë (D̈ , ℘̇)〉, 〈αË (D̈ , ℘̇), βË (D̈ , ℘̇), ηË (D̈ , ℘̇)〉) : (D̈ , ℘̇) ∈ K̈ × G̈

}
where αT̈Ë (D̈ , ℘̇), αZ̈ Ë (D̈ , ℘̇), αS̈Ë (D̈ , ℘̇) ∈ [0, 1] are satisfaction, uncertainty or abstinence and
dissatisfaction grades respectively, with the corresponding reference parameters αË (D̈ , ℘̇), βË (D̈ , ℘̇),
ηË (D̈ , ℘̇) ∈ [0, 1] satisfying the constraints

0 ≤ αË (D̈ , ℘̇)αT̈Ë (D̈ , ℘̇) + βË (D̈ , ℘̇)αZ̈ Ë (D̈ , ℘̇) + ηË (D̈ , ℘̇)αS̈Ë (D̈ , ℘̇) ≤ 1

0 ≤ αË (D̈ , ℘̇) + βË (D̈ , ℘̇) + ηË (D̈ , ℘̇) ≤ 1

If K̈ = {D̈1, D̈2, . . . , D̈n} and G̈ = {℘̇1, ℘̇2, . . . , ℘̇m}, then SLDFSR Ë on K̈ × G̈ can be
represented in tabular form as Table 4.
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Table 4. Spherical linear Diophantine fuzzy soft relation (SLDFSR).

Ë ℘̇1 . . . ℘̇m

D̈1 (〈T̈Ë (D̈1, ℘̇1), Z̈Ë (D̈1, ℘̇1)S̈Ë (D̈1, ℘̇1)〉, (〈T̈Ë (D̈1, ℘̇m), Z̈Ë (D̈1, ℘̇m)S̈Ë (D̈1, ℘̇m)〉,
〈αË (D̈1, ℘̇1), βË (D̈1, ℘̇1), ηË (D̈1, ℘̇1)〉) . . . 〈αË (D̈1, ℘̇m), βË (D̈1, ℘̇m), ηË (D̈1, ℘̇m)〉)

D̈2 (〈T̈Ë (D̈2, ℘̇1), Z̈Ë (D̈2, ℘̇1)S̈Ë (D̈2, ℘̇1)〉, (〈T̈Ë (D̈2, ℘̇m), Z̈Ë (D̈2, ℘̇m)S̈Ë (D̈2, ℘̇m)〉,
〈αË (D̈2, ℘̇1), βË (D̈2, ℘̇1), ηË (D̈2, ℘̇1)〉) . . . 〈αË (D̈2, ℘̇m), βË (D̈2, ℘̇m), ηË (D̈2, ℘̇m)〉)

D̈n (〈T̈Ë (D̈n, ℘̇1), Z̈Ë (D̈n, ℘̇1)S̈Ë (D̈n, ℘̇1)〉, (〈T̈Ë (D̈n, ℘̇m), Z̈Ë (D̈n, ℘̇m)S̈Ë (D̈n, ℘̇m)〉,
〈αË (D̈n, ℘̇1), βË (D̈n, ℘̇1), ηË (D̈n, ℘̇1)〉) . . . 〈αË (D̈n, ℘̇m), βË (D̈n, ℘̇m), ηË (D̈n, ℘̇m)〉)

Definition 19. For the reference set K̈ and set of decision variables G̈, if we define a SLDFSR Ë
over K̈ × G̈, then (K̈, G̈, Ë ) is called a spherical linear Diophantine fuzzy soft approximation space
(SLDFS-approximation space). If Ÿ ∈ SLDFS(Ġ), then Ë ?(Ÿ) and Ë?(Ÿ) are called upper and
lower approximations of Ÿ about (K̈, G̈, Ë ) respectively and scripted as

Ë ?(Ÿ) = {(D̈ , 〈T̈Ë ?(Ÿ)(D̈), Z̈Ë ?(Ÿ)(D̈), S̈Ë ?(Ÿ)(D̈)〉, 〈αË ?(Ÿ)(D̈), βË ?(Ÿ)(D̈), ηË ?(Ÿ)(D̈)〉) : D̈ ∈ K̈}

Ë?(Ÿ) = {(D̈ , 〈T̈Ë?(Ÿ)(D̈), Z̈Ë?(Ÿ)(D̈), S̈Ë?(Ÿ)(D̈)〉, 〈αË?(Ÿ)(D̈), βË?(Ÿ)(D̈), ηË?(Ÿ)(D̈)〉) : D̈ ∈ K̈}

where

T̈Ë ?(Ÿ)(D̈) =
∨
℘̇∈G̈

[T̈Ë (D̈ , ℘̇) ∧ T̈Ÿ (℘̇)], Z̈Ë ?(Ÿ)(D̈) =
∧
℘̇∈G̈

[(1− Z̈Ë (D̈ , ℘̇)) ∨ Z̈Ÿ (℘̇)]

S̈Ë ?(Ÿ)(D̈) =
∧
℘̇∈G̈

[(1− S̈Ë (D̈ , ℘̇)) ∨ S̈Ÿ (℘̇)], αË ?(Ÿ)(D̈) =
∨
℘̇∈G̈

[αË (D̈ , ℘̇) ∧ αŸ (℘̇)]

βË ?(Ÿ)(D̈) =
∧
℘̇∈G̈

[βË (D̈ , ℘̇) ∨ βŸ (℘̇)], ηË ?(Ÿ)(D̈) =
∧
℘̇∈G̈

[ηË (D̈ , ℘̇) ∨ ηŸ (℘̇)]

T̈Ë?(Ÿ)(D̈) =
∧
℘̇∈G̈

[(1− T̈Ë (D̈ , ℘̇)) ∨ T̈Ÿ (℘̇)], Z̈Ë?(Ÿ)(D̈) =
∨
℘̇∈G̈

[Z̈Ë (D̈ , ℘̇) ∧ Z̈Ÿ (℘̇)]

S̈Ë?(Ÿ)(D̈) =
∨
℘̇∈G̈

[S̈Ë (D̈ , ℘̇) ∧ S̈Ÿ (℘̇)], αË?(Ÿ)(D̈) =
∧
℘̇∈G̈

[αË (D̈ , ℘̇) ∨ αŸ (℘̇)]

βË?(Ÿ)(D̈) =
∨
℘̇∈G̈

[βË (D̈ , ℘̇) ∧ βŸ (℘̇)], ηË?(Ÿ)(D̈) =
∨
℘̇∈G̈

[ηË (D̈ , ℘̇) ∧ ηŸ (℘̇)]

The pair (Ë?(Ÿ), Ë ?(Ÿ)) is called SLDFSRS in (K̈, G̈, Ë ). The lower and upper approxima-
tion operators are represented as Ë?(Ÿ) and Ë ?(Ÿ), respectively. If Ë?(Ÿ) = Ë ?(Ÿ), then Ÿ is
said to be definable.

