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Abstract: The main objective of the present study is to analyze the nature and capture the corre-
sponding consequences of the solution obtained for the Gardner–Ostrovsky equation with the help
of the q-homotopy analysis transform technique (q-HATT). In the rotating ocean, the considered
equations exemplify strong interacting internal waves. The fractional operator employed in the
present study is used in order to illustrate its importance in generalizing the models associated with
kernel singular. The fixed-point theorem and the Banach space are considered to present the existence
and uniqueness within the frame of the Caputo–Fabrizio (CF) fractional operator. Furthermore, for
different fractional orders, the nature has been captured in plots. The realized consequences confirm
that the considered procedure is reliable and highly methodical for investigating the consequences
related to the nonlinear models of both integer and fractional order.

Keywords: internal waves in rotating ocean; fractional derivative; q-Homotopy analysis transform
technique; fixed point theorem
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1. Introduction

The concept of fractional calculus (FC) has received much consideration in recent
years due to its wide applicability and ability to capture more consequences of real-world
problems. Even though the concept of classical calculus can exemplify most real-life
problems and aid us in predicting the nature of complex phenomena, it has become a
narrow subset of FC. Even though pioneers propose many new notions, many things
need to be derived in order to ensure all classes of phenomena, which will be achieved
by overcoming the limitations raised by mathematicians and scientists [1–7]. This is
particularly true when researchers try to study, analyze and predict behaviors related to
history, long-range memory, heritage, chaos, epidemiology, and other such subjects. There
is always a door open for innovation, novelty, improvisation, and modifications in the
research when it comes to the investigation of consequences that help us to solve real-world
problems (the present pandemic, for example) and in this connection, many researchers
have derived stimulating results with the aid of FC, and by using efficient techniques with
the aid of fundamental results of FC [7–10].

The investigation of physical models and analysis of the associated properties are
always a hot topic in applied mathematics with appropriate tools. In particular, this is the
case for research on earthquakes, electrochemistry, signal processing, viscoelastic models,
fluid dynamics, plasma physics, and many others. In the present investigation, we consider
the nonlinear model describing the strong interacting internal waves in the ocean. In
1995, Oregon Bay experimented Coastal Ocean Probe Experiment (COPE) [11], found that
the internal shallow waves are very strong, and also, it is stated that the shallow water

Axioms 2021, 10, 123. https://doi.org/10.3390/axioms10020123 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-4468-3048
https://doi.org/10.3390/axioms10020123
https://doi.org/10.3390/axioms10020123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10020123
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10020123?type=check_update&version=2


Axioms 2021, 10, 123 2 of 16

wave phenomena are not completely nurtured with one nonlinear term. Furthermore,
there is a need for dual nonlinear terms to examine the physical behaviors of the model.
These experiments on shallow-water waves aid in formulating the model with dual-power
law nonlinearity.

The equation that exemplifies the above phenomena is familiarly known as the Gard-
ner equation. Generally, the Korteweg de-Vries (KdV) equations are widely used to
exemplify the behaviors of long waves and their physical significance. Here, we consider
the modified KdV equation, called the Gardner–Ostrovsky (GO) equation, due to the large
amplitude for long internal waves and extended rotational effects [12]. Now, we consider
the following two equations respectively exemplifying Ostrovsky and Gardner-Ostrovsky
(GO) equations with the isopycnic surface (u(x, t)):

d
dx

(
du(x, t)

dt
+ κ1u

du
dx

+ β
d3u
dx3

)
= cu(x, t), (1)

du(x, t)
dt

+ κ1u
du
dx

+ κ2u2 du
dx

+ β
d3u
dx3 = 0, (2)

where κ1 and κ2 are, respectively, quadratic and cubic nonlinearities coefficients, β is the
coefficient of small-scale dispersion, and c is the velocity of dispersion-less linear waves.
Here, κ1 and κ2 are two proportional terms involving in the above equations, and u du

dx is
due to the nonlinear hydrodynamic system, and it comes traditionally. Moreover, the term
u2 du

dx appears when u du
dx is a bird that is arbitrarily small. The GO equation is employed,

and formally known to exemplify by large-amplitude waves with strong nonlinearity
effects [13–18].

