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Abstract: In this paper, we propose direct simulations between a given network of evolutionary
processors with an arbitrary topology of the underlying graph and a network of evolutionary
processors with underlying graphs—that is, a complete graph, a star graph and a grid graph,
respectively. All of these simulations are time complexity preserving—namely, each computational
step in the given network is simulated by a constant number of computational steps in the constructed
network. These results might be used to efficiently convert a solution of a problem based on networks
of evolutionary processors provided that the underlying graph of the solution is not desired.

Keywords: evolutionary processor; network of evolutionary processors; network topology; theory of
computation; computational models

1. Introduction

Networks of evolutionary processors (NEPs for short) have been extensively inves-
tigated in the last two decades since their generative variant has been introduced in [1].
An informal description of a NEP is as follows: it is a graph whose nodes are hosts for
some very simple processors inspired by the basic mutations at the DNA nucleotide level,
namely insertion, deletion, and substitution. Each processor is able to make just one of
these operations on the data existing in the node that hosts it. Data may be organized
as strings, multisets, two-dimensional pictures, graphs, etc. In this work, we consider
that the data consist of strings. A very important assumption is that each string appears
in an arbitrarily large number of identical copies such that if the processor can apply an
operation to different sites of a string, the operation is actually applied simultaneously to
each of these sites in different copies of the string. Furthermore, if more that one rule can
be applied to a string, each rule is applied to a different copy of that string. This process
described above is considered to be an evolutionary step. Each evolutionary step alternates
with a communication step. In a communication step, all the strings that can leave a node
(they can pass the output filter associated with that node) actually leave the node and
copies of them enter each node connected to the left node, provided that they can pass
the input filter of the arriving node. We say that an input string, which initially is in a
designated node, called the input node, is accepted if another designated node, called
the output node, is non-empty after a finite number of computational steps (evolution,
communication). The complexity of a computation is defined in the usual way.

From the very beginning, NEPs have been proven to be computationally complete
models [2,3], such that they have been used to solve hard problems [4]. Several variants
have been considered depending on the positions of filters: filters associated with nodes
(different filters [3], uniform filters [5], polarization [6]) or filters associated with edges [7].
Later on, several ways of simulating and implementing different variants of these networks
have been reported [8–11]. A rather new and attractive direction of research has been to
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investigate the possibility of simulating directly and efficiently one variant by another
without the intermediate step of an extra computational model (Turing machine, tag-system,
register machine, etc.) in between, see, e.g., [5].

This work continues this line of research by proposing direct simulations between two
NEPs such that the input one is an arbitrary NEP while the output one has a predefined
topology that can be a complete graph, a star graph, or a grid. Thus, after a preliminary
section with the basic definitions and concepts, we give the construction of a complete
NEP equivalent to a given NEP. We continue with another section, where we give such a
construction for a star graph and finally a construction for a grid NEP. A short conclusion
ends the paper.

2. Basic Definitions

The basic concepts and notations that are to be used throughout the paper are defined
in the sequel; the reader may consult [12] for basic concepts that are not defined here. We
use the following concepts and notations:

• V∗ is the set of all strings formed by symbols in V;
• |x| is the length of string x;
• ε ∈ V∗ is the empty string, |ε| = 0;
• alph(x) is the minimal alphabet V such that x ∈ V∗.

We now recall some definitions from a few papers where the networks of evolutionary
processors have been introduced, see, e.g., [1], for the generating model, and [3,13,14], for
the accepting model. Let a→ b be a rule, where a, b ∈ (V ∪ {ε}):
• If a, b ∈ V, then the rule is called a substitution rule;
• If a ∈ V and b = ε, then the rule is called a deletion rule;
• If a = ε and b ∈ V, then the rule is called an insertion rule.

The set of all substitution, deletion, and insertion rules over V is denoted by SubV ,
DelV , and InsV , respectively.