Example 2. Let K̈ = {D̈1, D̈2} be the set of some famous shoe brands and G̈ = {℘̇1, ℘̇2, ℘̇3} be
the collection of some attributes, where

℘̇1 = Product quality,

℘̇2 = affordable,

℘̇3 = Recovery service.

We consider the SLDFSR, Ë : K̈ → G̈ given by Table 5.
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Table 5. SLDFSR.

Ë Numeric Values of SLDFNs

℘̇1:(〈0.684, 0.355, 0.356〉, 〈0.221, 0.325, 0.311〉)
D̈1 ℘̇2:(〈0.825, 0.836, 0.546〉, 〈0.226, 0.123, 0.421〉)

℘̇3:(〈0.826, 0.265, 0.489〉, 〈0.122, 0.323, 0.345〉)
℘̇1:(〈0.973, 0.543, 0.478〉, 〈0.246, 0.614, 0.112〉)

D̈2 ℘̇2:(〈0.822, 0.642, 0.789〉, 〈0.223, 0.524, 0.124〉)
℘̇3:(〈0.752, 0.275, 0.788〉, 〈0.122, 0.233, 0.574〉)

Consider a SLDF-subset Ÿ of G̈ given as

Ÿ = {(℘̇1, 〈0.837, 0.535, 0.785〉, 〈0.242, 0.242, 0.478〉), (℘̇2, 〈0.833, 0.635, 0.784〉, 〈0.634, 0.121, 0.211〉),
(℘̇3, 〈0.725, 0.526, 0.478〉, 〈0.625, 0.211, 111〉)}

By using Definition 19, we find the upper and lower approximations of Ÿ given by

T̈Ë ?(Ÿ)(D̈1) =
∨
℘̇

[0.684, 0.825, 0.725] = 0.825, Z̈Ë ?(Ÿ)(D̈1) =
∧
℘̇

[0.645, 0.635, 0.735] = 0.635,

S̈Ë ?(Ÿ)(D̈1) =
∧
℘̇

[0.785, 0.784, 0.511] = 0.511, αË ?(Ÿ)(D̈1) =
∨
℘̇

[0.221, 0.226, 0.122] = 0.226,

βË ?(Ÿ)(D̈1) =
∧
℘̇

[0.325, 0.123, 0.323] = 0.123, ηË ?(Ÿ)(D̈1) =
∧
℘̇

[0.478, 0.421, 0.345] = 0.345

Now we can find other approximations of Ÿ as follows.

Ë ?(Ÿ) = {(D̈1, 〈0.825, 0.635, 0.511〉, 〈0.226, 0.123, 0.345〉), (D̈2, 〈0.837, 0.535, 0.478〉, 〈0.242, 0.233, 0.211〉)}
Ë?(Ÿ) = {(D̈1, 〈0.725, 0.635, 0.546〉, 〈0.242, 0.242, 0.311〉), (D̈2, 〈0.752, 0.635, 0.784〉, 〈0.246, 0.242, 0.124〉)}

Thus (Ë?(Ÿ), Ë ?(Ÿ)) is called SLDFSRS.

Theorem 1. For arbitrary Ÿ ,B ∈ SLDFS(G), the upper and lower approximation operators
Ë?(Ÿ), Ë?(B), Ë ?(Ÿ) and Ë ?(B) on SLDFS-approximation space (K̈, G̈, Ë ) satisfy the following
axioms:

(1) Ë?(Ÿ) =∼ Ë ?(∼ Ÿ),
(2) Ÿ ⊆ B ⇒ Ë?(Ÿ) ⊆ Ë?(B),
(3) Ë?(Ÿ ∩ B) = Ë?(Ÿ) ∩ Ë?(B),
(4) Ë?(Ÿ ∪ B) ⊇ Ë?(Ÿ) ∪ Ë?(B),
(5) Ë ?(Ÿ) =∼ Ë?(∼ Ÿ),
(6) Ÿ ⊆ B ⇒ Ë ?(Ÿ) ⊆ Ë ?(B),
(7) Ë ?(Ÿ ∪ B) = Ë ?(Ÿ) ∪ Ë ?(B),
(8) Ë ?(Ÿ ∩ B) ⊆ Ë ?(Ÿ) ∪ Ë ?(B).

The complement of Ÿ is represented by ∼ Ÿ .

Proof. (1) From Definition 19,
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∼ Ë ?(∼ Ÿ) = {(D̈ , 〈S̈Ë ?(∼Ÿ)(D̈), 1− Z̈Ë ?(∼Ÿ)(D̈), T̈Ë ?(∼Ÿ)(D̈)〉, 〈ηË ?(∼Ÿ)(D̈), βË ?(∼Ÿ)(D̈), αË ?(∼Ÿ)(D̈)〉) : D̈ ∈ K̈}

