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Abstract: We consider a Mean Field Games model where the dynamics of the agents is given by a
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prove an existence result for the latter system, obtaining consequently existence of a solution for the
Mean Field Games system.
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1. Introduction

The Mean Field Games (MFG in short) theory concerns the study of differential games
with a large number of rational, indistinguishable agents and the characterization of the
corresponding Nash equilibria. In the original model introduced in [1,2], an agent can
typically act on its velocity (or other first order dynamical quantities) via a control variable.
Mean Field Games where agents control the acceleration have been recently proposed
in [3–5].

A prototype of stochastic process involving acceleration is given by the Langevin
diffusion process, which can be formally defined as

Ẍ(t) = −b(X(t)) + σḂ(t), (1)

where Ẍ is the second time derivative of the stochastic process X, B a Brownian motion
and σ a positive parameter. The solution of (1) can be rewritten as a Markov process
(X, V) solving {

Ẋ(t) = V(t),
V̇(t) = −b(X(t)) + σḂ(t).

The probability density function of the previous process satisfies the kinetic Fokker–
Planck equation

∂t p− σ2

2
∆v p− b(x) · Dv p + v · Dx p = 0 in (0, ∞)×Rd ×Rd.

The previous equation, in the case b ≡ 0, was first studied by Kolmogorov [6] who
provided an explicit formula for its fundamental solution. Then considered by Hörman-
der [7] as motivating example for the general theory of the hypoelliptic operators (see
also [8–10]).
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We consider a Mean Field Games model where the dynamics of the single agent is
given by a controlled Langevin diffusion process, i.e.,

Ẋ(s) = V(s), s ≥ t
V̇(s) = −b(X(s)) + α(s) + σḂ(s) s ≥ t
X(t) = x, V(t) = v

(2)

for (t, x, v) ∈ [0, T] × Rd × Rd. In (2), the control law α : [t, T] → Rd, which is a pro-
gressively measurable process with respect to a fixed filtered probability space such that
E[
∫ T

t |α(t)|
2dt] < +∞, is chosen to maximize the functional

J(t, x, v; α) = Et,(x,v)

{ ∫ T

t

[
f (X(s), V(s), m(s))− 1

2
|α(s)|2

]
ds

+ uT(X(T), V(T))
}

,

where m(s) is the distribution of the agents at time s. Let u the value function associated
with the previous control problem, i.e.,

u(t, x, v) = sup
α∈At

{J(t, x, v; α)}

where At is the the set of the control laws. Formally, the couple (u, m) satisfies the MFG
system (see Section 4.1 in [3] for more details)

∂tu + σ2

2 ∆vu− b(x) · Dvu + v · Dxu + 1
2 |Dvu|2 = − f (x, v, m)

∂tm− σ2

2 ∆vm− b(x) · Dvm + v · Dxm + divv(mDvu) = 0

m(0, x, v) = m0(x, v), u(T, x, v) = uT(x, v).

(3)

for (t, x, v) ∈ (0, T)×Rd ×Rd. The first equation is a backward Hamilton–Jacobi–Bellman
equation, degenerate in the x-variable and with a quadratic Hamiltonian in the v variable,
and the second equation is forward kinetic Fokker–Planck equation. In the standard setting,
MFG systems with quadratic Hamiltonians has been extensively considered in literature
both as a reference model for the general theory and also since, thanks to the Hopf-Cole
change of variable, the nonlinear Hamilton-Jacobi-Bellman equation can be transformed
into a linear equation, allowing to use all the tools developed for this type of problem (see
for example [2,11–15]). Recently, a similar procedure has been used for ergodic hypoelliptic
MFG with quadratic cost in [16] and for a flocking model involving kinetic equations in
Section 4.7.3 of [17].

We study (3) by means of a change of variable introduced in [11,14] for the standard
case. By defining the new unknowns φ = eu/σ2

and ψ = me−u/σ2
, the system (3) is

transformed into a system of two kinetic Fokker–Planck equations
∂tφ + σ2

2 ∆vφ− b(x) · Dvφ + v · Dxφ = − 1
σ2 f (x, v, ψφ)φ

∂tψ− σ2

2 ∆vψ− b(x) · Dvψ + v · Dxψ = 1
σ2 f (x, v, ψφ)ψ

ψ(0, x, v) = m0(x,v)
φ(0,x,v) , φ(T, x, v) = e

uT (x,v)
σ2 .

