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Abstract: A prey–predator system with logistic growth of prey and hunting cooperation of preda-
tors is studied. The introduction of fractional time derivatives and the related persistent memory
strongly characterize the model behavior, as many dynamical systems in the applied sciences are
well described by such fractional-order models. Mathematical analysis and numerical simulations
are performed to highlight the characteristics of the proposed model. The existence, uniqueness and
boundedness of solutions is proved; the stability of the coexistence equilibrium and the occurrence of
Hopf bifurcation is investigated. Some numerical approximations of the solution are finally consid-
ered; the obtained trajectories confirm the theoretical findings. It is observed that the fractional-order
derivative has a stabilizing effect and can be useful to control the coexistence between species.

Keywords: Caputo fractional derivative; Allee effect; existence and stability; Hopf bifurcation;
implicit schemes

MSC: 34A08; 34D20; 65R10

1. Introduction

Population dynamics are regulated by several factors: availability of resources, pre-
dation, diseases, etc. Among these factors, the interaction between prey and predators is
probably the most studied one in ecology, tracing back to the works of Lotka and Volterra in
the early 20th century. Since then, a number of predator–prey models have been proposed
and studied (see the excellent reviews [1,2]), considering different extensions of the original
one: the realistic assumption that prey populations are limited by food resources and
not just by predation leads to the inclusion of terms representing carrying capacity for
the prey population; the characterization of specific behaviors of the predator population
results in the introduction of several functional responses for them; the complexity and
dishomogeneity in the environment often requires a spatial description [3]. It is well-known
that species diffusing at different rates can generate spatial patterns, observed in several
biological contexts. Such Turing patterns affecting spatial predator–prey models have been
deeply investigated in the literature. In addition, the inclusion of group defense has a
significant impact on the dynamics of the predator–prey system. Of course, this movement
is conditioned by the abundance or scarcity of the other species, so that spatio-temporal
population models can include cross-diffusion terms in addition to self-diffusion ones.

Cooperation is a common behavior in many biological groups and can sensibly affect
the growth rate of populations in an ecological community. Limiting our interest to the
predator–prey dynamics, many mechanisms have been identified, all capable of facilitating
reproduction, breeding, foraging and defense in the prey population. All of them can
induce a demographic Allee effect [4]. In predators, hunting cooperation, among other
interactions, can also result in Allee effects; different intensities of such a cooperative
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behavior impact on the survival of both species and modify the stability of the ecological
system (see [5] and references therein).

Even if the interest on fractional calculus traces back at least to the 1970s (without
considering the seminal suggestions given by Leibniz and Euler more than 300 years ago),
in the last decades there has been an explosion of research activities on its application to
several areas. Fractional order systems are not only an extension of conventional integer-
order systems in mathematics but also have memory and hereditary properties that integer
order systems do not have. In the last decades, there has been a huge interest in such
models, due to their specific feature of describing memory effects in dynamical systems:
many nonlinear models with time fractional derivatives have been considered, not only in
population dynamics [6,7], but also in chemistry and biochemistry, medicine, mechanics,
engineering, finance, psychology (see, among the recent surveys, [8,9]). In some situations,
indeed, fractional-order models, enabling the description of the memory and hereditary
properties inherent in various materials, processes and biological systems, seem more
consistent with the real phenomena than integer-order models. Models with fractional-
order derivatives can take different forms depending on the system considered; among
them, fractional differential equations and fractional partial differential equations are
greatly applied to describe continuous systems, both deterministic and stochastic [10]. In
addition, heterogeneous non-ergodic diffusion processes [11] and the effect of anomalous
diffusion on a population survival have been investigated [12].

The authors considered, in previous studies, some interacting population models
that explored the mentioned characteristics (limited resources, nonlinear growth, fear
effect, cooperative behavior), also in the presence of spatial dishomogeneity [13–17]. In the
above-mentioned research, systems of both ordinary and partial differential equations have
been studied. Precisely, ODE descriptions for the dynamics of an intraguild predator–prey
model [13] and for the spreading of waterborne diseases [15,17] have been considered
and the stability of the model solutions discussed. Furthermore, in order to highlight
how the spatial diffusion can both play an important role in the population evolution and
lead to the formation of spatial patterns, a reaction–diffusion system modeling hunting
cooperation [14] and a predator–prey system with fear and group defense [16] have been
analyzed. In such researches, the effect of spatial diffusion on the stability of the equilibria
has been highlighted and the conditions on the parameters ensuring the formation of
patterns (stripes, spots, mixed, etc.) have been found.