= {(D̈ , 〈
∧
℘̇∈G̈

[(1− S̈Ë (D̈ , ℘̇)) ∨ S̈(∼Ÿ)(℘̇)], 1−
∧
℘̇∈G̈

[(1− Z̈Ë (D̈ , ℘̇)) ∨ Z̈(∼Ÿ)(℘̇)],
∨
℘̇∈G̈

[T̈Ë (D̈ , ℘̇) ∧ T̈(∼Ÿ)(℘̇)]〉,

〈
∧
℘̇∈G̈

[(ηË (D̈ , ℘̇)) ∨ η(∼Ÿ)(℘̇)],
∧
℘̇∈G̈

[(βË (D̈ , ℘̇)) ∨ β(∼Ÿ)(℘̇)],
∨
℘̇∈G̈

[αË (D̈ , ℘̇) ∧ α(∼Ÿ)(℘̇)]〉)}

= {(D̈ , 〈
∧
℘̇∈G̈

[(1− T̈Ë (D̈ , ℘̇)) ∨ T̈(Ÿ)(℘̇)],
∨
℘̇∈G̈

[(Z̈Ë (D̈ , ℘̇)) ∨ Z̈(Ÿ)(℘̇)],
∨
℘̇∈G̈

[S̈Ë (D̈ , ℘̇) ∧ S̈(Ÿ)(℘̇)]〉,

〈
∧
℘̇∈G̈

[(αË (D̈ , ℘̇)) ∨ α(Ÿ)(℘̇)],
∨
℘̇∈G̈

[(βË (D̈ , ℘̇)) ∨ β(Ÿ)(℘̇)],
∨
℘̇∈G̈

[ηË (D̈ , ℘̇) ∧ η(Ÿ)(℘̇)]〉)}

= {(D̈ , 〈T̈Ë?(Ÿ)(D̈), Z̈Ë?(Ÿ)(D̈), S̈Ë?(Ÿ)(D̈)〉, 〈αË?(Ÿ)(D̈), βË?(Ÿ)(D̈), ηË?(Ÿ)(D̈)〉) : D̈ ∈ K̈}

(2) We can prove this by Definition 19.
(3) By Definition 19, we consider that

Ë?(Ÿ ∩ B) = {(D̈ , 〈T̈Ë?(Ÿ∩B)(D̈), Z̈Ë?(Ÿ∩B)(D̈), S̈Ë?(Ÿ∩B)(D̈)〉, 〈αË?(Ÿ∩B)(D̈), βË?(Ÿ∩B)(D̈), ηË?(Ÿ∩B)(D̈)〉) : D̈ ∈ K̈}

= {(D̈ , 〈
∧
℘̇∈G̈

[(1− T̈Ë (D̈ , ℘̇)) ∨ T̈(Ÿ∩B)(℘̇)],
∨
℘̇∈G̈

[Z̈Ë (D̈ , ℘̇) ∧ Z̈(Ÿ∩B)(℘̇)],
∨
℘̇∈G̈

[S̈Ë (D̈ , ℘̇) ∧ S̈(Ÿ∩B)(℘̇)]〉,

〈
∧
℘̇∈G̈

[(αË (D̈ , ℘̇)) ∨ α(Ÿ∩B)(℘̇)],
∨
℘̇∈G̈

[βË (D̈ , ℘̇) ∧ β(Ÿ∩B)(℘̇)],
∨
℘̇∈G̈

[ηË (D̈ , ℘̇) ∧ η(Ÿ∩B)(℘̇)]〉)}

= {(D̈ , 〈
∧
℘̇∈G̈

[(1− T̈Ë (D̈ , ℘̇)) ∨ (T̈Ÿ (℘̇) ∧ T̈B(℘̇))],
∨
℘̇∈G̈

[Z̈Ë (D̈ , ℘̇) ∧ (Z̈Ÿ (℘̇) ∨ Z̈B(℘̇))],

∨
℘̇∈G̈

[S̈Ë (D̈ , ℘̇) ∧ (S̈Ÿ (℘̇) ∨ S̈B(℘̇))]〉, 〈
∧
℘̇∈G̈

[(αË (D̈ , ℘̇)) ∨ (αŸ (℘̇) ∧ αB(℘̇))],

∨
℘̇∈G̈

[βË (D̈ , ℘̇) ∧ (βŸ (℘̇) ∨ βB(℘̇))],
∨
℘̇∈G̈

[ηË (D̈ , ℘̇) ∧ (ηŸ (℘̇) ∨ ηB(℘̇))]〉)}

= {(D̈ , 〈(T̈Ë?(Ÿ)(D̈) ∧ T̈Ë?(B)(D̈)), (Z̈Ë?(Ÿ)(D̈) ∨ Z̈Ë?(B)(D̈)), (S̈Ë?(Ÿ)(D̈) ∨ S̈Ë?(B)(D̈))〉,

〈(αË?(Ÿ)(D̈) ∧ αË?(B)(D̈)), (βË?(Ÿ)(D̈) ∨ βË?(B)(D̈)), (ηË?(Ÿ)(D̈) ∨ ηË?(B)(D̈))〉) : D̈ ∈ K̈}

= Ë?(Ÿ) ∩ Ë?(B)