Given a rule σ as above and a string w ∈ V∗, we define the following actions of σ on
w , to any position (∗), to the leftmost position (l), and to the rightmost position (r), as
explained in the sequel:

– If σ ≡ a→ b ∈ SubV , then

σ∗(w) =

{
{ubv : ∃u, v ∈ V∗ (w = uav)},
{w}, otherwise

According to this definition, applying a rule to a string may result in a finite number
of strings. This implies that in our setting each string may appear in an arbitrarily large
number of copies.

– If σ ≡ a→ ε ∈ DelV , then σ∗(w) =

{
{uv : ∃u, v ∈ V∗ (w = uav)},
{w}, otherwise

σr(w) =

{
{u : w = ua},
{w}, otherwise

σl(w) =

{
{v : w = av},
{w}, otherwise

– If σ ≡ ε→ a ∈ InsV , then σ∗(w) = {uav : ∃u, v ∈ V∗ (w = uv)},
σr(w) = {wa}, σl(w) = {aw}.
For every rule σ, α ∈ {∗, l, r}, and L ⊆ V∗, we define σα(L) =

⋃
w∈L

σα(w). Given a

finite and non-empty set of rules M, a string w and a language L, we define the followings:

Mα(w) =
⋃

σ∈M
σα(w) and Mα(L) =

⋃
w∈L

Mα(w).
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In the original papers mentioned above, the rewriting operations defined above were
referred as evolutionary operations since they may be viewed as formal operations abstracted
from local DNA mutations.

For two disjoint subsets P (permitting symbols) and F (forbidding symbols) of an
alphabet V and a string z over V, we define the predicates:

ϕ(s)(z; P, F) ≡ P ⊆ alph(z) ∧ F ∩ alph(z) = ∅
ϕ(w)(z; P, F) ≡ (P 6= ∅)→ (alph(z) ∩ P 6= ∅) ∧ F ∩ alph(z) = ∅.

For every language L ⊆ V∗ and β ∈ {(s), (w)}, we define:

ϕβ(L, P, F) = {z ∈ L | ϕβ(z; P, F)}.

An evolutionary processor (EP) over an alphabet V is a tuple (M, PI, FI, PO, FO), where:

• M is a set of either substitution, or deletion or insertion rules over the alphabet V.
Formally: (M ⊆ SubV) or (M ⊆ DelV) or (M ⊆ InsV). The set M represents the set
of evolutionary rules of the processor;

• PI, FI ⊆ V are the input permitting/forbidding symbols of the processor, while
PO, FO ⊆ V are the output permitting/forbidding symbols of the processor.

We denote the set of evolutionary processors over V by EPV . A network of evolutionary
processors (NEP for short) is a seven-tuple Γ = (V, U, G,N , α, β, In, Out), where:

• V and U are the input and network alphabets, respectively, V ⊆ U.
• G = (XG, EG) is an undirected graph without loops, with the set of nodes XG and

the set of edges EG. Each edge is given in the form of a binary set. G is called the
underlying graph of the network;

• N : XG −→ EPU is a mapping which associates with each node x ∈ XG the evolution-
ary processor N (x) = (Mx, PIx, FIx, POx, FOx);

• α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on the strings
existing in that node;

• β : XG −→ {(s), (w)} defines the type of the input/output filters of a node. More
precisely, for every node, x ∈ XG, the following filters are defined:

input filter: ρx(·) = ϕβ(x)(·; PIx, FIx),
output filter: τx(·) = ϕβ(x)(·; POx, FOx).

That is, ρx(z) (resp. τx(z)) indicates whether or not the string z can pass the input
(resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the set of strings of L
that can pass the input (resp. output) filter of x.

• In and Out ∈ XG are the input node, and the output node, respectively, of the NEP.