In the present paper, the authors generalize the model introduced in [5], by replacing
the ordinary time derivative with a fractional one so to investigate how the fractional-
in-time derivative impacts the system dynamics. It is worth underlining, for the sake
of completeness, that such a model has been already extended in [14] to include spatio-
temporal dynamics and the related occurrence of Turing patterns. Here, instead, the
authors, to better highlight the fractional derivative impact on the populations dynamics,
take into account the original ODE model and consider the corresponding fractional-in-
time system.

Such a modeling provides challenges and ideas in many other fields of applied
mathematics in which nonlinear mathematical models having a similar structure are con-
sidered [18–22]. After reviewing in Section 2 the main prerequisites on fractional calculus,
the model is formulated in Section 3 and existence and boundedness of solutions is proved.
Section 4 discusses the stability of the coexistence equilibrium, while Section 5 shows some
numerical approximations by different schemes. Section 6 concludes the manuscript.

2. Preliminaries

In this section, we recall the fundamental definitions, concepts and results that we
will use throughout the paper. For further details, we refer the reader to [23–25].
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Definition 1. The fractional integral of order θ > 0 for a Lebesgue integrable function f : R+ → R
is defined by

Iθ f (t) =
1

Γ(θ)

∫ t

t0

(t− τ)θ−1 f (τ)dτ

and the Caputo fractional derivative of order θ ∈ (m− 1, m) of a sufficiently differentiable function
f (t) is defined by

Dθ
t f (t) =

1
Γ(m− θ)

∫ t

t0

(t− τ)m−θ−1 f (m)(τ)dτ ,

where Γ(θ) is the Euler’s Gamma function.
We underline that, under natural conditions on f (t), the Caputo derivative coincides

with the classical derivative whenever θ ∈ N.

Lemma 1. Let x(t) be a continuous function on [t0, ∞) satisfying Dθ x(t) ≤ −Ax(t)+ B, x(t0) =
x0, with 0 < θ < 1 and A, B ∈ R, A > 0, t0 ≥ 0. Then for x(t) it holds true

x(t) ≤
(

x0 −
B
A

)
Eθ [−A(t− t0)

θ ] +
B
A

, (1)

where Eθ(·)is the Mittag–Leffler function defined by

Eθ =
∞

∑
k=0

zk

Γ(θk + 1)
. (2)

Lemma 2. Let Dθ x(t) = φ(t, x), with t > t0, be the system with the initial condition x(t0) and
0 < θ ≤ 1, φ : [t0, ∞)×Ω → Rm, Ω ⊆ Rm. If φ(t, x) satisfies the Lipschitz condition with
respect to x, then there exists a unique solution of the above system on [t0, ∞)×Ω.

Lemma 3. Let Dθ
t x = φ(x), with x(t0) = x0 and 0 < θ < 1, be an autonomous nonlinear

fractional-order system. A point x∗ is called an equilibrium point of the system if it satisfies
φ(x∗) = 0. This equilibrium point is locally asymptotically stable if all eigenvalues λi of the

Jacobian matrix J =
∂φ

∂x
evaluated at x∗ satisfy the Matignon conditions | arg(λi)| >

θπ

2
.

3. Fractional Model with Caputo Derivative: Statement of the Problem, Boundedness,
Existence and Uniqueness

We present the following fractional-order prey–predator model corresponding to the
non-dimensional model introduced in [5]Dθ

t n = σn
(

1− n
k

)
− (1 + αp)np,

Dθ
t p = (1 + αp)np− p ,

(3)

where Dθ
t represents the Caputo fractional derivative, given in Definition 1, with 0 < θ < 1

and n, p are the non-dimensional variables corresponding to the prey and predator densities.
All the non-dimensional parameters are positive constant. Precisely, k comprises the
dimensional carrying capacity, the conversion efficiency as well as the per-capita predator
mortality and attack rate, while σ is linked to the per-capita intrinsic growth rate of prey
and per-capita mortality rate of predator and α is linked to the predator cooperation in
hunting rate, the attack rate and the per-capita predator mortality rate. Details on both the
derivation of model and the biological meaning of parameters can be found in [5,14]. To (3)
we append the initial conditions

n(t0) = n0, p(t0) = p0. (4)
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3.1. Boundedness

In this subsection, we prove the positivity and boundedness of the solution of the

system (3). Let R2
+ = {x(t) ∈ R2 : x(t) ≥ 0} and x(t) =

(
n(t)
p(t)

)
.