(4) By following the Definition 19, we can write that

Ë?(Ÿ ∪ B) = {(D̈ , 〈T̈Ë?(Ÿ∪B)(D̈), Z̈Ë?(Ÿ∪B)(D̈), S̈Ë?(Ÿ∪B)(D̈)〉, 〈αË?(Ÿ∪B)(D̈), βË?(Ÿ∪B)(D̈), ηË?(Ÿ∪B)(D̈)〉) : D̈ ∈ K̈}

= {(D̈ , 〈
∧
℘̇∈G̈

[(1− T̈Ë (D̈ , ℘̇)) ∨ T̈(Ÿ∪B)(℘̇)],
∨
℘̇∈G̈

[Z̈Ë (D̈ , ℘̇) ∧ Z̈(Ÿ∪B)(℘̇)],
∨
℘̇∈G̈

[S̈Ë (D̈ , ℘̇) ∧ S̈(Ÿ∪B)(℘̇)]〉,

〈
∧
℘̇∈G̈

[(αË (D̈ , ℘̇)) ∨ α(Ÿ∪B)(℘̇)],
∨
℘̇∈G̈

[βË (D̈ , ℘̇) ∧ β(Ÿ∪B)(℘̇)],
∨
℘̇∈G̈

[ηË (D̈ , ℘̇) ∧ η(Ÿ∪B)(℘̇)]〉)}

⊇ {(D̈ , 〈
∧
℘̇∈G̈

[(1− T̈Ë (D̈ , ℘̇)) ∨ (T̈Ÿ (℘̇) ∨ T̈B(℘̇))],
∨
℘̇∈G̈

[Z̈Ë (D̈ , ℘̇) ∧ (Z̈Ÿ (℘̇) ∧ Z̈B(℘̇))],

∨
℘̇∈G̈

[S̈Ë (D̈ , ℘̇) ∧ (S̈Ÿ (℘̇) ∧ S̈B(℘̇))]〉, 〈
∧
℘̇∈G̈

[(αË (D̈ , ℘̇)) ∨ (αŸ (℘̇) ∨ αB(℘̇))],

∨
℘̇∈G̈

[βË (D̈ , ℘̇) ∧ (βŸ (℘̇) ∧ βB(℘̇))],
∨
℘̇∈G̈

[ηË (D̈ , ℘̇) ∧ (ηŸ (℘̇) ∧ βB(℘̇))]〉)}

= {(D̈ , 〈(T̈Ë?(Ÿ)(D̈) ∨ T̈Ë?(B)(D̈)), (Z̈Ë?(Ÿ)(D̈) ∧ Z̈Ë?(B)(D̈)), (S̈Ë?(Ÿ)(D̈) ∧ S̈Ë?(B)(D̈))〉,

〈(αË?(Ÿ)(D̈) ∨ αË?(B)(D̈)), (βË?(Ÿ)(D̈) ∧ βË?(B)(D̈)), (ηË?(Ÿ)(D̈) ∧ ηË?(B)(D̈))〉) : D̈ ∈ K̈}

= Ë?(Ÿ) ∪ Ë?(B)

Thus Ë?(Ÿ ∪ B) ⊇ Ë?(Ÿ) ∪ Ë?(B).
The other axioms follows similar way.
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Proposition 3. For arbitrary Ÿ ,B ∈ SLDFS(G), the upper and lower approximation operators
Ë?(Ÿ), Ë?(B), Ë ?(Ÿ) and Ë ?(B) on SLDFS-approximation space (K̈, G̈, Ë ) satisfy the follow-
ing axioms:

(1) ∼ (Ë?(Ÿ) ∪ Ë?(B)) = Ë ?(∼ Ÿ) ∩ Ë ?(∼ B),
(2) ∼ (Ë?(Ÿ) ∪ Ë ?(B)) = Ë ?(∼ Ÿ) ∩ Ë?(∼ B),
(3) ∼ (Ë ?(Ÿ) ∪ Ë?(B)) = Ë?(∼ Ÿ) ∩ Ë ?(∼ B),
(4) ∼ (Ë ?(Ÿ) ∪ Ë ?(B)) = Ë?(∼ Ÿ) ∩ Ë?(∼ B),
(5) ∼ (Ë?(Ÿ) ∩ Ë?(B)) = Ë ?(∼ Ÿ) ∪ Ë ?(∼ B),
(6) ∼ (Ë?(Ÿ) ∩ Ë ?(B)) = Ë ?(∼ Ÿ) ∪ Ë?(∼ B),
(7) ∼ (Ë ?(Ÿ) ∩ Ë?(B)) = Ë?(∼ Ÿ) ∪ Ë ?(∼ B),
(8) ∼ (Ë ?(Ÿ) ∩ Ë ?(B)) = Ë?(∼ Ÿ) ∪ Ë?(∼ B).

Proof. Proof is obvious.

Theorem 2. For SLDFS-approximation space (K̈, G̈, Ë ), if Ë is serial, then Ë?(Ÿ) and Ë ?(Ÿ)
satisfy the following:

(1) Ë?(∅) = ∅, Ë ?(G̈) = G̈,
(2) Ë?(Ÿ) ⊆ Ë ?(Ÿ), ∀ Ÿ ∈ SLDFS(G).

Proof. Proof is obvious by following Definition 19.

Definition 20. Let Ÿ ∈ SLDFS(K̈) and let Ë?(Ÿ), Ë ?(Ÿ) are lower and upper SLDFSR-
approximation operators. Then ring sum operation of Ë?(Ÿ) and Ë ?(Ÿ) is scripted as

Ë?(Ÿ)⊕ Ë ?(Ÿ) = {(D̈ , 〈T̈Ë?(Ÿ)(D̈) + T̈Ë ?(Ÿ)(D̈)− (T̈Ë?(Ÿ)(D̈)× T̈Ë ?(Ÿ)(D̈)), Z̈Ë?(Ÿ)(D̈)× Z̈Ë ?(Ÿ)(D̈),

S̈Ë?(Ÿ)(D̈)× S̈Ë ?(Ÿ)(D̈)〉, 〈1− (1− αË?(Ÿ)(D̈))(1− αË ?(Ÿ)(D̈)), βË?(Ÿ)(D̈)× βË ?(Ÿ)(D̈),

(ηË?(Ÿ)(D̈) + βË?(Ÿ)(D̈))(ηË ?(Ÿ)(D̈) + βË ?(Ÿ)(D̈))− βË?(Ÿ)(D̈)× βË ?(Ÿ)(D̈)〉) : D̈ ∈ K̈}

6. Application of SLDFSRSs towards the Selection of Appropriate Clean
Energy Technology

Ocean energy, biomass energy, wind energy, geothermal energy, and hydropower
energy are all examples of clean energy technologies. These innovations are massive and
are used to provide energy to the entire globe. In this section, we present an application
that uses SLDFSRSs to select the most reliable and appropriate clean energy technology.
We intended to develop two new algorithms.

6.1. Numerical Example

We suppose that a country wants to initiate an appropriate clean energy technology
program for the development and to reach the industrial and social needs. They set a
committee consisting on some energy and economical experts to construct a list of some
clean energy technologies systems. The board of committee construct the set of feasible
elements given as K̈ = {D̈1, D̈2, D̈3, D̈4, D̈5, D̈6}, where

D̈1 = “Wave power plant”,

D̈2 = “Solar power plant”,

D̈3 = “Biomass power plant”,

D̈4 = “hydro power plant”,

D̈4 = “Geothermal power plant”,

D̈4 = “Wind power plant”.

Let G̈ = {℘̇1, ℘̇2, ℘̇3, ℘̇4} be the set of attributes or decision parameters, where
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℘̇1 = “Environmental: pollutant emission, land requirement, requirement for waste disposal”,

℘̇2 = “Socio-political: Government policy, labor impact, social acceptance”,

℘̇3 = “Economic: implementation cost, economic value, affordability”,

℘̇4 = “Technological and quality of energy resource: continuity and predictability of the performance,

risk, local technical knowledge, sustainability, durability”.

The sub-criterion for attributes can be further categorized as follows:

• “Environmental: pollutant emission, land requirement, requirement for waste dis-
posal” means that the alternative is “friendly”, “average” or may be “not-friendly” for
the environment.

