
axioms

Article

Mathematical Analysis of a Fractional COVID-19 Model
Applied to Wuhan, Spain and Portugal

Faïçal Ndaïrou † and Delfim F. M. Torres *

����������
�������

Citation: Ndaïrou, F.; Torres, D.F.M.

Mathematical Analysis of a Fractional

COVID-19 Model Applied to Wuhan,

Spain and Portugal. Axioms 2021, 10,

135. https://doi.org/10.3390/

axioms10030135

Academic Editor: Ioannis Dassios

Received: 7 June 2021

Accepted: 25 June 2021

Published: 27 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics,
University of Aveiro, 3810-193 Aveiro, Portugal; faical@ua.pt
* Correspondence: delfim@ua.pt; Tel.: +351-234-370-668
† This research is part of first author’s Ph.D. project, which is carried out at the University of Aveiro under the

Doctoral Program in Applied Mathematics of Universities of Minho, Aveiro, and Porto (MAP-PDMA).

Abstract: We propose a qualitative analysis of a recent fractional-order COVID-19 model. We start by
showing that the model is mathematically and biologically well posed. Then, we give a proof on
the global stability of the disease free equilibrium point. Finally, some numerical simulations are
performed to ensure stability and convergence of the disease free equilibrium point.
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1. Introduction

The study and analysis of the spread of infectious diseases via mathematical models
has become an important tool to understand diseases’ epidemiological prototypes, such
as prevalence, duration of the epidemic, and its burden on a population. A variety of
techniques can be considered in the modeling formulation in order to reflect particularities
in the transmission routes of a disease. In general, there exist two major routes:

(i) direct contact, that is, from infected to non-infected individuals (for instance, through
body fluids for Ebola virus disease [1–3] or through sexual intercourse for HIV
infection [4–6] or by non-linearities in the transmission incidence [7,8]);

(ii) indirect contact, which is due to the presence of carriers in the environment, for
example, through mosquitoes and their aquatic phase [9–12].

These features are fundamental in the transmission process of any disease in lead-
ing to specific health status of each individual in the community. Thus, individuals in
the community can be classified into disjoints compartments according to their specific
health status.

The so-called classical SIR models refer to three epidemiological status (susceptible–
infected–recovered) and were firstly introduced by Kermack and McKendrick [13] and
constitute the basis foundation of compartmental models. Additionally, some earlier
development aiming to introduce demographic factors in compartmental models through
birth and death rate were considered by these authors [14,15]. Nowadays, mathematical
models are more complex and more realistic by including a large number of health status
(see, e.g., [2,4,16] for models with much more epidemiological states). However, in relation
to the analysis of these models, one of the challenges is how to establish stability of
equilibrium points [17–20] in order to acquire insights into the dynamics behavior of
such models.

Recently, great considerations have been made to models described by fractional
differential equations in the field of mathematical epidemiology [21–23]. The most essen-
tial property of these models is their memory effect [24], which is not appearing in the
traditional instantaneous differential equations. This effect is fully captured by flexibility
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of the order of differentiation for fractional derivatives and can be seen as a hereditary
property or a variety on strains and genomes of viruses (as conjectured in [23]), which is
useful for epidemic models. In [25], a model for controlling the Coronavirus pandemic
2019 (COVID-19) in India with Caputo–Fabrizio fractional derivatives and the homotopy
analysis transform method is investigated. Often, fractional-order models give rise to
theoretical models that allow a significant improvement in the fitting of real data, when
compared with analogous classical models [26]. However, there are also cases where the
fractional-order models do not bring any advantage [27]. In the case of the model under
investigation, the fractional-order model has clear advantages to describe the spread of
COVID-19 in Galicia, Spain, and Portugal, but does not offer advantages with respect
to Wuhan [23]. Precisely, the fractional-order model proposed in [23] describes well the
spread of COVID-19 in Spain with order α = 0.85, in Portugal with order α = 0.75, and in
Wuhan with order α = 1.

Fractional differential equations can be seen as a sub-field of fractional calculus [28],
that is, the mathematical theory that deals with generalization of integrals and derivatives
to real or complex order. Furthermore, systems modeled with the help of fractional calculus
are non-linear and might display a much more richer dynamical behavior due to properties
of order differentiation.

The paper is organized as follows. We start by a preliminary section (Section 2), in
which we recall definitions and necessary results of the literature. Then, in Section 3, we
present the fractional-order model that we will be studying. Next, in Section 4, we prove
the existence and uniqueness of a positive solution. The global stability analysis of the
disease free equilibrium point is investigated in Section 5. In Section 6, we present some
numerical simulations of the model. We end with Section 7, with our conclusions.