A configuration of a NEP Γ as above is a function C : XG −→ 2U∗ which associates a
multiset of strings C(x) with every node x of Γ. As each string appears in an arbitrarily
large number of copies, we work with the support of this multiset. For a string w ∈ V∗,
we define the initial configuration of Γ on w by C(w)

0 (In) = {w} and C(w)
0 (x) = ∅ for all

x ∈ XG \ {In}.
A configuration is followed by another configuration either by an evolutionary step or

by a communication step. A configuration C′ follows a configuration C by an evolutionary
step if each component C′(x), for some node x, is the result of applying all the evolutionary
rules in the set Mx that can be applied to the strings in the set C(x). Formally, configuration
C′ follows the configuration C by a an evolutionary step, written as C =⇒ C′, if

C′(x) = Mαx
x (C(x)) for all x ∈ XG.

In a communication step of a NEP the following actions take place simultaneously for
every node x:

(i) All the strings that can pass the output filter of a node are sent out of that node;
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(ii) All the strings that left their nodes enter all the nodes connected to their original ones,
provided that they can pass the input filter of the receiving nodes.

Note that, according to this definition, those strings that are sent out of a node and
cannot pass the input filter of any node are lost.

Formally, a configuration C′ follows a configuration C by a communication step (we
write C′ |= C) iff for all x ∈ XG

C′(x) = (C(x) \ τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))).

Let Γ be a NEP, the computation of Γ on the input string w ∈ V∗ is a sequence
of configurations C(w)

0 , C(w)
1 , C(w)

2 , . . . , where C(w)
0 is the initial configuration of Γ on w,

C(w)
2i =⇒ C(w)

2i+1 and C(w)
2i+1 |= C(w)

2i+2, by a for all i ≥ 0. Note that the configurations are
changed by alternative steps.

A computation as above halts, if there exists a configuration in which the set of strings
existing in the output node Out is non-empty. Given a NEP Γ and an input string w, we say
that Γ accepts w if the computation of Γ on w halts. Consequently, we define the language
accepted by Γ by

L(Γ) = {z ∈ V∗ | the computation of Γ on z halts}.

The time complexity of the halting computation C(z)
0 , C(z)

1 , C(z)
2 , . . . C(z)

m of Γ on z ∈ V∗

is denoted by timeΓ(z) and equals m. The time complexity of Γ is the function from IN to
IN, TimeΓ(n) = max{timeΓ(z) | z ∈ L(Γ), |z| = n}. In other words, TimeΓ(n) delivers the
maximal number of computational steps carried out by Γ for accepting an input string of
length n.

3. Simulating Any NEP with a Complete NEP

Theorem 1. Given an arbitrary NEP Γ, there exists a complete NEP Γ′ such that the following
two conditions are satisfied:

1. L(Γ) = L(Γ′);
2. TimeΓ′(n) ∈ O(TimeΓ(n)).

Proof. Let Γ = (V, U, G,N , α, β, x1, xn) be a NEP with the underlying graph G = (XG, EG)
and XG = {x1, x2, . . . , xn} for some n ≥ 1; x1 ≡ In and xn ≡ Halt. We construct the NEP
Γ = (V′, U′, G′,N ′, α′, β′, xstart, xs

n); xstart ≡ In and xs
n ≡ Halt, where

V′ = V, U′ = U ∪ T,
T = {tl

i , tr
i , tl

i
′
, tr

i
′, tl

i
′′

, tr
i
′′ | 1 ≤ i ≤ n}

Note that the underlying graph G′ is a complete graph. First, we add the following
nodes to G′:

• node xstart :

M =

{
{ε→ tl

1
′′}, if α(x1) 6= l

{ε→ tr
1
′′}, if α(x1) = l

,

PI = ∅, FI = T,
PO = ∅, FO = ∅,

α =

{
l, if α(x1) 6= l
r, if α(x1) = l

, β = (w).
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• nodes xs
i , 1 ≤ i ≤ n (they actually simulate the work of xi in Γ):

M = M(xi),
PI = PI(xi), FI = FI(xi) ∪ T \ {tl

i , tr
i },

PO = PO(xi), FO = FO(xi),
α = α(xi), β = β(xi).