• “Socio-political: Government policy, labor impact, social acceptance” means that the
alternative has “maximum”, “average” or “minimum” acceptance.

• “Economic: implementation cost, economic value, affordability” means that the
alternative is “expensive”, “affordable” or may be “cheap”.

• “Technological and quality of energy resource: continuity and predictability of the
performance risk, local technical knowledge, sustainability, durability” means that the
alternative is “highly”, “medium” or may be “low” technical.

The tabular representation of these sub-criteria can be seen in Table 6.

Table 6. characteristics of selected decision variables.

Decision Variables Characteristics for SLDFSR

Environmental: land requirement, pollutant emission,
requirement for waste disposal (〈membership, abstinence, non-membership〉, 〈friendly, average, not-friendly〉)

Socio-political: Government policy,
social acceptance, labor impact (〈membership, abstinence, non-membership〉, 〈maximum, average, minimum〉)

Economic: implementation cost,
economic value, affordability (〈membership, abstinence, non-membership〉, 〈expensive, affordable, cheap〉)

Technological and quality of energy resource:
continuity and predictability of the performance risk, (〈membership, abstinence, non-membership〉, 〈high, medium, low〉)
sustainability, local technical knowledge, durability

We proposed two new algorithms (Algorithms 1 and 2) by using SLDFSRSs for the
selection of best clean energy technology. The graphical view of both algorithms is given in
Figure 11.

Figure 11. Flow chart diagram of Algorithms 1 and 2.
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Algorithm 1 Selection of a best clean energy technology by using SLDFSRSs
Input:
1. Consider K̈ as an initial universe.
2. Consider G̈ as a set of attributes.
Construction:
3. Executing the efficiency of DMs, build a SLDFSR Ë : K̈ → G̈.
4. Compute SLDF-subset B of G̈ as an optimal normal decision set.
Calculation:
5. Find the SLDFSR-approximation operators Ë?(B) and Ë ?(B) as lower and upper ap-
proximations with the help of Definition 19.
6. Find the ring sum Ë?(B)⊕ Ë ?(B) and the choice SLDFS.
Output:
7. By using Definitions 10, 12, 14, calculate score, quadratic score and expectation score of
every alternative in Ë?(B)⊕ Ë ?(B).
8. By using Definition 16, find the ranking of alternatives.
Final decision:
9. An alternative with highest score function value is the required optimal alternative.

Algorithm 2 Selection of a best clean energy technology by using SLDFSRSs
Input:
1. Consider K̈ as a universe of discourse.
2. Consider G̈ as a set of attributes.
Construction:
3. Executing the efficiency of DMs, construct a SLDFSR Ë : K̈ → G̈.
4. Find SLDF-subset B of G̈ as an optimal normal decision set.
Calculation:
5. Find the SLDFSR-approximation operators Ë?(B) and Ë ?(B) as lower and upper ap-
proximations by using Definition 19.
6. For “N ” number of experts, estimate upper and lower reducts, respectively.
Output:
7. Form calculated “2N ” reducts, we get “2N ” crisp subsets of the reference set K̈.
The subsets can be constructed by using the “YES” and “NO” logic. Then “YES” gives the
optimal object.
8. Find the core by calculating the intersection of all reducts.
Final decision:
9. An alternative with highest score function value is the required optimal alternative.

6.1.1. Calculations by Algorithm 1

According to the environment of land and considering some important factors, the ex-
perts of committee give their preferences to the alternatives corresponding to the selected
criteria. The verbal information can be converted into the SLDFNs by using linguistic term
logic. The indiscernibility relation is “the selection of best clean energy technology”. This
relation can be observed by SLDFSR, Ë : K̈ → G̈ given as Table 7.

Thus Ë be a SLDFSR on K̈ × G̈. This relation gives us the numeric values in the form
of SLDFNs of each alternative corresponding to every decision variable. For example,
for the alternative D̈1 the decision variable ℘̇1 (“Environmental: pollutant emission, land
requirement, requirement for waste disposal”) has numeric value (〈0.738, 0.381.0.421〉,
〈0.431, 0.211, 0.178〉). This value shows that the alternative D̈1 is 73.8% suitable for the en-
vironment, 38.1% is abstinence and 42.1% is its falsity value. The triplet 〈0.431, 0.211, 0.178〉
represents the reference parameters for the satisfaction, abstinence and dissatisfaction
grades, where we can observe that alternative D̈1 is 43.1% friendly, 21.1% average and
17.8% is not friendly for environment.
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Table 7. SLDFSR.

Ë SLDFNs SLDFNs

℘̇1 : (〈0.738, 0.381, 0.421〉, 〈0.431, 0.211, 0.178〉) ℘̇2 : (〈0.631, 0.521, 0.438〉, 〈0.318, 0.214, 0.314〉)
D̈1 ℘̇3 : (〈0.652, 0.456, 0.531〉, 〈0.317, 0.312, 0.217〉) ℘̇4 : (〈0.748, 0.638, 0.456〉, 〈0.217, 0.318, 0.231〉)

℘̇5 : (〈0.731, 0.457, 0.431〉, 〈0.412, 0.213, 0.118〉)
℘̇1 : (〈0.218, 0.891, 0.731〉, 〈0.117, 0.213, 0.417〉) ℘̇2 : (〈0.231, 0.873, 0.731〉, 〈0.213, 0.317, 0.319〉)

D̈2 ℘̇3 : (〈0.117, 0.687, 0.734〉, 〈0.121, 0.238, 0.247〉) ℘̇4 : (〈0.218, 0.787, 0.634〉, 〈0.118, 0.413, 0.312〉)
℘̇5 : (〈0.231, 0.891, 0.896〉, 〈0.213, 0.378, 0.312〉)
℘̇1 : (〈0.456, 0.431, 0.567〉, 〈0.238, 0.241, 0.268〉) ℘̇2 : (〈0.576, 0.513, 0.417〉, 〈0.238, 0.241, 0.273〉)

D̈3 ℘̇3 : (〈0.451, 0.532, 0.511〉, 〈0.241, 0.238, 0.211〉) ℘̇4 : (〈0.518, 0.417, 0.519〉, 〈0.311, 0.217, 0.218〉)
℘̇5 : (〈0.548, 0.471, 0.436〉, 〈0.247, 0.253, 0.261〉)
℘̇1 : (〈0.731, 0.341, 0.421〉, 〈0.238, 0.347, 0.238〉) ℘̇2 : (〈0.678, 0.431, 0.373〉, 〈0.341, 0.231, 0.241〉)