2. Preliminaries on Fractional Calculus

In this section, we begin by presenting the Caputo definition of fractional derivative
and then recall some basic properties useful to study the fractional-order model. The reader
interested to learn about fractional calculus is referred to [29,30].

The Caputo fractional derivative of order α ∈ (0, 1) of a function x : [0,+∞)→ R is
given by

CDαx(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αx′(s)ds,

where Γ(1− α) =
∫ ∞

0
t−α exp(−t)dt is the Euler Gamma function.

Note that the value of the Caputo fractional derivative of the function x at point t
involves all the values of x′(s) for s ∈ [0, t] and, hence, it incorporates the history of x. We
also see that CDαx(t) tends to x′(t) as α → 1. The next result is crucial in the study of an
initial fractional-order value problem, useful in the proof of our Theorem 1.

Let f : Rn → Rn be a vector function with n > 1 and consider the following fractional-
order initial value problem: 

CDαX(t) = f (X),

X(0) = X0, X0 ∈ Rn.
(1)

Lemma 1 (See [31]). Assume that the vector function f satisfies the following conditions:

1. f (X) and
∂ f (X)

∂X
are continuous for all X ∈ Rn;

2. ‖ f (X)‖ ≤ ω + λ‖X‖ for all X ∈ Rn, where ω and λ are two positive constants.

Then, system (1) has a unique solution.

The following generalized mean value theorem and its consequences are also needed
in the proof of Theorem 1.
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Lemma 2 (Generalized Mean Value Theorem [31]). Suppose that the functions x(t) and
CDαx(t) are both continuous on [0, b]. Then,

x(t) = x(0) +
1

Γ(α)
CDαx(η)tα, 0 < η < t, ∀t ∈ [0, b].

Thus, as consequences of Lemma 2, we have that if CDαx(t) > 0 for all t ∈ [0, b], then
the function x is strictly increasing, and if CDαx(t) < 0 for all t ∈ [0, b], then the function x
is strictly decreasing.

3. The Considered Fractional-Order COVID-19 Model

In this section, we consider a fractional-order COVID-19 model earlier proposed by
Ndaïrou et al. [23]. We shall assume the total population N is constant, along the period
under study, and made up with eight sub-population of dynamics transition, as different
stages of transmission of the virus to individuals grouped into compartmental classes

S(t) + E(t) + I(t) + P(t) + A(t) + H(t) + R(t) + F(t) = N

for all t, where S(t) denotes the susceptible individuals at time t, E(t) the exposed individ-
uals, I(t) the symptomatic and infectious individuals, P(t) the super-spreaders individuals,
A(t) the infectious but asymptomatic individuals, H(t) the hospitalized individuals, R(t)
the recovery individuals, and F(t) the dead individuals or fatality class. The Caputo
fractional-order system that describes the dynamics transmission is given by

C DαS(t) = −β
I(t)
N

S(t)− lβ
H(t)

N
S(t)− β

′ P(t)
N

S(t),

C DαE(t) = β
I(t)
N

S(t) + lβ
H(t)

N
S(t) + β

′ P(t)
N

S(t)− κE(t),

C Dα I(t) = κρ1E(t)− (γa + γi)I(t)− δi I(t),

C DαP(t) = κρ2E(t)− (γa + γi)P(t)− δpP(t),

C Dα A(t) = κ(1− ρ1 − ρ2)E(t),

C Dα H(t) = γa(I(t) + P(t))− γr H(t)− δh H(t),

C DαR(t) = γi(I(t) + P(t)) + γr H(t),

C DαF(t) = δi I(t) + δpP(t) + δh H(t).

(2)

The expression β I
N S + lβ H

N S + β
′ P

N S represents the force of infection of the virus, that
is, the transmission term or the effective contact between susceptible individuals (S) and
infectious symptomatic individuals (I), super-spreaders individuals (P), and hospitalized
ones (H). Here, β quantifies the human-to-human transmission coefficient per unit of time
(days) per person, β

′
quantifies a high transmission coefficient due to super-spreaders, l

quantifies the relative transmissibility of hospitalized patients. Next, we give a description
of the rest of parameters appearing in the model system (2):

• κ is the rate at which an individual leaves the exposed class by becoming infectious
(symptomatic, super-spreaders or asymptomatic);

• ρ1 is the proportion of progression from exposed class E to symptomatic infectious
class I;

• ρ2 is a relative very low rate at which exposed individuals become super-spreaders;
• 1− ρ1 − ρ2 is the progression from exposed to asymptomatic class;
• γa is the average rate at which symptomatic and super-spreaders individuals become

hospitalized;
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• γi is the recovery rate without being hospitalized;
• γr is the recovery rate of hospitalized patients;
• δi denotes the disease induced death rates due to infected individuals;
• δp denotes the disease induced death rates due to super-spreaders individuals;
• δh denotes the disease induced death rates due to hospitalized individuals.