Recently, many authors illustrated the fractional operator’s essence in capturing
and understanding the more relative consequences of physical phenomena with higher
nonlinearity and complexity with long-range memory and history-based properties [19].
In this paper, we consider the fractional-order version of Equations (1) and (2) with Caputo–
Fabrizio fractional operator with order α, fractional Ostrovsky (FO) and fractional Gardner–
Ostrovsky (FGO) equations given by:

d
dx

(
CF
0 Dα

t u(x, t) + κ1u
du
dx

+ β
d3u
dx3

)
= cu(x, t), (3)

CF
0 Dα

t u(x, t) + κ1u
du
dx

+ κ2u2 du
dx

+ β
d3u
dx3 = 0. (4)

The vital and challenging job is finding the solution for nonlinear problems. Even
though we have distinct schemes for finding the solution for these problems, they may
possess a conversion of nonlinear to linear, partial to ordinary, perturbation, assumption of
additional parameters, or discretization. Here, we consider the method proposed based on
a topological concept called the homotopy analysis technique, which is nurtured to solve
complicated nonlinear problems, and for 20 years, numerous scholarly works have been
carried out with the aid of this [20,21]. Mankind is always searching for innovation, mod-
ernization and improvisation to increase accuracy and reduce the complexity associated
with the method. In association with this, the authors in [22] came with the improvisation
associated with Laplace transform (LT).

The projected scheme offers more freedom to choose the initial conditions, and the
novelty is that it offers a simple solution procedure. This method is perceptible and includes
all merits achieved by HAM, and also it attracted many researchers to analyze the diverse
class of models and systems. The novelty of the projected scheme is the ability to solve the
nonlinear problems without any assumption, perturbation, or conversion from nonlinear
to linear, or partial to ordinary differential equations. Moreover, it is associated with
parameters that are very helpful in converging the results attained towards a beneficial
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solution. Furthermore, it is related to well-posed transformation, which aims to reduce the
complexity and increase the applicability and reliability of the method.

The considered technique (q-HATT) is widely used for examining diverse classes of
nonlinear problems and investigating the distinct mathematical models associated with real
life [23–30]. For instance, the system of nonlinear differential equations exemplifying the
outbreak of COVID-19 in India is examined within the frame of a nonsingular derivative
in [24] using the projected scheme; HIV infection of lymphocyte cells is numerically
analyzed by researchers in [25]; some interesting results have been derived with the help
of the considered algorithm by authors in [29], in which the system exemplified the wind-
influenced projectile motion; and the numerical simulation is presented by authors in [28]
for the coupled Korteweg-de Vries system and this derived some interesting consequences
in terms of numerical simulation.

2. Preliminaries

The basic definitions are presented in this segment for the CF and Laplace transform.
Specifically, we recall the notions related to Caputo–Fabrizio fractional operator [19,31].

Definition 1. The CF fractional derivative for f ∈ H1(a, b) is presented as [19]:

Dα
t ( f (t)) =

M(α)

1− α

∫ t

a
f ′(t) exp

[
−α

t− ϑ

1− α

]
dϑ, b > a, (5)

where M(α) is a normalization function and admits M(0) = M(1) = 1. Further, if f /∈
H1(a, b), then we have:

Dα
t ( f (t)) =

αM(α)

1− α

∫ t

−∞
( f (t)− f (ϑ)) exp

[
−α

t− ϑ

1− α

]
dϑ. (6)

Definition 2. The CF fractional integralfor f ∈ H1(a, b) is presented as [31]:

CF I α( f (t)) =
2(1− α)

(2− α)M(α)
f (t) +

2α

(2− α)M(α)

∫ t

0
f (ϑ)dϑ, 0 < α < 1, t ≥ 0. (7)

Note: According to [31], the following must hold:

2(1− α)

(2− α)M(α)
+

2α

(2− α)M(α)
= 1, 0 < α < 1, (8)

which givesM(α) = 2
2−α . With the help of the above equation, researchers in [31] proposed

a novel Caputo derivative as follows

Dα
t ( f (t)) =

1
1− α

∫ t

0
f ′(t) exp

[
α

t− ϑ

1− α

]
dϑ, 0 < α < 1. (9)