D̈4 ℘̇3 : (〈0.643, 0.456, 0.321〉, 〈0.311, 0.213, 0.238〉) ℘̇4 : (〈0.731, 0.431, 0.321〉, 〈0.343, 0.231, 0.211〉)
℘̇5 : (〈0.638, 0.411, 0.311〉, 〈0.213, 0.217, 0.231〉)
℘̇1 : (〈0.917, 0.211, 0.118〉, 〈0.421, 0.117, 0.115〉) ℘̇2 : (〈0.998, 0.321, 0.211〉, 〈0.537, 0.117, 0.113〉)

D̈5 ℘̇3 : (〈0.915, 0.113, 0.114〉, 〈0.631, 0.113, 0.112〉) ℘̇4 : (〈0.912, 0.321, 0.211〉, 〈0.541, 0.211, 0.114〉)
℘̇5 : (〈0.999, 0.112, 0.121〉, 〈0.711, 0.113, 0.112〉)
℘̇1 : (〈0.513, 0.538, 0.641〉, 〈0.213, 0.341, 0.347〉) ℘̇2 : (〈0.432, 0.546, 0.538〉, 〈0.341, 0.348, 0.211〉)

D̈6 ℘̇3 : (〈0.613, 0.438, 0.541〉, 〈0.217, 0.343, 0.331〉) ℘̇4 : (〈0.447, 0.577, 0.589〉, 〈0.331, 0.238, 0.341〉)
℘̇5 : (〈0.438, 0.561, 0.437〉, 〈0.321, 0.218, 0.117〉)

The set B is SLDF-subset of G̈ and scripted as follows

B = {(℘̇1, 〈0.738, 0.421, 0.337〉, 〈0.421, 0.213, 0.318〉), (℘̇2, 〈0.918, 0.211, 0.238〉, 〈0.631, 0.113, 0.117〉),
(℘̇3, 〈0.213, 0.891, 0.793〉, 〈0.117, 0.438, 0.321〉), (℘̇4, 〈0.541, 0.538, 0.477〉, 〈0.218, 0.347, 0.321〉),
(℘̇5, 〈0.638, 0.432, 0.337〉, 〈0.321, 0.211, 0.118〉)}.

The lower and upper approximations of LDFS B on LDFSR Ë are as follows.

Ë ?(B) = {(D̈1, 〈0.738, 0.421, 0.337〉, 〈0.421, 0.213, 0.118〉), (D̈2, 〈0.231, 0.211, 0.269〉, 〈0.213, 0.213, 0.312〉),
(D̈3, 〈0.576, 0.487, 0.433〉, 〈0.247, 0.241, 0.261〉), (D̈4, 〈0.731, 0.569, 0.579〉, 〈0.341, 0.217, 0.231〉),
(D̈5, 〈0.918, 0.679, 0.789〉, 〈0.537, 0.117, 0.117〉, (D̈6, 〈0.513, 0.439, 0.359〉, 〈0.341, 0.218, 0.118〉)}

Ë?(B) = {(D̈1, 〈0.348, 0.538, 0.531〉, 〈0.218, 0.318, 0.231〉), (D̈2, 〈0.769, 0.687, 0.734〉, 〈0.121, 0.347, 0.318〉),
(D̈3, 〈0.541, 0.532, 0.511〉, 〈0.241, 0.238, 0.268〉), (D̈4, 〈0.357, 0.456, 0.337〉, 〈0.311, 0.231, 0.238〉),
(D̈5, 〈0.213, 0.321, 0.211〉, 〈0.421, 0.211, 0.115〉, (D̈6, 〈0.387, 0.538, 0.541〉, 〈0.217, 0.343, 0.321〉)}

Ë?(B)⊕ Ë ?(B) = {(D̈1, 〈0.829, 0.257, 0.288〉, 〈0.547, 0.067, 0.114〉), (D̈2, 〈0.822, 0.144, 0.197〉, 〈0.308, 0.073, 0.276〉),
(D̈3, 〈0.805, 0.259, 0.221〉, 〈0.428, 0.057, 0.197〉), (D̈4, 〈0.827, 0.259, 0.195〉, 〈0.545, 0.050, 0.197〉),
(D̈5, 〈0.935, 0.217, 0.166〉, 〈0.731, 0.024, 0.140〉, (D̈6, 〈0.701, 0.236, 0.194〉, 〈0.484, 0.074, 0.149〉)}

Now we calculate the score values, quadratic score values and expectation score
values of alternatives in Ë?(B)⊕ Ë ?(B) by using Definitions 10, 12 and 14. The calculated
data with final ranking is given in Table 8.

Table 8. Ranking of alternatives for different score values.

LDFS D̈1 D̈2 D̈3 D̈4 D̈5 D̈6 Ranking Rank Orders Final Decision

P (SF) 0.325 0.259 0.249 0.354 0.559 0.266 D̈5 � D̈4 � D̈1 � D̈6 � D̈2 � D̈3 ≤(P,ψ) D̈5
J (QSF) 0.409 0.314 0.336 0.423 0.656 0.302 D̈5 � D̈4 � D̈1 � D̈3 � D̈2 � D̈6 ≤(J,φ) D̈5
M (ESF) 0.775 0.739 0.749 0.784 0.853 0.755 D̈5 � D̈4 � D̈1 � D̈6 � D̈3 � D̈2 ≤(M,A) D̈5
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From Table 8 we can observe that the alternative D̈5, which is “geothermal power
plant” is most suitable alternative for the final decision. The bar chart of ranking results for
alternatives is given in Figure 12.

Figure 12. Bar chart of alternatives under SLDFSRS for SF (P), QSF (J) and ESF (M).

6.1.2. Calculations by Algorithm 2

The initial 5 steps of Algorithm 1 are same as Algorithm 2. Now we compute the
upper and lower reducts from upper and lower approximations of SLDFS. Consider a
committee of three experts given as

Expert X

Expert Y

Expert Z

The reducts from approximations can be constructed by using the following terms.