(4)

for (t, x, v) ∈ (0, T)×Rd ×Rd. In the previous problem, the coupling between the two
equations is only in the source terms. Following [14], we prove existence of a weak solution
to (4) by showing the convergence of an iterative scheme defined, starting from ψ(0) ≡ 0,
by solving alternatively the backward problem
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
∂tφ

(k+ 1
2 ) + σ2

2 ∆vφ(k+ 1
2 ) −b(x) · Dvφ(k+ 1

2 ) + v · Dxφ(k+ 1
2 )

= − 1
σ2 f (ψ(k)φ(k+ 1

2 ))φ(k+ 1
2 )

φ(k+ 1
2 )(T, x, v) = e

uT (x,v)
σ2 ,

(5)

and the forward one
∂tψ

(k+1) − σ2

2 ∆vψ(k+1) −b(x) · Dvψ(k+1) + v · Dxψ(k+1)

= 1
σ2 f (ψ(k+1)φ(k+ 1

2 ))ψ(k+1)

ψ(k+1)(0, x, v) = m0(x,v)

φ(k+ 1
2 )(0,x,v)

.

(6)

We show that the resulting sequence (φ(k+ 1
2 ), ψ(k+1)), k ∈ N, monotonically converges

to the solution of (4). Hence, by the inverse change of variable (see again [11,14] for details)

u =
ln(φ)

σ2 , m = φψ, (7)

we obtain a solution of the original problem (3). We have

Theorem 1. The sequence (φ(k+ 1
2 ), ψ(k+1)) defined by (5) and (6) converges in L2([0, T]×Rd ×

Rd) and a.e. to a weak solution (φ, ψ) of (4). Moreover, the couple (u, m) defined by (7) is a weak
solution to (3).

The main difficulty in the study of problems (3) and (4) is due both in the degeneracy
of the second order operator with respect to x and in the unbounded dependence of the
coefficients of the first order terms with respect to v. To overcome the previous difficulties
we rely on the results for linear kinetic Fokker–Planck equations developed in [18]. We
mention that existence of weak solutions for the standard MFG problem, possibly degener-
ate, has been studied in [19], but the results in this paper do not cover the present setting.
The previous iterative procedure also suggests a monotone numerical method for the ap-
proximation of (4), hence for (3). Indeed, by approximating (5) and (6) by finite differences
and solving alternatively the resulting discrete equations, we obtain an approximation of
the sequence (φ(k+ 1

2 ), ψ(k+1)). A corresponding procedure for the standard quadratic MFG
system was studied in [14], where the convergence of the method is proved. We plan to
study the properties of the previous numerical procedure in a future work.

2. Well Posedness of the Kinetic Fokker–Planck System

In this section, we study the existence of a solution to system (4). The proof of the
result follows the strategy implemented in Section 2 of [14] for the case of a standard
MFG system with quadratic Hamiltonian and relies on the results for linear kinetic Fokker–
Planck equations in Appendix A of [18]. We remark the model here studied does not fit
exactly the problem treated in [18] because of the presence of a zero order term in the
Fokker-Planck equation. Hence some technical aspects should be analyzed in more detail,
however the present paper is mainly intended to give some idea on the change of variabile
for the kinetic MGF.

We fix the assumptions we will assume in the whole paper. The vector field b : Rd →
Rd and the coupling cost f : Rd ×Rd ×R→ R are assumed to satisfy

b ∈ L∞(Rd),

f ∈ L∞(Rd ×Rd ×R), f ≤ 0 and f (x, v, ·) strictly decreasing.
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Moreover, the diffusion coefficient σ is positive and the initial and terminal data satisfy

m0 ∈ L∞(Rd ×Rd), m0 ≥ 0,
∫∫

m0(x, v)dxdv = 1,

and ∃ R0 > 0 s.t. supp{m0} ⊂ Rd × B(0, R0)
(8)

and
uT ∈ C0(Rd ×Rd) and ∃C0, C1 > 0 s.t. ∀(x, v) ∈ Rd ×Rd

−C0(|v|2 + |x|)− C0 ≤ uT(x, v) ≤ −C1(|v|2 + |x|) + C1.
(9)