Theorem 1. The solution of the fractional-order system (3) and (4) is bounded in R2
+. Moreover,

the density of the population remains in a nonnegative region.

Proof. Let us define the function

U(t) = n(t) + p(t) (5)

and ξ be a positive constant. Applying the Caputo fractional derivative on both sides in (5)
and using (3), it follows that

Dθ
t U(t) + ξU(t) = Dθ

t n(t) + Dθ
t p(t) + ξn(t) + ξ p(t)

= σn
(

1− n
k

)
− p + ξn + ξ p

= −σn2

k
+ (σ + ξ)n + (ξ − 1)p

≤ −σ

k

(
n− k(σ + ξ)

2σ

)2

+
k(σ + ξ)2

2σ

≤ k(σ + ξ)2

2σ
,

where ξ < 1. Using Lemma 1, it follows that

U(t) ≤
(

U(t0)−
k(σ + ξ)2

2σξ

)
Eθ [−ξtθ ] +

k(σ + ξ)2

2σξ

≤ U(t0)Eθ [−ξtθ ] +
k(σ + ξ)2

2σξ

[
1− Eθ [−ξtθ ]

]
.

(6)

Then, for t → ∞ it follows that U(t) ≤ k(σ + ξ)2

2σξ
. Hence, all the solutions to (3)

starting from R2
+ are confined in the following domain A ⊆ R2

+

A = {(n(t), p(t)) ∈ R2
+ : n(t) + p(t) ≤ k(σ + ξ)2

2σξ
+ ε, ∀ε > 0}

which is positively invariant.

3.2. Existence and Uniqueness

In this subsection, we find the conditions for the existence and uniqueness of the solution
to fractional-order prey–predator model (3) in the region Θ× (t0, T], T < ∞, where

Θ = {(n, p) ∈ R2 : max(|n|, |p|) ≤ K},

by using the fixed point technique. The existence of K is guaranteed by the boundedness
of the solution. The model can be reformulated in the fractional integral form which gives

n(t)− n(t0) =
1

Γ(θ)

∫ t

t0

(t− τ)θ−1
(

σn(τ)
(

1− n(τ)
k

)
− (1 + αp(τ))n(τ)p(τ)

)
dτ ,

p(t)− p(t0) =
1

Γ(θ)

∫ t

t0

(t− τ)θ−1((1 + αp(τ))n(τ)p(τ)− p(τ))dτ.
(7)
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Denoting by F1 and F2 the following kernels

F1(t, n(t), p(t)) = σn(t)
(

1− n(t)
k

)
− [1 + αp(t)]n(t)p(t) ,

F2(t, n(t), p(t)) = [1 + αp(t)]n(t)p(t)− p(t) ,
(8)

the following theorem holds.

Theorem 2. Let M1 = σ + (1 + αK)K + 2
σ

k
K and M2 = |K − 1 + 2αK2|. If 0 < Mi <

1, (i = 1, 2), then the kernels Fi(t, n, p), (i = 1, 2) agree with the contraction and Lipschitz
conditions in the region Θ× (t0, T].

Proof. Let n(t1) = n1 and n(t2) = n2 be two functions for the kernel F1 and p(t1) = p1
and p(t2) = p2 be two functions for the kernel F2. Then we have

‖F1(t, n1, p)− F1(t, n2, p‖

=
∥∥∥σ
(

1− n1

k

)
n1 − (1 + αp)pn1 − σ

(
1− n2

k

)
n2 + (1 + αp)pn2

∥∥∥
=
∥∥∥[σ− (1 + αp)p]n1 − [σ− (1 + αp)p]n2 −

σ

k
(n2

1 − n2
2)
∥∥∥

=
∥∥∥[σ− (1 + αp)p](n1 − n2)−

σ

k
(n1 − n2)(n1 + n2)