T̈K̈ = Satisfaction grade,

Z̈K̈ = Abstinence grade,

S̈K̈ = Dissatisfaction grade,

αK̈ = Reference parameter corresponding to the satisfaction grade,

βK̈ = Reference parameter corresponding to the abstinence grade,

ηK̈ = Reference parameter corresponding to the dissatisfaction grade,

M = Expectation score function value of SLDFN,

L̂ = Ranking given by experts to the alternatives from crisp set {0, 1}

L ∗ = Selection of alternative by using ”YES” or “NO”.

The final decision is based on the L̂ and L ∗ given in Table 9

Table 9. The criteria for the final decision (F.D).

L̂ L ∗ F.D

0 NO NO
1 YES YES
0 YES NO
1 NO NO

For expert-X, the upper reduct of upper approximation Ë ?(B) (calculated in Algorithm 1)
of SLDFS B is given as Table 10. The average of score values of all the alternatives for Ë ?(B)
is 0.599.
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Table 10. Upper reduct for expert-X (UX) from Ë ?(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L ∗ F.D

D̈1 0.738 0.479 0.544 0.421 0.213 0.118 0.634 1 M > 0.599→ YES YES
D̈2 0.231 0.211 0.269 0.213 0.213 0.312 0.573 0 M < 0.599→ NO NO
D̈3 0.576 0.487 0.433 0.247 0.241 0.261 0.566 1 M < 0.599→ NO NO
D̈4 0.731 0.569 0.579 0.341 0.217 0.231 0.579 0 M < 0.599→ NO NO
D̈5 0.918 0.679 0.789 0.537 0.117 0.117 0.625 1 M > 0.599→ YES YES
D̈6 0.513 0.439 0.359 0.341 0.218 0.118 0.619 1 M > 0.599→ YES YES

This implies that UX = {D̈1, D̈5, D̈6}. For expert-X, the lower reduct of lower approxi-
mation Ë?(B) (calculated in Algorithm 1) of SLDFS B is given as Table 11. The average of
score values of all the alternatives for Ë?(B) is 0.528.

Table 11. Lower reduct for expert-X (LX) from Ë ?(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L ∗ F.D

D̈1 0.348 0.538 0.531 0.218 0.318 0.231 0.491 1 M < 0.528→ NO NO
D̈2 0.769 0.687 0.734 0.121 0.347 0.318 0.467 0 M < 0.528→ NO NO
D̈3 0.541 0.532 0.511 0.241 0.238 0.268 0.538 1 M > 0.528→ YES YES
D̈4 0.357 0.456 0.337 0.311 0.231 0.238 0.567 0 M > 0.528→ YES NO
D̈5 0.213 0.321 0.211 0.421 0.211 0.115 0.629 1 M > 0.528→ YES YES
D̈6 0.387 0.538 0.541 0.217 0.343 0.321 0.476 1 M < 0.528→ NO NO

This implies that LX = {D̈3, D̈5}. For expert-Y, the upper reduct of upper approxima-
tion Ë ?(B) (calculated in Algorithm 1) of SLDFS B is given as Table 12.

Table 12. Upper reduct for expert-Y (UY) from Ë ?(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L ∗ F.D

D̈1 0.738 0.479 0.544 0.421 0.213 0.118 0.634 0 M > 0.599→ YES NO
D̈2 0.231 0.211 0.269 0.213 0.213 0.312 0.573 1 M < 0.599→ NO NO
D̈3 0.576 0.487 0.433 0.247 0.241 0.261 0.566 0 M < 0.599→ NO NO
D̈4 0.731 0.569 0.579 0.341 0.217 0.231 0.579 1 M < 0.599→ NO NO
D̈5 0.918 0.679 0.789 0.537 0.117 0.117 0.625 1 M > 0.599→ YES YES
D̈6 0.513 0.439 0.359 0.341 0.218 0.118 0.619 1 M > 0.599→ YES YES

This implies that UY = {D̈5, D̈6}. For expert-Y, the lower reduct of lower approxima-
tion Ë?(B) (calculated in Algorithm 1) of SLDFS B is given as Table 13.

Table 13. Lower reduct for expert-Y (LY) from Ë ?(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L ∗ F.D

D̈1 0.348 0.538 0.531 0.218 0.318 0.231 0.491 0 M < 0.528→ NO NO
D̈2 0.769 0.687 0.734 0.121 0.347 0.318 0.467 1 M < 0.528→ NO NO
D̈3 0.541 0.532 0.511 0.241 0.238 0.268 0.538 0 M > 0.528→ YES NO
D̈4 0.357 0.456 0.337 0.311 0.231 0.238 0.567 1 M > 0.528→ YES YES
D̈5 0.213 0.321 0.211 0.421 0.211 0.115 0.629 1 M > 0.528→ YES YES
D̈6 0.387 0.538 0.541 0.217 0.343 0.321 0.476 1 M < 0.528→ NO NO

This implies that LY = {D̈4, D̈5}. For expert-Z, the upper reduct of upper approxima-
tion Ë ?(B) (calculated in Algorithm 1) of SLDFS B is given as Table 14.
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Table 14. Upper reduct for expert-Z (UZ) from Ë ?(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L ∗ F.D

D̈1 0.738 0.479 0.544 0.421 0.213 0.118 0.634 1 M > 0.599→ YES YES
D̈2 0.231 0.211 0.269 0.213 0.213 0.312 0.573 0 M < 0.599→ NO NO
D̈3 0.576 0.487 0.433 0.247 0.241 0.261 0.566 1 M < 0.599→ NO NO
D̈4 0.731 0.569 0.579 0.341 0.217 0.231 0.579 1 M < 0.599→ NO NO
D̈5 0.918 0.679 0.789 0.537 0.117 0.117 0.625 1 M > 0.599→ YES YES
D̈6 0.513 0.439 0.359 0.341 0.218 0.118 0.619 0 M > 0.599→ YES NO

This implies that UZ = {D̈1, D̈5}. For expert-Z, the lower reduct of lower approxima-
tion Ë?(B) (calculated in Algorithm 1) of SLDFS B is given as Table 15.