Definition 3. The LT for a CF derivative CF
0 Dα

t f (t) is presented as [19] below:

L
[

CFC
0 D(α+n)

t f (t)
]
=

sn+1L[ f (t)]− sn f (0)− sn−1 f ′(0)− · · · − f (n)(0)
s + (1− s)α

. (10)
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3. Fundamental Procedure of the Considered Method

Here, we hired the differential equation to present the basic algorithm of the projected
method with the initial condition:

CF
0 Dα

t v(x, t) +R v(x, t) +N v(x, t) = f (x, t), 0 < α ≤ 1, (11)

and
v(x, 0) = }(x). (12)

We obtained this by applying LT on Equation (11):

L[v(x, t)]− }(x)
s

+
s + (1− s)α

s
{L[Rv(x, t)] + L[N v(x, t)]−L[ f (x, t)]} = 0. (13)

For ϕ(x, t; q), N is contracted as follows:

N [ϕ(x, t; q)] = L[ϕ(x, t; q)]− }(x)
s

+ s+(1−s)α
s {L[R ϕ(x, t; q)] + L[N ϕ(x, t; q)]− L[ f (x, t)]}

(14)

where q ∈
[
0, 1

n

]
. Then, the homotopy is defined by results in:

(1− nq)L[ϕ(x, t; q)− v0(x, t)] = }qN [ϕ(x, t; q)]. (15)

For q = 0 and q = 1
n , we have:

ϕ(x, t; 0) = v0(x, t), ϕ

(
x, t;

1
n

)
= v(x, t). (16)

By using the Taylor theorem, we consider:

ϕ(x, t; q) = v0(x, t) + ∑∞
m=1 vm(x, t)qm, (17)

where

vm(x, t) =
1

m!
∂m ϕ(x, t; q)

∂qm |q=0. (18)

For the appropriate chaise of v0(x, t), n and } the series (15) converges at q = 1
n . Then:

v(x, t) = v0(x, t) + ∑∞
m=1 vm(x, t)

(
1
n

)m
. (19)

After differentiating Equation (15) m-times with q and multiplying by 1
m! and substi-

tuting q = 0, one can obtain:

L[vm(x, t)− kmvm−1(x, t)] = }<m

(→
v m−1

)
, (20)

where
→
v m = {v0(x, t), v1(x, t), . . . , vm(x, t)}. (21)

Equation (20) reduces after employing inverse LT to:

vm(x, t) = kmvm−1(x, t) + }L−1
[
<m

(→
v m−1

)]
, (22)

where

<m

(→
v m−1

)
= L[vm−1(x, t)]−

(
1− km

n

)(
}(x)

s + s+(1−s)α
s L[ f (x, t)]

)
+ s+(1−s)α

s L[Rvm−1 +Hm−1],
(23)
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and

km =

{
0, m ≤ 1,
n, m > 1.

(24)

Here,Hm is homotopy polynomial and presented as:

Hm =
1

m!

[
∂m ϕ(x, t; q)

∂qm

]
q=0

and ϕ(x, t; q) = ϕ0 + qϕ1 + q2 ϕ2 + . . . . (25)

By the help of Equations (22) and (23), we found:

vm(x, t) = (km + })vm−1(x, t)−
(

1− km
n

)
L−1

(
}(x)

s + s+(1−s)α
s L[ f (x, t)]

)
+}L−1

{
s+(1−s)α

s L[Rvm−1 +Hm−1]
}

.
(26)

With the help of q-HATM, the series solution is:

v(x, t) = v0(x, t) +
∞

∑
m=1

vm(x, t)
(

1
n

)m
. (27)

4. Solution for FO and FGO Equations

The above-illustrated scheme is employed for the two fractional-order equations
(namely, FO and FGO equations).