∥∥∥
≤
(

σ + (1 + αK)K + 2
σ

k
K
)
‖n1 − n2‖

≤ M1‖n1 − n2‖

(9)

and

‖F2(t, n, p1)− F2(t, n, p2‖

= ‖(1 + αp1)np1 − p1 − (1 + αp2)np2 + p2‖

=
∥∥(n− 1)(p1 − p2) + αn(p2

1 − p2
2)
∥∥

= ‖[(n− 1) + αn(p1 + p2)](p1 − p2)‖

≤ |K− 1 + 2αK2|‖p1 − p2‖

≤ M2‖p1 − p2‖,

(10)

where M1 = σ + (1 + αK)K + 2
σ

k
K and M2 = |K − 1 + 2αK2|. Therefore, the Lipschitz

conditions are satisfied for kernels F1 and F2, and if 0 < Mi < 1, (i = 1, 2) then M1 and M2
are also contractions for F1 and F2, respectively. Assume that the conditions (9) and (10)
hold and let us consider the kernels F1 and F2. Then (7) can be written

n(t) = n(t0) +
1

Γ(θ)

∫ t

t0

(t− τ)θ−1F1(τ, n, p)dτ,

p(t) = p(t0) +
1

Γ(θ)

∫ t

t0

(t− τ)θ−1F2(τ, n, p)dτ.
(11)



Axioms 2021, 10, 78 6 of 14

The initial conditions and the recurrence form of the model (11) are, respectively

n0(t) = n(t0), p0(t) = p(t0) (12)

and

nm(t) = n(t0) +
1

Γ(θ)

∫ t

t0

(t− τ)θ−1F1(τ, nm−1, p)dτ,

pm(t) = p(t0) +
1

Γ(θ)

∫ t

t0

(t− τ)θ−1F2(τ, n, pm−1)dτ.
(13)

The successive difference between the terms is defined as

Φ1m(t) = nm(t)− nm−1(t) =
1

Γ(θ)

∫ t

t0

(t− τ)θ−1[F1(τ, nm−1, p)− F1(τ, nm−2, p)]dτ,

Φ2m(t) = pm(t)− pm−1(t) =
1

Γ(θ)

∫ t

t0

(t− τ)θ−1[F2(τ, n, pm−1)− F2(τ, n, pm−2)]dτ,
(14)

where

nm(t) =
m

∑
i=1

Φ1i(t), pm(t) =
m

∑
i=1

Φ2i(t). (15)

Taking the norm of (14), it follows from the conditions (9)–(10) that

‖Φ1m(t)‖ = ‖nm(t)− nm−1(t)‖ ≤
M1

Γ(θ)

∫ t

t0

(t− τ)θ−1
∥∥∥Φ1(m−1)(τ)

∥∥∥dτ,

‖Φ2m(t)‖ = ‖pm(t)− pm−1(t)‖ ≤
M2

Γ(θ)

∫ t

t0

(t− τ)θ−1
∥∥∥Φ2(m−1)(τ)

∥∥∥dτ.
(16)

The following theorem holds.

Theorem 3. Assume that the conditions (9)–(10) hold. If

MiTθ

Γ(θ + 1)
< 1, i = 1, 2 , (17)

then the solution of the fractional model given in (3)–(4) exists and is unique.

Proof. Let us consider n(t), p(t) bounded functions and the kernels F1 and F2 satisfy the
Lipschitz condition. From (15) and (16), it follows that

‖Φ1m(t)‖ ≤ ‖n0(t)‖
{

M1Tθ

Γ(θ + 1)

}m

,

‖Φ2m(t)‖ ≤ ‖p0(t)‖
{

M2Tθ

Γ(θ + 1)

}m

.
(18)

This shows the existence for the solutions. Moreover, in order to prove that (18) are
solutions to (3) and (4), we consider

n(t)− n(t0) = nm(t)− r1m(t),
p(t)− p(t0) = pm(t)− r2m(t),

(19)
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where r1m, r2m are the remaining terms. We show that the terms in (19) satisfy ‖r1∞(t)‖ → 0
and ‖r2∞(t)‖ → 0. Now, we consider the conditions

‖r1m(t)‖ ≤
∥∥∥∥ 1

Γ(θ)

∫ t

t0

(t− τ)θ−1|F1(τ, n, p)− F1(τ, nm−1, p)|dτ

∥∥∥∥
≤ 1

Γ(θ)

∫ t

t0

(t− τ)θ−1‖F1(τ, n, p)− F1(τ, nm−1, p)‖dτ

≤ M1Tθ

Γ(θ + 1)
‖n− nm−1‖.