Table 15. Lower reduct for expert-Z (LZ) from Ë ?(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L ∗ F.D

D̈1 0.348 0.538 0.531 0.218 0.318 0.231 0.491 1 M < 0.528→ NO NO
D̈2 0.769 0.687 0.734 0.121 0.347 0.318 0.467 0 M < 0.528→ NO NO
D̈3 0.541 0.532 0.511 0.241 0.238 0.268 0.538 1 M > 0.528→ YES YES
D̈4 0.357 0.456 0.337 0.311 0.231 0.238 0.567 1 M > 0.528→ YES YES
D̈5 0.213 0.321 0.211 0.421 0.211 0.115 0.629 1 M > 0.528→ YES YES
D̈6 0.387 0.538 0.541 0.217 0.343 0.321 0.476 0 M < 0.528→ NO NO

This implies that LZ = {D̈3, D̈4, D̈5}. Now we calculate the core by taking the intersec-
tion of all upper and lower reducts for all three experts.

Core = UX ∩ LX ∩UY ∩ LY ∩UZ ∩ LZ = {D̈5}

This means that “D̈5” (geothermal power plant) is the most suitable alternative for the
final decision.

6.2. Advantages, Superiority, and Novelty of Proposed Algorithms

In this subsection, we discuss the advantages, superiority, and novelty of proposed
algorithms.

1. Proposed Algorithms 1 and 2 are designed to deal with real-life problems based on
novel hybrid approach of spherical linear Diophantine fuzzy soft rough sets (SLDF-
SRSs) and to utilize the characteristics of existing models like soft sets, rough sets,
and spherical linear Diophantine fuzzy sets. A hybrid model is always more efficient,
powerful and reliable to deal with uncertain real-life problems. A hybrid model can
be utilized to handle multiple issues, multiple criterion, and multiple paradigms.

2. Algorithms 1 and 2 are developed to examine the role of reference parameters in
spherical linear Diophantine fuzzy sets. The existing algorithms based on PFSs, SFSs,
T-SFSs, and neutrosophic sets cannot deal with parameterizations. The proposed
algorithm provide freedom to the decision-maker(DM) to select grades/indexes
without any restriction. The dynamic features of reference parameters can classify
and effectively resolve uncertain multi-criteria decision-making (MCDM) problems.

3. The proposed approach is efficient and suitable for any kind of uncertain information.
The space of existing theories such as PFSs, SFSs, T-SFSs, and neutrosophic sets can be
enhanced by proposed model of spherical linear Diophantine fuzzy sets. This model
increases the valuation space of three (satisfaction, abstinence, and dissatisfaction)
indexes/degrees. The algorithms are simple to understand, easy to apply, and efficient
on diverse kinds of alternatives and attributes.

4. Various score functions has been established by Feng et al. [66] for IFSs. We developed
three different kinds of score functions named as “score function” (SF), “quadratic
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score function” (QSF), and “expectation score function” (ESF). We also establish their
associated accuracy functions to compare the SLDFNs. The slight difference in order-
ing of optimal results is due to diverse strategies of score functions in the calculations.
Table 8 implies the difference in ordering for the worst alternatives. Although it is
fascinating to examine that final result from both algorithms are equivalent for all
varieties of score functions.

6.3. Comparison Analysis

The comparison of proposed model SLDFSRSs and Algorithms 1 and 2 with some
existing models and algorithms is given to discuss advantage, superiority, and validity of
proposed approach. Table 16 represents the characteristics of suggested SLDFSRSs and
ranking of alternatives computed by different techniques.

For two proposed algorithms based on SLDFSRSs and its SLDFS-approximation
spaces, the final results for the decision-making problem of clean energy technique selection
is given in Table 17.

The optimal alternative computed by the both algorithms is exactly same. Hence the
alternative D̈1 (geothermal power plant) is the optimal selected alternative.

Table 16. Comparison analysis of proposed concepts with existing ideas.

Concepts Satisfaction Grade Abstinence Grade Dissatisfaction Grade Refusal Grade

Fuzzy set [1] X × × ×

Neutrosophic set [10] X X X ×

Rough set [36] × × × ×

Soft set [34] × × × ×

Picture fuzzy set [11–13] X X X X

Spherical fuzzy set [14] X X X X

T-spherical fuzzy set [14] X X X X

LDFS [69] X X X ×

SLDFS (proposed) X X X X

SLDFSS (proposed) X X X X

SLDFSRS (proposed) X X X X

Concepts Reference Upper and Lower Boundary Multi-Valued
Parameterizations Approximations Region Parameterizations

Fuzzy set [1] × × × ×

Neutrosophic set [10] × × × ×

Rough set [36] × X X ×

Soft set [34] × × × X

Picture fuzzy set [11–13] × × × ×

Spherical fuzzy set [14] × × × ×

T-spherical fuzzy set [14] × × × ×

LDFS [69] X × × ×

SLDFS (proposed) X × × ×

SLDFSS (proposed) X × × X

SLDFSRS (proposed) X X X X
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Table 17. Comparison of results obtained from proposed algorithms.

Proposed Algorithm Score Function Core Optimal Decision

Algorithm 1 P × D̈5
Algorithm 1 J × D̈5
Algorithm 1 M × D̈5
Algorithm 2 × X D̈5

7. Conclusions

We studied certain fuzzy sets including PiFSs, SFSs, T-SFSs, and NSs. These extension
have a large number of applications in solving real-life problems, and many researchers
have been successfully applied these extensions. Unfortunately, these extensions have some
strict limitations on indexes/grades. In order to deal with such problems, we introduced
a robust hybrid model named as spherical linear diophantine fuzzy set which fusion of
spherical linear Diophantine fuzzy set (SLDFS), soft set, and rough set. The addition of
reference parameters in SLDFS provide freedom to the decision makers (DMs) for the
selection of indexes/grades. A SLDFS is an efficient model to deal with uncertainties due to
addition of reference parameters αK̈, βK̈ and ηK̈. We presented the graphical representation
of SLDFS to compare it with some existing extensions of fuzzy sets. We introduced various
score functions and accuracy functions to compare SLDFNs. We prolonged the idea of
SLDFSs to SLDFSRSs by joining SLDFSs, rough sets, and soft sets. We investigated some
new results for upper and lower approximation operators of SLDFSRSs. We developed
two new algorithms for multi-criteria decision making (MCDM) based on SLDFSRSs. We
presented a brief association among the recommended and existing theories and examined
the strong impact of proposed structures to the MCDM problems. To resolve the real-world
problems these findings will be fruitful and supportive for the scholars and decision-
makers. In future, we will investigate the real-life problems associated with the ideas based
on SLDF-graphs, SLDF-topology, and SLDF-information measures.
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