Case I. For FO equation

Consider the equation defined in Equation (3):

CF
0 Dα

t u(x, t) + κ1u
du
dx

+ β
d3u
dx3 − c

∫
u(x, t)dx = 0, (28)

with
u(x, 0) = ρsech2(x). (29)

Taking LT on Equation (28) and with the help of Equation (29), we obtain:

L[u(x, t)] =
1
s

(
ρsech2(x)

)
− s + (1− s)α

s
L
{

κ1u
du
dx

+ β
d3u
dx3 − c

∫
u(x, t)dx

}
. (30)

Now, N is defined as:

N [ϕ(x, t; q)] = L[ϕ(x, t; q)]− 1
s

(
ρsech2(x)

)
+ s+(1−s)α

s L
{

κ1 ϕ(x, t; q) ∂ϕ(x,t;q)
∂x + β

d3 ϕ(x,t;q)
d3x − c

∫
ϕ(x, t; q)dx

}
.

(31)

AtH(x, t) = 1, the deformation equation presented as:

L[um(x, t)− kmum−1(x, t)] = }<m

[→
u m−1

]
, (32)

where
<m

[→
u m−1

]
= L[um−1(x, t)]−

(
1− km

n

){
1
s

(
ρsech2(x)

)}
+ s+(1−s)α

s L
{

κ1 ∑m−1
i=0 ui

∂um−1−i
∂x + β

d3um−1
dx3 − c

∫
um−1(x, t)dx

}
.

(33)

On employing inverse LT on Equation (32), it simplifies to:

um(x, t) = kmum−1(x, t) + }L−1
{
<m

[→
u m−1

]}
. (34)
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Now, by simplifying the above system we can evaluate the terms of the series solution:

u(x, t) = u0(x, t) +
∞

∑
m=1

um(x, t)
(

1
n

)m
. (35)

Now, by the help of the initial condition, we can derive the terms of Equation (29) as:

u1(x, t) = }(1− α + αt)(−ρtanh(x)(c− 16β sech4(x) + 2ρsech4(x)κ1
+8βsech2(x)tanh2(x))),

...

4.1. Existence of Solution for Ostrovsky Equation

Here, the existence and uniqueness are illustrated with CF operator for the considered
Equation (28) as:

CF
0 Dα

t [u(x, t)] = Q1(x, t, u). (36)

Now, using Equation (36) and results derived in [31], we obtained:

u(x, t)− u(x, 0) = CF
0 I α

t

{
−κ1u

du
dx
− β

d3u
dx3 + c

∫
u(x, t)dx

}
. (37)

Then we have from [31] the follows:

u(x, t)− u(x, 0) =
2(1− α)

M(α)
Q(x, t, u) +

2α

(2− α)M(α)

∫ t

0
Q1(x, ζ, u)dζ. (38)

Theorem 1. The kernel Qadmits the Lipschitz condition and contraction if 0 ≤ ( κ1
2 Λ(a1 + a2)

+βΛ3 − cξ) < 1 satisfies.

Proof. Consider the two functions A and A1 to prove the theorem, then

‖Q1(x, t, u)−Q1(x, t, u1)‖
= ‖κ1

[
u(x, t) ∂u(x,t)

∂x − u(x, t1)
∂u(x,t1)

∂x

]
+ β ∂3

∂x3 [u(x, t)− u(x, t1)]− cb(x)‖

= ‖ κ1
2

[
∂

∂x
[
u2(x, t)− u2(x, t1)

]]
+ β ∂3

∂x3 [u(x, t)− u(x, t1)]− cb(x)‖
≤ ‖ κ1

2 Λ[u(x, t)− u(x, t1)] + βΛ3 − cb(x)‖‖u(x, t)− u(x, t1)‖
≤
( κ1

2 Λ(a1 + a2) + βΛ3 − cξ
)
‖u(x, t)− u(x, t1), ‖

(39)

where a1 = ‖u‖ and a2 = ‖u1‖ are the bounded function and ‖b(x)‖ = ξ is also a bounded
function. Set Ψ1 = κ1

2 Λ(a1 + a2) + βΛ3 − cξ in Equation (39), then:

‖Q1(x, t, u)−Q1(x, t, u1)‖ ≤ Ψ1‖u(x, t)− u(x, t1)‖. (40)

Equation (40) provides the Lipschitz condition for Q1. Similarly, we can see that if
0 ≤ κ1