(20)

On using recursive techniques, we get

‖r1m(t)‖ ≤
{

Tθ

Γ(θ + 1)

}m+1

Mm+1
1 .

For m→ ∞, it follows that r1m(t)→ 0. In a similar way, we conclude that r2m(t)→ 0.
In order to prove the uniqueness of the solution to the model (3) and (4), let us suppose
there exists another solution of the system n̄(t) and p̄(t). Then

‖n(t)− n̄(t)‖ ≤ 1
Γ(θ)

∫ t

t0

(t− τ)θ−1‖F1(τ, n, p)− F1(τ, n̄, p)‖dτ,

‖p(t)− p̄(t)‖ ≤ 1
Γ(θ)

∫ t

t0

(t− τ)θ−1‖F2(τ, n, p)− F2(τ, n, p̄)‖dτ.
(21)

In view of the Lipschitz condition, it follows that

‖n(t)− n̄(t)‖ ≤ M1tθ

Γ(θ + 1)
‖n(t)− n̄(t)‖,

‖p(t)− p̄(t)‖ ≤ M2tθ

Γ(θ + 1)
‖p(t)− p̄(t)‖,

(22)

and hence

‖n(t)− n̄(t)‖
(

1− M1tθ

Γ(θ + 1)

)
≤ 0,

‖p(t)− p̄(t)‖
(

1− M2tθ

Γ(θ + 1)

)
≤ 0.

(23)

In view of (17), it follows that ‖n(t)− n̄(t)‖ = 0 and ‖p(t)− p̄(t)‖ = 0.

4. Stability Analysis

The equilibrium points of system (3) are obtained by considering

Dθ
t n(t) = 0, Dθ

t p(t) = 0.

According to [5,14], besides the trivial equilibrium E0 ≡ (0, 0), the system admits the
predator-free equilibrium Eb ≡ (k, 0) and the coexistence equilibrium E∗ = (n∗, p∗) ≡(

1
(1 + αp∗)

, p∗
)

where p∗ satisfies α2kp3 + 2αkp2 + k(1− ασ)p + σ(1− k) = 0. As shown

in [14], if k > 1, E∗ is unique, while if
−1 +

√
1 + 3σα

ασ
< k ≤ 1 and σ > 1

α there exist two
coexistence equilibria. In all other cases, no coexistence equilibria are admissible.

In the following, we will discuss the stability properties of the coexistence equilibrium
by using the linearization method.
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The Jacobian matrix of system (3) evaluated at the equilibrium point E∗ = (n∗, p∗) is
given by

J(E∗) =


− σ

k(1 + αp∗)
−1 + 2αp∗

1 + αp∗

(1 + αp∗)p∗
αp∗

1 + αp∗

. (24)

Now, the characteristic equation of the Jacobian matrix is λ2 − Iλ + A = 0 and the
roots of the characteristic equation are

λ1,2 =
I ±
√

I2 − 4A
2

, (25)

where I and A are the trace and determinant of the Jacobian matrix J(E∗) given by

I =
kαp∗ − σ

k(1 + αp∗)
,

A =
p∗

k(1 + αp∗)2 [k(1 + αp∗)2(1 + 2αp∗)− ασ].

The stability analysis of E∗ will be divided in the following four cases:

(1) If I2 − 4A ≥ 0 and I < 0, then λi(i = 1, 2) are negative real numbers. Hence,

| arg(λi)| = π > θ
π

2
. The coexistence equilibrium is asymptotically stable.

(2) If I2 − 4A ≥ 0 and I ≥ 0 then at least one of λ1, λ2 will be positive. Therefore, at

least one of λi will be such that | arg λi| = 0 < θ
π

2
and hence the coexistence point

is unstable.
(3) When I2 − 4A < 0, then the eigenvalues are a pair of complex conjugate λ1,2 =

I
2
± i

√
4A− I2

2
.

(a) If I > 0 then Re(λ1) = Re(λ2) > 0 and Im(λ1) = −Im(λ2) =

√
4A− I2

2
> 0.