For each node xi, 1 ≤ i ≤ n in Γ we add a subnetwork to Γ′ according to the
subsequent cases:

Case 1. If α(xi) = l, the subnetwork is defined as follows (these nodes are used for
preparing the string in the aim of processing them in the nodes xs

i ):

• nodes xIns
i , 1 ≤ i ≤ n :

M = {ε→ tr
i
′′},

PI = {tl
i
′}, FI = ∅,

PO = {tr
i
′′}, FO = ∅,

α = r, β = (w).

• nodes xDel
i , 1 ≤ i ≤ n :

M = {tl
i
′ → ε},

PI = {tr
i
′′}, FI = ∅,

PO = ∅, FO = ∅,
α = l, β = (w).

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i → tr

j
′ | {xi, xj} ∈ Γ}∪

{tr
i
′ → tr

i } ∪ {tr
i
′′ → tr

i },
PI = {tr

i , tr
i
′, tr

i
′′}, FI = {tl

i
′},

PO = ∅, FO = ∅,
α = ∗, β = (w).

Case 2. If α(xi) = r, the subnetwork is analogous to the Case 1 with the characters l
and r interchanged.

Case 3. If α(xi) = ∗, the subnetwork is defined as follows (the role of these nodes is
the same as above, namely to prepare the strings for being processed in the nodes xs

i ):

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i → tr

j
′ | {xi, xj} ∈ Γ}∪

{tl
i → tl

j
′ | {xi, xj} ∈ Γ}∪

{tr
i
′ → tr

i } ∪ {tl
i
′ → tl

i} ∪ {tl
i
′′ → tl

i},
PI = {tl

i , tr
i , tl

i
′
, tr

i
′, tl

i
′′}, FI = ∅,

PO = ∅, FO = ∅,
α = ∗, β = (w).

Let w be the input string in Γ. In the input node xstart, the character tl
1
′′

is inserted at
the beginning of the string if α(x1) ∈ {r, ∗}, or the character tr

1
′′ is inserted at the end of the

string, provided that α(x1) = l. Next, the string enters xSub
1 where the character is replaced

with tl
1 and tr

1, respectively. Then, the string can only enter xs
1 and the simulation starts.

Note that the same evolutionary rules applicable in x1 ∈ Γ are also possible in xs
1 since

the special character tl
1
′′

or tr
1
′′ is set up in a way that it does not block the computation of

nodes with α = r and α = l, respectively. Inductively, we may assume that a string of the
form tl

iw or wtr
i lies in the node xs

i ∈ Γ′ if and only if the string w lies in the node xi ∈ Γ.
Let w be transformed into w′ in the node xi and sent to the connected nodes to xi in Γ.

Then, a string tl
iw
′ or a string wtr

i is produced in the node xs
i and sent to the node xSub

i . Let
us analyze the case of a string tl

iw
′. The process is analogous for the other string. In xSub

i ,
the character tl

i is replaced with the symbol tl
j
′
, assuming that {xi, xj} ∈ Γ, which ensures

the new string can only be accepted by subnetworks j corresponding to nodes xj connected
to xi in the original network Γ. From here, the process differs in accordance with the value
α of the connected node xj.
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• If α(xj) = l, the string can only enter xIns
j where the symbol tr

j
′′ is appended to it. The

new string, tl
j
′w′tr

j
′′, continues through xDel

j where tl
j
′

is removed and xSub
j where tr

j
′′

is replaced with tr
j , allowing it to enter the node xs

j . Since the character tr
j is at the end

of the string, it does not interfere with the application of evolutionary rules at the left
of the string;

• If α(xj) = r or α(xj) = ∗, the string directly enters xSub
j and the symbol tl

j
′

is replaced

with tl
j. Then, the string enters xs

j . As one can see, the communication step in Γ has
been simulated by a constant number of (evolution and communication) steps in
Γ′. A new evolutionary step in Γ is now simulated. It follows that L(Γ) = L(Γ′).
Furthermore, the number of steps in Γ′ for simulating an evolutionary step followed
by a communication one in Γ is constant; hence, TimeΓ′(n) ∈ O(TimeΓ(n)) holds.