2 Λ(a1 + a2) + βΛ3 − cξ < 1, then it implies the contraction. With the help of the
above equations, Equation (38) simplifies to:

u(x, t) = u(x, 0) +
2(1− α)

(2− α)M(α)
Q1(x, t, u) +

2α

(2− α)M(α)

∫ t

0
Q1(x, ζ, u)dζ. (41)

un(x, t) =
2(1− α)

(2− α)M(α)
Q1(x, t, un−1) +

2α

(2− α)M(α)

∫ t

0
Q1(x, ζ, un−1)dζ, (42)
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Now, between the terms the successive difference is defined as:

φ1n(x, t) = un(x, t)− un−1(x, t)
= 2(1−α)

(2−α)M(α) (Q1(x, t, un−1)−Q1(x, t, un−2))

+ 2α
(2−α)M(α)

∫ t
0 (Q1(x, t, un−1)−Q1(x, t, un−2))dζ.

(43)

Notice that:

un(x, t) =
n

∑
i=1

φ1i(x, t). (44)

Then we have:

‖φ1n(x, t)‖ = ‖un(x, t)− un−1(x, t)‖
= ‖ 2(1−α)

(2−α)M(α) (Q1(x, t, un−1)−Q1(x, t, un−2))

+ 2α
(2−α)M(α)

∫ t
0 (Q1(x, t, un−1)−Q1(x, t, un−2))dζ‖.

(45)

Application of the triangular inequality, Equation (45) reduces to:

‖φ1n(x, t)‖ = ‖un(x, t)− un−1(x, t)‖
= 2(1−α)

(2−α)M(α)
‖(Q1(x, t, un−1)−Q1(x, t, un−2))‖

+ 2α
(2−α)M(α)

‖
∫ t

0 (Q1(x, t, un−1)−Q1(x, t, un−2))dζ‖.
(46)

The Lipschitz condition satisfied by the kernel t1, then:

‖φ1n(x, t)‖ = ‖un(x, t)− un−1(x, t)‖ ≤ 2(1−α)
(2−α)M(α)

Ψ1‖φ(n−1)(x, t)‖
+ 2α

(2−α)M(α)
Ψ1
∫ t

0 ‖φ(n−1)(x, t)‖dζ.
(47)

�

By the aid of the above result, we state the following result:

Theorem 2. If we have specific t0, then the solution for Equation (28) will exist and be unique.
Further, we have:

2(1− α)

(2− α)M(α)
Ψ1 +

2α

(2− α)M(α)
Ψ1t0 < 1.

Proof. Let u(x, t) be the bounded functions admitting the Lipschitz condition. Then, we
obtain, using Equations (46) and (47):

‖φ1i(x, t)‖ ≤ ‖un(x, 0)‖
[

2(1− α)

(2− α)M(α)
Ψ1 +

2α

(2− α)M(α)
Ψ1t
]n

. (48)

Therefore, for the obtained solution, continuity and existence are verified. Now, to
prove the Equation (48) is a solution for Equation (28), we consider:

u(x, t)− u(x, 0) = un(x, t)−K1n(x, t). (49)

Let us consider:

‖K1n(x, t)‖ = ‖ 2(1−α)
(2−α)M(α) (Q1(x, t, u)−Q1(x, t, un−1))

+ 2α
(2−α)M(α)

∫ t
0 (Q1(x, ζ, u)−Q1(x, ζ, un−1))dζ‖

≤ 2(1−α)
(2−α)M(α)

‖(Q1(x, t, u)−Q1(x, t, un−1))‖
+ 2α

(2−α)M(α)

∫ t
0 ‖(Q1(x, ζ, u)−Q1(x, ζ, un−1))‖dζ

≤ 2(1−α)
(2−α)M(α)

Ψ1‖u− un−1‖+ 2α
(2−α)M(α)

Ψ1‖u− un−1‖t.