Then, when

√
4A− I2

I
> tan θ

π

2
, the coexistence equilibrium is asymptotically

stable, otherwise it is unstable.
(b) If I < 0, then Re(λ1) = Re(λ2) < 0. Then, | arg(λi)| >

π

2
and the equilibrium is

asymptotically stable.

(4) When I = 0 and I2 − 4A = −4A < 0, then Re(λ1) = Re(λ2) = 0. Hence, | arg (λi)| =
π

2
> θ

π

2
. In this case, the equilibrium is asymptotically stable.

A Hopf bifurcation occurs when a pair of complex eigenvalues of the Jacobian matrix
at an equilibrium point exists and the stability of the equilibrium changes from stable to
unstable when a bifurcation parameter crosses a critical value. We can choose the order of
derivation θ to be the bifurcation parameter and by using the following well-known result
we find the conditions for the Hopf bifurcation to appear.

Lemma 4. [26] When bifurcation parameter θ passes through the critical value θ∗ ∈ (0, 1),
fractional-order system (3) undergoes a Hopf bifurcation at the equilibrium point, if the following
conditions hold

1. the corresponding characteristic equation of system (3) has a pair of complex conjugate roots
λ1,2 = γ± iω with γ > 0;

2. m(θ∗) = θ∗
π

2
− min

1≤i≤2
| arg λi| = 0;

3.
dm(θ)

dθ
|θ=θ∗ 6= 0.



Axioms 2021, 10, 78 9 of 14

We find the conditions for the model (3) tp undergo a Hopf bifurcation at equilibrium
point E∗ ≡ (n∗, p∗) when the order of derivation passes through the critical value θ∗ =
2
π

arctan[

√
|I2 − 4A|

I
].

Let us assume that I2− 4A < 0 and I > 0; let the critical value θ∗ =
2
π

arctan[

√
|I2 − 4A|

I
].

Let us define γ =
I
2

and ω =

√
|I2 − 4A|

2
. Then, it follows that the eigenvalues are a pair

of complex conjugate λ1,2 = γ± iω with γ > 0. In addition, let m(θ) = θ
π

2
− min

1≤i≤2
| arg λi|,

then, it follows that

m(θ∗) = θ∗
π

2
− min

1≤i≤2
| arg λi| = θ∗

π

2
− arctan

ω

γ
= arctan ω

γ − arctan ω
γ = 0.

Finally,
dm(θ)

dθ
|θ=θ∗ =

π

2
6= 0.

Therefore, we can conclude that a Hopf bifurcation of (3) will appear at E∗.

5. Numerical Solution

Even if the interest on fractional calculus traces back at least to the 1970s (without
considering the seminal suggestions given by Leibniz and Euler more than 300 years ago),
in the last decades there has been an explosion of research activities on its application to
several areas. Such a growing interest for fractional-order models had led to the devel-
opment of specific algorithms devoted to the numerical approximation of the solution
to fractional-order differential problems. Several solvers have been proposed in the last
years [27–29], all trying to balance efficiency and accuracy while guaranteeing reliability
of the numerical approximation. It is well-known, indeed, that the persistent memory of
fractional-order operators reflects on the numerical evaluation of the solution: as a natural
consequence, at each new timestep all the past history of the solution is to be considered.
The number of involved steps increases with time, and so does the computational burden.

In a sense, numerical methods for fractional-order differential systems are then natu-
rally multi-step. They generalize some of the ODE methods, but with significant differences
in both complexity and accuracy. We follow here the excellent survey [30] and consider
some of the schemes reported there. The simplest schemes are derived by approximating
the integrand function x(t) = (n(t), p(t)) in (7) by a piecewise polynomial and proceeding
to its exact integration. This leads to “rectangular” (explicit or implicit) product integration
formulas when a zero-order approximation of the integrand function in each subinterval
is assumed, or “trapezoidal” formulas where first-order approximation is chosen. Of
course, implicit formulas are more stable, but they require solving the nonlinear equations
that generally arise. To avoid this additional burden, a predictor–corrector approach can
be useful.