4. Simulating Any NEP with a Star NEP

Theorem 2. Given an arbitrary NEP Γ, there exists a star NEP Γ′ such that the following two
conditions are satisfied:

1. L(Γ) = L(Γ′);
2. TimeΓ′(n) ∈ O(TimeΓ(n)).

Proof. Let Γ = (V, U, G,N , α, β, x1, xn) be a NEP with the underlying graph G = (XG, EG)
and XG = {x1, x2, . . . , xn} for some n ≥ 1; x1 ≡ In and xn ≡ Halt. We construct the NEP
Γ = (V′, U′, G′,N ′, α′, β′, xstart, xs

n); xstart ≡ In and xs
n ≡ Halt, where

V′ = V, U′ = U ∪ T,
T = {tl

i , tr
i , tl

i
′
, tr

i
′, tl

i
′′

, tr
i
′′, tl

i
′′′

, tr
i
′′′ | 1 ≤ i ≤ n}

The star network uses the definitions illustrated above for the complete network, with
the following modifications:

We add a new node Star to the subnetwork which acts as the center of the star network.

• node Star :

M = {tl
i → tl

j
′ | {xi, xj} ∈ Γ} ∪ {tr

i → tr
j
′ | {xi, xj} ∈ Γ}∪

{tl
i
′′′ → tl

i} ∪ {tr
i
′′′ → tr

i },
PI = ∅, FI = ∅,
PO = ∅, FO = ∅,
α = ∗, β = (w).

The nodes xSub
i , 1 ≤ i ≤ n are modified as follows:

Case 1. If α(xi) = l:

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i
′ → tr

i
′′′} ∪ {tr

i
′′ → tr

i
′′′},

PI = {tr
i
′, tr

i
′′}, FI = {tl

i
′},

PO = ∅, FO = ∅,
α = ∗, β = (w).

Case 2. If α(xi) = r, the nodes xSub
i are analogous to the case 1 with the characters l

and r interchanged.
Case 3. If α(xi) = ∗, the nodes xSub

i , 1 ≤ i ≤ n are defined in the following way:

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i
′ → tr

i
′′′} ∪ {tl

i
′ → tl

i
′′′}∪

{tl
i
′′ → tl

i
′′′},

PI = {tl
i
′
, tr

i
′, tl

i
′′}, FI = ∅,

PO = ∅, FO = ∅,
α = ∗, β = (w).

Let w be the input string in Γ. In the input node xstart, the character tl
1
′′

is inserted
in the left-hand side of the string if α(x1) ∈ {r, ∗}, or the character tr

1
′′ is inserted at the
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end of the string provided that α(x1) = l. Next, the string enters Star where no rule can
be applied. From Star, it can only enter xSub

1 where the character is replaced with tl
1
′′′

and tr
1
′′′, respectively. The new string returns to Star where tl

1
′′′

and tr
1
′′′ are changed to tl

1
and tr

1. Then, the string can only enter xs
1 and the simulation starts. Note that the same

evolutionary rules applicable in x1 ∈ Γ are also possible in xs
1 since the special character

tl
1
′′

or tr
1
′′ is set up in a way that it does not block the computation of nodes with α = r and

α = l, respectively. Inductively, we may assume that a string of the form tl
iw or wtr

i lies in
the node xs

i ∈ Γ′ if and only if the string w lies in the node xi ∈ Γ.
Let w be transformed into w′ in the node xi and sent to the connected nodes to xi in Γ.

Then, a string tl
iw
′ or a string w′tr

i is produced in the node xs
i and sent to the node Star. Let

us analyze the case of a string tl
iw
′. The process is analogous for the other string. In Star,

the character tl
i is replaced with the symbol tl

j
′
, granted that {xi, xj} ∈ Γ, which ensures the

new string can only be accepted by subnetworks j corresponding to nodes xj connected to
xi in the original network Γ. From here, the process is similar to the one described in the
previous proof.