The model was first proposed in [23] for the purpose of fitting real data from Galicia,
Spain, and Portugal, but without any mathematical analysis. Here we show that the model
is mathematically well posed and it has a unique equilibrium point, which is globally
asymptotically stable.

4. Existence and Uniqueness of Positive Solution

First of all, let us rewrite system (2) in a compact form. In doing so, denote

R8
+ = {X ∈ R8 : X > 0}

and let X(t) = (S(t), E(t), I(t), P(t), A(t), H(t), R(t), F(t))T . Then, the system (2) can be
rewritten as follows:

C DαX(t) = F(X(t)),

where

F(X) =



−β I
N S− lβ H

N S− β
′ P

N S
β I

N S + lβ H
N S + β

′ P
N S− κE

κρ1E− (γa + γi)I − δi I
κρ2E− (γa + γi)P− δpP

κ(1− ρ1 − ρ2)E
γa(I + P)− γr H − δh H

γi(I + P) + γr H
δi I + δpP + δhH


. (3)

For practical applications reasons, we consider non-negative initial conditions:

S(0) > 0, E(0) > 0, I(0) > 0, P(0) > 0, A(0) > 0, H(0) > 0, R(0) > 0, F(0) > 0. (4)

In addition, set

A1 =



0 0 −β −β
′

0 −lβ 0 0
0 0 β β

′
0 lβ 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

A2 =



0 0 0 0 0 0 0 0
0 −κ 0 0 0 0 0 0
0 κρ1 −vi 0 0 0 0 0
0 κρ2 0 vp 0 0 0 0
0 ve 0 0 0 0 0 0
0 0 γa γa 0 vh 0 0
0 0 γi γi 0 γr 0 0
0 0 0 δi δp 0 δh 0


,

where ve = κ(1− ρ1 − ρ2); vi = γa + γi + δi; vp = γa + γi + δp; and vh = γr + δh. Thus,
we can rewrite the vector function F as

F(X) =
S
N

A1X + A2X.
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We are in conditions to state and prove our first result.

Theorem 1 (existence and uniqueness of a non-negative solution). There is a unique solution
for the initial value problem given by (2)–(4) and the solution belongs to

Ω = {(S, E, I, P, A, H, R, F) ∈ R8
+ : S + E + I + P + A + H + R + F 6 N}.

Proof. The existence and uniqueness of solution are obtained by application of Theorem 3.1
and Remark 3.2 of [32]. For this purpose, it is easy to check that the vector function is a
polynomial, thus continuous and has continuous derivative in Ω. Furthermore, satisfying

‖F(X)‖ 6 ‖A1X‖+ ‖A2X‖ = (‖A1‖+ ‖A2‖)‖X‖ < ε + (‖A1‖+ ‖A2‖)‖X‖

for any positive constant ε. The proof of non-negativity of solution follows the same spirit
as in [33]. By summing up all the 8 equations of system (2), we obtain

C Dα(S(t) + E(t) + I(t) + P(t) + A(t) + H(t) + R(t) + F(t)) = 0.

Thus,

0 6 S(t) + E(t) + I(t) + P(t) + A(t) + H(t) + R(t) + F(t)

6 S(0) + E(0) + I(0) + P(0) + A(0) + H(0) + R(0) + F(0) = N,

which ends the proof.

5. Stability Analysis

First of all, note that the model system (2) exhibits a unique steady state which is the
disease free equilibrium point (DFE) obtained by setting the right hand side of (2) equal to
zero. Precisely, we have

DFE = (N, 0, 0, 0, 0, 0, 0, 0).

Next, recall that the basic reproduction number for this fractional-order model system
is the same as for the classical model investigated in [34] using the next-generation matrix
approach [35,36], being given by

R0 =
βρ1(γal + vh)

vivh
+

(βγal + β
′
vh)ρ2

vpvh
. (5)

This can be rewritten in the following manner:

R0 =
βρ1vhvp + βρ1γalvp + β

′
ρ2vhvi + βρ2γalvi

vivpvh
, (6)

which is useful in the below proof of global stability.