The convergence order of the rectangular formulas is one: the distance between the
numerical approximation and the exact solution in any time point tn decreases linearly
with the timestep, and this result replicates the well-known one for the ODE formula.
Unfortunately, this is not always true for the trapezoidal rule: its convergence order is
limited by the minimum between 1 + θ and 2 [28], so that for 0 < θ < 1 the rate of the cor-
responding ODE method cannot be reached. Similarly, higher order formulas for fractional
systems do not lead to significant improvements in accuracy and convergence rate, and
they are not worthy to be considered. As an alternative to product integration formulas,
Fractional Linear Multistep methods have been proposed to generalize the standard multi-
step methods for ODEs. They are very robust and can reach higher convergence order, but
their convolution weights are not known explicitly in advance and have to be evaluated.
This computation can however be performed very efficiently by FFT derived algorithms.
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Numerical approximations of the solution of (3) can then be obtained by applying
several different schemes. Even developed from the same ODE methods, they present
distinguishing characteristics that deserve to be investigated. For this reason, we considered
and compared the following schemes:

• Implicit Rectangular Product Integration rule (PI1)

xn = x0 + hθ
n

∑
i=1

b(θ)n−iF(ti, xi), b(θ)n =
(n + 1)θ − nθ

Γ(θ + 1)
;

• Implicit Trapezoidal Product Integration rule (PI2)

xn = x0 + hθ 1
Γ(θ + 2)

(
ãn

(θ)F(t0, x0) +
n

∑
i=1

a(θ)n−iF(ti, xi)

)
,

with a(θ)0 = 1 and

ãn
(θ) = (n− 1)θ+1 − nθ(n− θ − 1), a(θ)n = (n− 1)θ+1 − 2nθ+1 + (n + 1)θ+1 ;

• Predictor–Corrector Product Integration rule (PI12)

xP
n = x0 + hθ

n−1

∑
i=0

b(θ)n−i−1F(ti, xi),

xn = x0 + hθ 1
Γ(θ + 2)

(
ãn

(θ)F(t0, x0) +
n−1

∑
i=1

a(θ)n−iF(ti, xi) + a(θ)0 F(tn, xP
n )

)
;

• Fractional Backward Differentiation Formula (FLMM2)

xn = x0 + hθ ∑n
i=0(−1)n−i(−θ

n−i)F(ti, xi), where (−θ
n−i) =

Γ(1−θ)
Γ(n+1)Γ(−θ−n+1) .

All these numerical schemes have been implemented in Matlab routines as given
in [30,31]. For the problem at hand, the performance of these schemes can be evaluated
only qualitatively, due to the lack of an exact (closed form) solution, by comparing their
behavior for decreasing timesteps; however, we refer the reader to the above cited literature
for an exhaustive assessment of their results on several test cases.

5.1. Preliminary Assessment

As a preliminary test, we checked the results of all methods in reproducing trajectories
when θ = 1, because these results can be directly compared with the reference solutions
given by classical ODE solvers. Even if the considered methods are all devised for fractional-
order systems, they are expected to reproduce a good numerical approximation of the
solution also for the integer order case. When the parameter settings (σ = 3, α = 0.3,
k = 5) lead to a stable coexistence equilibrium, all methods are able to reproduce the
expected trajectories: the left panel of Figure 1 shows the convergence of all numerical
approximations of n(t) towards the equilibrium value n∗ ≈ 0.66. On the other hand, when
Hopf instability occurs (σ = 3, α = 10, k = 0.8), the simplest PI1 method shows a sensible
damping of the oscillations around the equilibrium n∗ ≈ 0.188, as shown in the right panel
of the same Figure, while the other methods’ trajectories are practically indistinguishable
from the reference one (as reported in [14]).
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Figure 1. Trajectories for the numerical approximations PI1 and PI2 of n(t) solution of system (3)
for θ = 1 in case of a stable equilibrium (left panel) and in the presence of Hopf instability (right
panel). The lowest order approximation PI1 clearly shows damped oscillations, while the trajectories
of the higher order approximations are in excellent agreement with the ones obtained by classical
ODE solvers.