• If α(xj) = l, the string can only enter xIns
j where the symbol tr

j
′′ is attached at the end

of it. The new string, tl
j
′w′tr

j
′′, continues through xDel

j where tl
j
′

is removed and xSub
j

where tr
j
′′ is replaced with tr

j
′′′. Then, tr

j
′′′ is switched with tr

j in Star, allowing it to
enter the node xs

j . Since the character tr
j is at the end of the string, it does not interfere

with the application of evolutionary rules at the left of the string;
• If α(xj) = r or α(xj) = ∗, the string directly enters xSub

j and the symbol tl
j
′

is replaced

with tl
j
′′′

. Then, the string enters xs
j after having tl

j
′′′

changed to tl
j in Star. As in the

previous construction, the communication step in Γ has been simulated by a constant
number of (evolution and communication) steps in Γ′, and a new evolutionary step
in Γ is going to be simulated. We conclude that the two networks accept the same
language.

The explanations above allow us to infer that any step in Γ is simulated by a constant
number of steps in Γ′; hence, TimeΓ′(n) ∈ O(TimeΓ(n)) holds.

5. Simulating Any NEP with a Grid NEP

Theorem 3. Given an arbitrary NEP Γ there exists a grid NEP Γ′ such that the following two
conditions are satisfied:

1. L(Γ) = L(Γ′);
2. TimeΓ′(n) ∈ O(TimeΓ(n)).

Proof. Let Γ = (V, U, G,N , α, β, x1, xn) be a NEP with the underlying graph G = (XG, EG)
and XG = {x1, x2, . . . , xn} for some n ≥ 1; x1 ≡ In and xn ≡ Halt. We construct the NEP
Γ = (V′, U′, G′,N ′, α′, β′, xstart, xs

n); xstart ≡ In and xs
n ≡ Halt, where

V′ = V, U′ = U ∪ T,
T = {tl

i , tr
i , tl

i
′
, tr

i
′ | 1 ≤ i ≤ n}

First, we add the following nodes to Γ′:

• node xstart :

M =

{
{ε→ tl

1}, if α(x1) 6= l
{ε→ tr

1}, if α(x1) = l
,

PI = ∅, FI = T,
PO = ∅, FO = ∅,

α =

{
l, if α(x1) 6= l
r, if α(x1) = l

, β = (w).
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• nodes xs
i , 1 ≤ i ≤ n :

M = M(xi),
PI = PI(xi), FI = FI(xi) ∪ T \ {tl

i , tr
i },

PO = PO(xi), FO = FO(xi),
α = α(xi), β = β(xi).

For each node xi, 1 ≤ i ≤ n in Γ we add a subnetwork to Γ′ according to the
subsequent cases:

Case 1. If α(xi) = l, the subnetwork is defined as follows:

• nodes xIns
i , 1 ≤ i ≤ n :

M = {ε→ tr
i
′},

PI = ∅, FI = T,
PO = {tr

i
′}, FO = ∅,

α = r, β = (w).

• nodes xDel
i , 1 ≤ i ≤ n :

M = {tl
i
′ → ε},

PI = {tl
i
′}, FI = ∅,

PO = ∅, FO = ∅,
α = l, β = (w).

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i → tr

j
′ | {xi, xj} ∈ Γ} ∪ {tr

i
′ → tr

i }∪
{tr

i
′′ → tr

i },
PI = T, FI = ∅,
PO = ∅, FO = ∅,
α = ∗, β = (w).

Case 2. If α(xi) = r, the subnetwork is analogous to the case 1 with the symbols l and r
interchanged.

Case 3. If α(xi) = ∗, the subnetwork is defined as follows:

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i → tr

j
′ | {xi, xj} ∈ Γ}∪

{tl
i → tl

j
′ | {xi, xj} ∈ Γ}∪

{tl
i
′ → tl

i} ∪ {tr
i
′ → tr

i },
PI = T, FI = ∅,
PO = ∅, FO = ∅,
α = ∗, β = (w).