Theorem 2 (global stability of the DFE). Let α ∈ (0, 1). The disease free equilibrium (DFE) of
system (2) is globally asymptotically stable whenever R0 < 1.

Proof. Consider the following Lyapunov function:

V(t) = a0E(t) + a1 I(t) + a2P(t) + a3H(t),

where a0, a1, a2, and a3 are positive constants to be determined. Because the fractional
operator C Dα is linear, we have that

C DαV(t) = a0
C DαE(t) + a1

C Dα I(t) + a2
C DαP(t) + a3

C Dα H(t),
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and from (2) it follows that

C DαV(t) = a0

(
β

I
N

S + lβ
H
N

S + β
′ P
N

S− κE
)
+ a1(κρ1E− (γa + γi)I − δi I)

+ a2
(
κρ2E− (γa + γi)P− δpP

)
+ a3(γa(I + P)− γr H − δhH).

Next, as S 6 N, we have

C DαV(t) 6 a0

(
βI + lβH + β

′
P− κE

)
+ a1(κρ1E−vi I)

+ a2
(
κρ2E−vpP

)
+ a3(γa(I + P)−vh H),

where vi = γa + γi + δi; vp = γa + γi + δp; and vh = γr + δh. Rearranging and reducing
leads to

C DαV(t) 6 (a0β + a3γa − a1vi)I + (a0βl − a3vh)H

+ (a0β
′
+ a3γ− a2vp)P + κ(a1ρ1 + a2ρ2 − a0)E.

Now, we choose,

a0 = vivpvh; a1 =

(
β +

βγal
vh

)
vhvp; a2 =

(
β
′
+

βγal
vh

)
vivh; a3 = βlvivp,

so that function V is defined, continuous, and positive definite for all E(t) > 0, I(t) > 0,
P(t) > 0, and H(t) > 0. As a consequence, we obtain that

a0β + a3γa − a1vi = 0; a0βl − a3vh = 0; a0β
′
+ a3γ− a2vp = 0,

and

a1ρ1 + a2ρ2 − a0 = βρ1vhvp + βρ1γalvp + β
′
ρ2vhvi + βρ2γalvi −vivpvh

= vivpvh

(
βρ1vhvp + βρ1γalvp + β

′
ρ2vhvi + βρ2γalvi

vivpvh
− 1

)
.

Note that from (6) we have that

R0 =
βρ1vhvp + βρ1γalvp + β

′
ρ2vhvi + βρ2γalvi

vivpvh
,

which by substitution leads to

C DαV(t) 6 κvivpvh(R0 − 1)E.

Finally, C DαV(t) 6 0 if R0 < 1. Furthermore, C DαV(t) = 0 if, and only if, E = I =
P = H = 0. Substituting (E, I, P, H) = (0, 0, 0, 0) in system (2), leads to

S(t) = S(0), A(t) = A(0), R(t) = R(0), F(t) = F(0).

Thus, the largest compact invariant set containing the DFE is

Γ = {(S, E, I, P, A, H, R, F) ∈ R8
+ : C DαV(t) = 0}.

However, from biological considerations, when (E, I, P, H) = (0, 0, 0, 0), meaning
there is no disease infection in the population, we have the implication A(0) = R(0) =
F(0) = 0 and S(0) = N. Therefore, the largest compact invariant Γ set is reduced to the
singleton {DFE}. Hence, by LaSalle invariance principle [37], we conclude that the disease
free equilibrium DFE is globally asymptotically stable.
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In previous paper [23], the case studies of Galicia, Spain, and Portugal are investigated,
separately, with the purpose to fit the real data. In the next section we use the same values of
fractional order given in [23] and we focus on a comparative study of the three mentioned
cases of Galicia, Spain, and Portugal, together with the Wuhan case studied in [34].

6. Numerical Simulations

In this section, model analysis is carried out through numerical simulations in order
to show a broad view of the time evolution of the infected populations. Mainly, we shall
study the dynamical behavior of infected individuals (I), super-spreaders (P), hospital-
ized individuals (H), and the cumulative cases of infections (I + P + H), obtained from
the output of our fractional-order system (2). We will focus on a comparative study by
considering values of order of differentiation α = 1, α = 0.85, and α = 0.75, which describe
the COVID-19 dynamics transmission of Wuhan, Spain, and Portugal, respectively [23].
In addition, the role of the basic reproduction number through infectivity effect on the
evolution curves will be conducted. The readers interested in seeing the real data are
referred to [23].