5.2. Stabilizing Effect of the Persistent Memory

As a second test case, we consider a parameter setting for which the corresponding
ODE system shows instability: if we choose as before σ = 3, α = 10, k = 0.8, simply consid-
ering a slightly lower value for θ (θ = 0.9) has a powerful stabilizing effect. As Figure 2
shows, all the numerical approximations agree in a fast damping of the oscillations for both
the variables. Again, the damping is more evident in the lower order method PI1, while
the other considered schemes agree in accurately reconstructing the system trajectories. To
further analyze the different performance of the considered numerical methods, we present
in the following Figure 3 a detail of the first part of the same trajectories as reconstructed
by any of the numerical schemes for decreasing time steps h1 = 2−4, h2 = 2−5, h3 = 2−6,
h4 = 2−7. The less accurate results of PI1 with respect to the other schemes can be clearly
seen. Of course, lower values for the fractional-order θ result in an even faster damping of
the oscillations in the trajectories, confirming the strong stabilizing effect of the persistent
memory in the model. For the same test case, Figure 4 compares the numerical approxima-
tions by PI2 of the populations’ trajectories for different values of the order θ (0.95, 0.9, 0.85,
0.8), confirming the strong stabilizing effect of the fractional derivative.

Figure 2. Trajectories for all the numerical approximations of the solutions of system (3) in case
θ = 0.9. While the corresponding ODE systems show instability (see the right panel of Figure 1), the
trajectories of the fractional system rapidly stabilizes for both variables (n(t) shown in the left panel,
p(t) in the right one). The lowest order approximation PI1 clearly shows more damped oscillations,
while the higher order approximations are all in excellent agreement.



Axioms 2021, 10, 78 12 of 14

Figure 3. Details of the initial part of the trajectories shown in the left panel of Figure 2 as re-
constructed by all the numerical methods for decreasing timesteps h1, h2, h3, h4. The lowest order
approximation PI1 clearly shows more damped oscillations, and only for the smallest timestep it
agrees with the other methods, whose results are practically identical.

Figure 4. Trajectories for the numerical approximations PI2 of the solutions of system (3) for different
θ values (0.95, 0.9, 0.85, 0.8) for both populations (n(t) shown in the left panel, p(t) in the right one).
The stabilizing effect of the fractional operators can be clearly seen.

5.3. Hopf Instability for the Fractional System

As a third example, we show how the instability can still occur for the fractional
system with a suitable choice of the parameters. We start by considering a parameter
setting for which, as stated in Section 4, the conditions for the Hopf instability to appear are
met: we set σ = 3, α = 3.5, k = 5. In this case, it is I > 0 and I2 − 4A < 0. The eigenvalues of
the Jacobian are a couple of complex conjugate numbers with a positive real part so that
for θ > θ∗ = arctan 2/π

√
4A− I2/I ≈ 0.89 the coexistence equilibrium E∗ ≈ (0.27, 0.77)

loses its stability. The following Figure 5 shows the trajectories of (n(t), p(t)) when θ = 0.92
as reconstructed by the more accurate numerical algorithms and the corresponding phase
plan portrait, clearly showing the appearance of a limit cycle.
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Figure 5. Numerical approximation PI12 of the solutions of system (3) confirming the Hopf instability
predicted by the theory in case θ = 0.92 with σ = 3, α = 3.5, k = 5. In the left panel, the trajectories
for both variables are reported as functions of time; the right panel shows the limit cycle in the
phase plan.

6. Conclusions

Fractional calculus, implying non-locality and memory effects, allows the description
of numerous phenomena in a wide variety of scientific domains. Fractional-order operators
have been proved to be a very powerful modeling instrument to represent a variety of
processes and biological systems. In this framework, we studied in this paper the dynamic
behavior of a fractional-in-time prey–predator model with hunting cooperation. The
existence and uniqueness of a non-negative solution has been proved and the local stability
of the coexistence equilibrium point has been analyzed by using the linearization technique.
The conditions for the occurrence of a Hopf bifurcation have been found. Finally, numerical
simulations have been presented to confirm by some selected examples how the order of
derivation θ affects the dynamical behavior of prey and predator density. The findings of
the present study, in our opinion, can provide hints for the investigation of the dynamics
of other processes describing real-world phenomena. As a final consideration, we outline
that several authors investigated pattern formation in the related spatial fractional-order
systems. Recently, Yin and Wen [32] have shown that fractional-derivative systems can
result in persistent spatial patterns even though their ODE counterpart does not induce
any steady pattern. Such mechanisms of pattern formation along with the ones induced by
anomalous diffusion suggest further directions of research in spatial generalizations of the
considered model.
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