(50)
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This process gives:

‖K1n(x, t)‖ ≤
(

2(1− α)

(2− α)M(α)
+

2α

(2− α)M(α)
t
)n+1

Ψn+1
1 M

Similarly, at t0 we can obtain:

‖K1n(x, t)‖ ≤
(

2(1− α)

(2− α)M(α)
+

2α

(2− α)M(α)
t0

)n+1
Ψn+1

1 M. (51)

Next, for the solution of the projected model, we prove its uniqueness. Suppose
u∗(x, t) is another solution, then:

u(x, t)− u∗(x, t) = 2(1−α)
(2−α)M(α) (Q1(x, t, u)−Q1(x, t, u∗))

+ 2α
(2−α)M(α)

∫ t
0 (Q1(x, ζ, u)−Q1(x, ζ, u∗))dζ.

(52)

Now, employing the norm on the above equation, we obtain:

‖u(x, t)− u∗(x, t)‖ = ‖ 2(1−α)
(2−α)M(α) (Q1(x, t, u)−Q1(x, t, u∗))

+ 2α
(2−α)M(α)

∫ t
0 (Q1(x, ζ, u)−Q1(x, ζ, u∗))dζ‖

≤ 2(1−α)
(2−α)M(α)

Ψ1‖u(x, t)− u∗(x, t)‖+ 2α
(2−α)M(α)

Ψ1t‖u(x, t)− u∗(x, t)‖.
(53)

On simplification, this becomes:

‖u(x, t)− u∗(x, t)‖
(

1− 2(1− α)

(2− α)M(α)
Ψ1 −

2α

(2− α)M(α)
Ψ1t
)
≤ 0. (54)

From the above condition, it is clear that u(x, t) = u∗(x, t), if:(
1− 2(1− α)

(2− α)M(α)
Ψ1 −

2α

(2− α)M(α)
Ψ1t
)
≥ 0. (55)

Hence, Equation (55) proves our required result. �

Case II. For the FGO equation

Consider the equation defined in Equation (4):

CF
0 Dα

t u(x, t) + κ1u
du
dx

+ κ2u2 du
dx

+ β
d3u
dx3 = 0, (56)

with condition defined in Equation (29). Now, taking LT on Equation (56) and by the assist
of Equation (29), we obtain:

L[u(x, t)] =
1
s

(
ρsech2(x)

)
− s + (1− s)α

s
L
{

κ1u
du
dx

+ κ2u2 du
dx

+ β
d3u
dx3

}
. (57)

Now, N is defined as:

N [ϕ(x, t; q)] = L[ϕ(x, t; q)]− 1
s

(
ρsech2(x)

)
+ s+(1−s)α

s L
{

κ1 ϕ(x, t; q) ∂ϕ(x,t;q)
∂x + κ2 ϕ2(x, t; q) ∂ϕ(x,t;q)

∂x + β
d3 ϕ(x,t;q)

d3x

}
.

(58)
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Here:

<m

[→
u m−1

]
= L[um−1(x, t)]−

(
1− km

n

){
1
s

(
ρsech2(x)

)}
+ s+(1−s)α

s L
{

κ1 ∑m−1
i=0 ui

∂um−1−i
∂x + κ1 ∑m−1

i=0 ∑i
j=0 ui−jui

∂um−1−i
∂x + β

d3um−1
dx3

}
.

(59)

4.2. Existence of Solution for Fractional Gardner’s Ostrovsky Equation

Here, the existence and uniqueness are illustrated with CF operator for the considered
Equation (56) as:

CF
0 Dα

t [u(x, t)] = Q2(x, t, u). (60)

Now, using Equation (56) and results derived in [31], we obtained:

u(x, t)− u(x, 0) = CF
0 I α

t

{
−κ1u

du
dx
− κ2u2 du

dx
− β

d3u
dx3

}
. (61)

Then, we have from [31] the following:

u(x, t)− u(x, 0) =
2(1− α)

M(α)
Q2(x, t, u) +

2α

(2− α)M(α)

∫ t

0
Q2(x, ζ, u)dζ. (62)

4.3. Existence of Solution for the Fractional Gardner–Ostrovsky Equation

Here, we will state the following results in a similar manner carried out for the
above case.

Theorem 3. The kernel Qadmits the Lipschitz condition and contraction if 0 ≤ ( κ1
2 Λ(a1 + a2)

+κ2Λ(a1 + a2 + a1a2) + βΛ3) < 1 satisfies for Equation (56).