Note that (9) implies that euT/σ2 ∈ L∞(Rd × Rd) ∩ L2(Rd × Rd). We denote with
(·, ·) the scalar product in L2([0, T]×Rd ×Rd) and with 〈·, ·〉 the pairing between X =
L2([0, T]×Rd

x; H1(Rd
v)) and its dual X ′ = L2([0, T]×Rd

x; H−1(Rd
v)). We define the follow-

ing functional space

Y =
{

g ∈ L2([0, T]×Rd
x, H1(Rd

v)), ∂tg + v · Dxg ∈ L2([0, T]×Rd
x, H−1(Rd

v))
}

and we set Y0 = {g ∈ Y : g ≥ 0}. If g ∈ Y , then it admits (continuous) trace values
g(0, x, v), g(T, x, v) ∈ L2(Rd ×Rd) (see [18, Lemma A.1]) and therefore the initial/terminal
conditions for (4) are well defined in L2 sense. We first prove the well posedness of
problems (5) and (6).

Proposition 2. We have

(i) For any ψ ∈ Y0, there exists a unique solution φ ∈ Y0 to ∂tφ + σ2

2 ∆vφ− b(x) · Dvφ + v · Dxφ = − 1
σ2 f (x, v, ψφ)φ

φ(T, x, v) = e
uT (x,v)

σ2 .
(10)

Moreover, φ ∈ L∞([0, T]×Rd ×Rd) and, for any R > 0, there exist δR ∈ R and ρ > 0
such that

φ(t, x, v) ≥ CR := e
1

σ2 (δR−ρT) ∀t ∈ [0, T], (x, v) ∈ B(0, R) ⊂ Rd ×Rd. (11)

(ii) Let Φ : Y0 → Y0 be the map which associates to ψ the unique solution of (10). Then, if
ψ2 ≤ ψ1, we have Φ(ψ2) ≥ Φ(ψ1).

Proof. We first prove existence of a solution to the nonlinear problem (10) by a fixed point
argument exploiting the results for the corresponding linear problem proved in [18]. Fixed
ψ ∈ Y0, consider the map F = F(ϕ) from L2([0, T]×Rd ×Rd) into itself that associates
with ϕ the weak solution φ ∈ L2([0, T]×Rd ×Rd) of the linear problem ∂tφ + σ2

2 ∆vφ− b(x) · Dvφ + v · Dxφ = − 1
σ2 f (ψϕ)φ

φ(T, x, v) = e
uT (x,v)

σ2 .
(12)

By Prop. A.2 of [18], φ belongs to Y and it coincides with the unique solution of (12)
in this space. Moreover, the following estimate

‖φ‖L2([0,T]×Rd
x ;H1(Rd

v))
+ ‖∂tφ + v · Dxφ‖L2([0,T]×Rd

x ;H−1(Rd
v))
≤ C (13)

holds for some constant C which depends only on ‖euT/σ2‖L2 , ‖ f ‖L∞ and σ. Hence F maps
BC, the closed ball of radius C of L2([0, T]×Rd ×Rd), into itself.

To show that the map F is continuous on BC, consider {ϕn}n∈N, ϕ ∈ L2([0, T]×Rd ×
Rd) such that ‖ϕn − ϕ‖L2 → 0 and set φn = F(ϕn). Then φn ∈ Y , and, by the estimate (13),
we get that, up to a subsequence, there exists φ ∈ Y such that φn → φ, Dvφn → Dvφ
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in L2([0, T] × Rd × Rd), ∂tφn + v · Dxφn → ∂tφn + v · Dxφn in L2([0, T] × Rd
x; H−1(Rd

v)).
Moreover, ϕn → ϕ almost everywhere. By the definition of weak solution to (12), we
have that

〈∂tφn + v · Dxφn, w〉 − σ2

2
(Dvφn, Dvw)− (b · Dvφn, w) = (− 1

σ2 φn f (ϕnψ), w), (14)

for any w ∈ D([0, T]×Rd ×Rd), the space of infinite differentiable functions with compact
support in [0, T]×Rd ×Rd. Employing weak convergence for left hand side of (14) and
the Dominated Convergence Theorem for the right hand one, we get for n→ ∞