6.1. Population Size, Initial Conditions, and Parameters

Recall that the total population size under study reflects specificities on the spread
of COVID-19 on each territories considered. Therefore, we consider N = 47,000,000/425,
N = 10,280,000/875, and N = 11,000,000/250 for Spain, Portugal, and Wuhan, respectively.
We remark that there was a typo in [23] for the value of N in the case of Portugal. The
following initial conditions are considered:

S0 = 47, 000, 000/425− 11, E0 = 0, I0 = 10, P0 = 1, A0 = 0, H0 = 0, R0 = 0, F0 = 0,

for Spain;

S0 = 10, 280, 000/875− 5, E0 = 0, I0 = 4, P0 = 1, A0 = 0, H0 = 0, R0 = 0, F0 = 0,

for Portugal; and

S0 = 11, 000, 000/250− 6, E0 = 0, I0 = 1, P0 = 5, A0 = 0, H0 = 0, R0 = 0, F0 = 0,

for Wuhan. Moreover, the following values of parameters are borrowed from [34]:

β = 2.55, l = 1.56, β
′
= 7.65, κ = 0.25, ρ1 = 0.58, ρ2 = 0.001,

γa = 0.94, γi = 0.27, γr = 0.5, δi = δp = δh =
1

23
.

6.2. Index of Memory’s Influence

The stability of the cumulative cases of infections and the variation on the speed of
convergence for different values of α are illustrated in Figure 1.

We observe that for a longer period of time, infected populations decrease and tend to
zero. Further, the smaller the order of differentiation, the slower the convergence to the
steady state.
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Figure 1. Evolution of infected populations by varying the order of differentiation α: the data of Portugal is well described
with α = 0.75; the data of Spain, and Galicia alone, with α = 0.85; the data of Wuhan with α = 1.

6.3. Infectivity Rate and Effect on the Basic Reproduction Number

To highlight the effect of the reproduction number R0, from Figures 2–4, three different
scenarios for the infectivity rate β are considered with respect to each value of the index
memory. Our results show that there is a significant decrease in the peak values of each
infected categories of population when the reproduction number R0 is reduced. For the
case of super-spreaders, the curves always start with a decreasing slope and later change
the peak but with lower total number of infected individuals. This makes these classes
particularly special and might have a huge effect in the progression of the other infected
classes. In the particular case of Portugal, it is remarkable that the peak of infected super-
spreaders is less than one.
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Figure 2. Evolution of infected populations (I(t), P(t), H(t), and I(t) + P(t) + H(t)) by varying the infectivity rate β by
1.55, 2.55, and 3.55, corresponding, respectively, to the basic reproduction number 2.662, 4.375, and 6.088, while fixing index
memory α = 1 (Wuhan).
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Figure 3. Evolution of infected populations (I(t), P(t), H(t), and I(t) + P(t) + H(t)) by varying the infectivity rate β by
1.55, 2.55, and 3.55, corresponding, respectively, to the basic reproduction number 2.662, 4.375, and 6.088, while fixing index
memory α = 0.85 (Spain).
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(a) I(t) for β ∈ {2.55, 1.55, 3.55} but α = 0.75
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(b) P(t) for β ∈ {2.55, 1.55, 3.55} but α = 0.75
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Figure 4. Evolution of infected populations (I(t), P(t), H(t), and I(t) + P(t) + H(t)) by varying the infectivity rate β by
1.55, 2.55, and 3.55, corresponding, respectively, to the basic reproduction number 2.662, 4.375, and 6.088, while fixing index
memory α = 0.75 (Portugal).

7. Conclusions

In this paper, we have analyzed in detail a fractional-order COVID-19 model, pre-
viously used for fitting the number of confirmed cases of infections from the region of
Galicia, Spain, and Portugal [23]. An analytical study on the stability of the steady state
was conducted and numerical simulations investigated for all infected compartments of
the population. The model qualitative analysis reconfirm stability of the steady state for
both classical and fractional-order models, whenever the threshold condition R0 < 1 holds.
Global stability is then deduced by a fractional-order version of LaSalle’s invariant set
theorem. Moreover, our numerical solutions show that the time speed evolution for the
dynamical model to reach the steady state is affected by the order α of index memory. It
remains open the question of how to prove global stability in the case when R0 > 1. For all
numerical simulations we have done, the equilibrium was always stable.
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