Lastly, we add a set of dummy nodes to complete the grid topology with the specifica-
tions below:

• nodes Di, 1 ≤ i ≤ 2n ∧ α(xi) = ∗ :

M = ∅,
PI = ∅, FI = U′,
PO = ∅, FO = ∅,
α = ∗, β = (w).

• nodes D :

M = ∅,
PI = ∅, FI = {tl

i , tr
i | 1 ≤ i ≤ n},

PO = ∅, FO = ∅,
α = ∗, β = (w).

The grid network is set up in the following way.

• The node xstart is in the top left corner. The first column is composed by it followed
by the node xs

1 corresponding to the input node x1 ∈ Γ and the remaining nodes xs
i

arranged in any order;
• The second column is composed by a dummy node D and the nodes xSub

i . Each node
xSub

i is connected to the node xs
i through the left edge;
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• The third column is composed by a dummy node D and the nodes xDel
i . Each node

xDel
i is connected to the node xSub

i through the left edge. In the case of α = ∗, a node
Di is used instead of a node xDel

i ;
• The fourth column is composed by a dummy node D and the nodes xIns

i . Each node
xIns

i is connected to the node xDel
i through the left edge. In the case of α = ∗, a node

Di is used instead of a node xIns
i ;

• The fifth column is composed by nodes D.

Let w be the input string in Γ. In the input node xstart, the character tl
1 is inserted in

the beginning of the string if α(x1) ∈ {r, ∗}, or the character tr
1 is inserted at the end of

the string, if α(x1 ∈ Γ) = l. Then, the string can only enter xs
1 and the simulation starts.

Note that the same evolutionary rules applicable in x1 ∈ Γ are also possible in xs
1 since the

special character tl
1 or tr

1 is set up in a way that it does not block the computation of nodes
with α = r and α = l, respectively. Inductively, we may assume that a string of the form
tl
iw or wtr

i lies in the node xs
i ∈ Γ′ if and only if the string w lies in the node xi ∈ Γ.

Let w be transformed into w′ in the node xi and sent to the connected nodes to xi in Γ.
Then, a string tl

iw
′ or a string wtr

i is produced in the node xs
i and sent to the connected node

xSub
i . In this node, the symbols tl

i and tr
i are replaced with tl

j
′

and tr
j
′, respectively, granted

that {xi, xj} ∈ Γ. Then, the string continues through the second column of xSub
i nodes until

it ultimately enters the node xSub
j . Note that even if the string passes through the other

nodes xSub
k | k 6= j, no rule can applied so the string remains unchanged until it gets to the

desired node. Next, the computation can be continued in one of the following ways:

• If α(xj) = l, no rule can be applied in xSub
j and the string enters xDel

j . In that node,

the symbol tl
j
′

is removed. Next, since it does not contain any character t ∈ T, the

string can only enter the node xIns
j where a character tr

j
′ is attached to the end. Then,

the string continues through the fifth column of dummy nodes D and it ultimately
returns to xSub

j where tr
j
′ is replaced with tr

j , allowing it to enter the node xs
j ;

• If α(xj) = r or α(xj) = ∗, the string directly enters xSub
j and the symbol tl

j
′

is replaced

with tl
j. Then, the word enters xs

j . As in the previous proofs, we conclude that
L(Γ) = L(Γ′), as well as TimeΓ′(n) ∈ O(TimeΓ(n)).

6. Conclusions and Further Work

We have proposed three constructions for simulating an arbitrary NEP by a NEP hav-
ing an underlying structure that is a complete graph, a star graph, and a two-dimensional
grid, respectively. All these simulations are time efficient in the sense that every computa-
tional step in the given network is simulated by a constant number of computational steps
in the constructed network.

In our view, it would be of interest whether or not similar results are valid for other
variants of NEPs, such as polarized NEPs or NEPs with filtered connections as well as for
variants of networks of splicing processors.
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