〈∂tφ + v · Dxφ, w〉 − σ2

2
(Dvφ, Dvw)− (b · Dvφ, w) = (−φ f (ϕψ), w)

for any w ∈ D([0, T] × Rd × Rd). Hence φ = F(ϕ) and F(ϕn) → F(ϕ) for n → ∞ in
L2([0, T]×Rd ×Rd). The compactness of the map F in L2([0, T]×Rd ×Rd) follows by the
compactness of the set of the solutions to (12), see Theorem 1.2 of [20]. We conclude, by
Schauder’s Theorem, that there exists a fixed-point of the map F in L2, hence in Y , and
therefore a solution to the nonlinear parabolic Equation (10).

Observe that, if φ is a solution of (10), then φ̃ = eλtφ is a solution of

∂tφ̃ +
σ2

2
∆vφ̃− b(x) · Dvφ̃ + v · Dxφ̃− λφ̃ = − 1

σ2 f (e−λtψφ̃)φ̃ (15)

with the corresponding final condition. In the following, we assume that λ > 0. To show
that φ is non-negative, we will exploit the following property (see Lemma A.3 of [18]):
given φ ∈ Y and defined φ± = max(±φ, 0), then φ± ∈ X and

〈∂tφ + v · Dxφ, φ−〉 = 1
2

(∫∫
|φ(0, x, v)−|2dxdv−

∫∫
|φ(T, x, v)−|2dxdv

)
. (16)

Let φ be a solution of (15), multiply the equation by φ− and integrate. Then, since
φ(T, x, v) is non-negative, by (16) we get

− 1
σ2 (φ f (eλtφψ), φ−) = 〈∂tφ + v · Dxφ, φ−〉−

σ2

2
(Dvφ, Dvφ−)− (b · Dvφ, φ−)− λ(φ, φ−) =

1
2

∫∫
|φ(0, x, v)−|2dxdv +

σ2

2
(Dvφ−, Dvφ−) + λ(φ−, φ−) ≥

λ(φ−, φ−),

where it has been exploited that, by integration by parts, (b · Dvφ, φ−) = 0. Since f ≤ 0
and therefore

−(φ f (eλtφψ), φ−) = (φ− f (eλtφψ), φ−) ≤ 0,

we get (φ−, φ−) ≡ 0, hence φ ≥ 0.
To prove the uniqueness of the solution to (10), consider two solutions φ1, φ2 of (15)

and set φ = φ1−φ2. Multiplying the equation for φ by φ, integrating and using φ(x, v, T) = 0,
we get

− 1
σ2 ( f (e−λtψφ1)φ1 − f (e−λtψφ2)φ2, φ1 − φ2) = 〈∂tφ + v · Dxφ, φ〉−

σ2

2
(Dvφ, Dvφ)− (b · Dvφ, φ)− λ(φ, φ) =

−1
2

∫∫
|φ(x, v, 0)|2dxdv− σ2

2
(Dvφ, Dvφ)− λ(φ, φ) ≤ −λ(φ1 − φ2, φ1 − φ2)

(17)
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and, by the strict monotonicity of f , we conclude that φ1 = φ2.
To prove that φ is bounded from above, we observe that the function φ(t, x, v) =

eC1+(T−t)‖ f ‖∞/σ2
, where C1 as in (9), is a supersolution of the linear problem (12) for any

ϕ ∈ L2([0, T]×Rd ×Rd), i.e., φ(T, x, v) ≥ euT(x,v)/σ2
and

∂tφ +
σ2

2
∆vφ− b(x) · Dvφ + v · Dxφ ≤ − 1

σ2 f (ψϕ)φ.

By the Maximum Principle (see Prop. A.3 (i) in [18]), we get that φ ≥ φ, where φ is the
solution of (12). Since the previous property holds for any ϕ ∈ L2([0, T]×Rd ×Rd), we
conclude that φ ≥ φ, where φ is the solution of the nonlinear problem (10).

A similar argument show that φ(x, v, t) = e(−C0(|v|2+|x|+1)−ρ(T−t))/σ2
, where C0 as

in (9) and ρ sufficiently large, is a subsolution of (12) for any ϕ ∈ L2([0, T] × Rd × Rd).
Indeed, replacing φ in the equation, we get that the inequality

∂tφ +
σ2

2
∆vφ− b(x) · Dvφ + v · Dxφ =

=
φ

σ2

(
ρ− C0dσ2 + 2C2

0σ2|v|2 + 2C0b(x) · v− C0v · x
|x|

)
≥

− 1
σ2 f (ψϕ)φ

is satisfied for ρ large enough and, moreover, φ ≤ euT(x,v)/σ2
. Hence φ ≤ φ, where φ is the

solution of the nonlinear problem (10), and, from this estimate, we deduce (11).
We finally prove the monotonicity of the map Φ. Set φi = Φ(ψi), i = 1, 2, and consider

the equation satisfied by φ = eλtφ1 − eλtφ2, multiply it by φ
+ and integrate. Performing a

computation similar to (17), we get

− 1
σ2 ( f (φ1ψ1)φ1 − f (φ2ψ2)φ2, φ

+
) ≤ −λ(φ

+, φ
+
).

Since, by monotonicity of f and non-negativity of φi, we have

−( f (φ1ψ1)φ1 − f (φ2ψ2)φ2, φ
+
) = −( f (φ1ψ1)(φ1 − φ2), φ

+
)−

(( f (φ1ψ1)− f (φ2ψ2))φ2, φ
+
) ≥ 0,

we get (φ+, φ
+
) = 0 and therefore φ1 ≤ φ2.

We set
YR = {φ ∈ Y0 : φ ≥ CR ∀(x, v) ∈ B(0, R), t ∈ [0, T]},

where CR is defined as in (11).

Proposition 3. Given R > R0, where R0 as in (8), we have

(i) For any φ ∈ YR, there exists a unique solution ψ ∈ Y0 to ∂tψ− σ2

2 ∆vψ− b(x) · Dvψ + v · Dxψ = 1
σ2 f (x, v, ψφ)ψ

ψ(0, x, v) = m0(x,v)
φ(0,x,v) .

(18)

Moreover

ψ(x, v, t) ≤ ‖m0‖L∞

CR
∀t ∈ [0, T], (x, v) ∈ Rd ×Rd, (19)

where CR as in (11).
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(ii) Let Ψ : YR → Y0 be the map which associates with φ ∈ YR the unique solution of (18). Then,
if φ2 ≤ φ1, we have Ψ(φ2) ≥ Ψ(φ1).

Proof. First observe that, since R > R0, then ψ(0, x, v) is well defined for φ ∈ YR. The proof
of the first part of (i) is very similar to the one of the corresponding result in Proposition 2,
hence we only prove the bound (19). If ψ is a solution of (18), then ψ̃ = e−λtψ is a solution of

∂tψ̃−
σ2

2
∆vψ̃− b(x) · Dvψ̃ + v · Dxψ + λψ̃ =

1
σ2 f (x, v, eλtψ̃φ)ψ. (20)

Let ψ be a solution of (20), set ψ̄ = ψ− e−λt‖m0‖L∞ /CR and observe that ψ̄(0) ≤ 0.
Multiply the equation for ψ̄ by ψ̄+ and integrate to obtain

(ψ f (eλtψφ), ψ̄+) =

〈∂tψ̄ + v · Dxψ̄, ψ̄+〉+ 1
σ2 (Dvψ̄, Dvψ̄+)− (b(x)Dvψ̄, ψ̄+) + λ(ψ̄, ψ̄+) ≥∫∫
|ψ̄+(x, v, T)|2dxdv + λ(ψ̄+, ψ̄+) ≥ λ(ψ̄+, ψ̄+).

Since ψ ≥ 0 and f ≤ 0, we have

(ψ f (eλtψφ), ψ̄+) ≤ 0

and therefore ψ̄+ ≡ 0. Hence the upper bound (19).
Now we prove (ii). Set ψi = Ψ(φi), i = 1, 2, and ψ̄ = e−λtψ1 − e−λtψ2. Multiply the

equation satisfied by ψ̄ by ψ̄+ and integrate. Since, by monotonicity and negativity of f ,
we have

( f (eλtφ1ψ1)ψ1 − f (eλtφ2ψ2)ψ2, ψ̄+) = ( f (eλtφ1ψ1)(ψ1 − ψ2), ψ̄+)+

(ψ2( f (e−λtφ1ψ1)− f (e−λtφ2ψ2)), ψ̄+) ≤ 0.

Then

0 ≥ 〈∂tψ̄ + v · Dxψ̄, ψ̄+〉+ 1
σ2 (Dvψ̄, Dvψ̄+)− (b(x)Dvψ̄, ψ̄+) + λ(ψ̄, ψ̄+) ≥∫∫
|ψ̄+(x, v, T)|2dxdv + λ(ψ̄+, ψ̄+) ≥ λ(ψ̄+, ψ̄+).

Hence ψ̄+ ≡ 0 and therefore ψ1 ≤ ψ2.

Proof of Theorem 1. Given ψ(0) ≡ 0, consider the sequence (φ(k+ 1
2 ), ψ(k+1)), k ∈ N, de-

fined in (5) and (6). It can rewritten as φ(k+ 1
2 ) = Φ(ψ(k))

ψ(k+1) = Ψ(φ(k+ 1
2 ))

(21)

where the maps Φ, Ψ are as in Propositions 2 and, respectively 3. Observe that, by (11), we
have φ(k+ 1

2 ) ∈ YR for R > R0 and ψ(k+1) ≥ 0 for any k. Hence the sequence (φ(k+ 1
2 ), ψ(k+1))

is well defined. We first prove by induction the monotonicity of the components of
(φ(k+ 1

2 ), ψ(k+1)). By non-negativity of solutions to (18), we have ψ(1) = Φ(φ( 1
2 )) ≥ 0 and

therefore ψ(1) ≥ ψ(0). Moreover, by the monotonicity of Φ, φ( 3
2 ) = Φ(ψ(1)) ≤ Φ(ψ(0)) = φ( 1

2 ).
Now assume that ψ(k+1) ≥ ψ(k). Then

φ(k+ 3
2 ) = Φ(ψ(k+1)) ≤ Φ(ψ(k)) = φ(k+ 1

2 )
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and
ψ(k+2) = Ψ(φ(k+ 3

2 )) ≥ Ψ(φ(k+ 1
2 )) = ψ(k+1),

therefore the monotonicity of two sequences.
Since φ(k+ 1

2 ) ≥ 0 and, by (19), for k → ∞, the sequence ψ(k+1) ≤ ‖m0‖L∞ /CR,
(φ(k+ 1

2 ), ψ(k+1)) converges a.e. and in L2([0, T] × Rd × Rd) to a couple (φ, ψ). Taking
into account the estimate (13), the a.e. convergence of the two sequences and repeating
an argument similar to the one employed for the continuity of the map F in Proposition 2,
we get that the couple (φ, ψ) satisfies, in weak sense, the first two equations in (4). The
terminal condition for φ is obviously satisfied, while the initial condition for ψ, in L2 sense,
follows by convergence of φ(k+ 1

2 )(0) to φ(0).
We now consider the couple (u, m) given by the change of variable in (7). We first

observe that, by Theorem 1.5 of [10], we have ∂tφ + v · Dxφ, Dvφ, ∆vφ ∈ L2([0, T]×Rd ×
Rd) and a corresponding regularity for ψ. Taking into account the boundedness of φ and
the estimate in (11), we have that u, ∂tu+ v ·Dxu, Dvu, ∆vu ∈ L2

loc([0, T]×Rd×Rd). Hence
we can write the equation for u in weak form, i.e.,

(∂tu + v · Dxu, w)− σ2

2
(Dvu, Dvw)− (b · Dvu, w) +

1
2
(|Dvu|2, w) = −( f (m), w),

for any w ∈ D([0, T]×Rd ×Rd), with final datum in trace sense. In a similar way, since
m, ∂tm + v · Dxm, Dvm, ∆vm ∈ L2

loc([0, T]×Rd ×Rd) and m is locally bounded, we can
rewrite also the equation for m in weak form, i.e.,

(∂tm + v · Dxm, w) +
σ2

2
(Dvm, Dvw)− (b · Dvm, w)− (mDvu, Dw) = 0,

for any w ∈ D([0, T]×Rd ×Rd) with the initial datum in trace sense.
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