Proof. Consider the two functions A and A1 to prove the theorem, then:

‖Q2(x, t, u)−Q2(x, t, u1)‖
= ‖κ1

[
u(x, t) ∂u(x,t)

∂x − u(x, t1)
∂u(x,t1)

∂x

]
+ κ2

[
u2(x, t) ∂u(x,t)

∂x − u2(x, t1)
∂u(x,t1)

∂x

]
+ β ∂3

∂x3 [u(x, t)− u(x, t1)]‖

= ‖ κ1
2

[
∂

∂x
[
u2(x, t)− u2(x, t1)

]]
+ κ2

[
u2(x, t) ∂u(x,t)

∂x − u2(x, t1)
∂u(x,t1)

∂x

]
+ β ∂3

∂x3 [u(x, t)− u(x, t1)]‖
≤
( κ1

2 Λ(a1 + a2) + κ2Λ(a1 + a2 + a1a2) + βΛ3)‖u(x, t)− u(x, t1)‖,

(63)

where a1 = ‖u‖ and a2 = ‖u1‖ is the bounded function. Set Ψ2 = κ1
2 Λ(a1 + a2) +

βΛ3 − cξ in Equation (63), then:

‖Q2(x, t, u)−Q2(x, t, u1)‖ ≤ Ψ2‖u(x, t)− u(x, t1)‖. (64)

Equation (64) provides the Lipschitz condition for Q2. Similarly, we can see that if
0 ≤ κ1

2 Λ(a1 + a2) + κ2Λ(a1 + a2 + a1a2) + βΛ3 < 1, then it implies the contraction. By the
assist of the above equation, Equation (62) simplifies to

u(x, t) = u(x, 0) +
2(1− α)

(2− α)M(α)
Q2(x, t, u) +

2α

(2− α)M(α)

∫ t

0
Q2(x, ζ, u)dζ. (65)

Then we obtain the recursive form as follows:

un(x, t) =
2(1− α)

(2− α)M(α)
Q2(x, t, un−1) +

2α

(2− α)M(α)

∫ t

0
Q2(x, ζ, un−1)dζ, (66)
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Now, between the terms, the successive difference is defined as:

φ2n(x, t) = un(x, t)− un−1(x, t)
= 2(1−α)

(2−α)M(α) (Q2(x, t, un−1)−Q2(x, t, un−2))

+ 2α
(2−α)M(α)

∫ t
0 (Q2(x, t, un−1)−Q2(x, t, un−2))dζ.

(67)

Notice that:

un(x, t) =
n

∑
i=1

φ2i(x, t). (68)

Then, we have:

‖φ2n(x, t)‖ = ‖un(x, t)− un−1(x, t)‖
= ‖ 2(1−α)

(2−α)M(α) (Q2(x, t, un−1)−Q2(x, t, un−2))

+ 2α
(2−α)M(α)

∫ t
0 (Q2(x, t, un−1)−Q2(x, t, un−2))dζ‖

(69)

Application of the triangular inequality, Equation (69) reduces to:

‖φ2n(x, t)‖ = ‖un(x, t)− un−1(x, t)‖
= 2(1−α)

(2−α)M(α)
‖(Q2(x, t, un−1)−Q2(x, t, un−2))‖

+ 2α
(2−α)M(α)

‖
∫ t

0 (Q2(x, t, un−1)−Q2(x, t, un−2))dζ‖.
(70)

The Lipschitz condition satisfied by the kernel t1, then:

‖φ2n(x, t)‖ = ‖un(x, t)− un−1(x, t)‖ ≤ 2(1−α)
(2−α)M(α)

Ψ2‖φ(n−1)(x, t)‖
+ 2α

(2−α)M(α)
Ψ1
∫ t

0 ‖φ(n−1)(x, t)‖dζ.
(71)

�

By the aid of the above result, we state the following result:

Theorem 4. If we have specific t0, then the solution for Equation (56) will exist and be unique.
Further, we have:

Proof. Let u(x, t) be the bounded functions admitting the Lipschitz condition. Then, from
Equations (70) and (71), we obtain:

‖φ2i(x, t)‖ ≤ ‖un(x, 0)‖
[

2(1− α)

(2− α)M(α)
Ψ2 +

2α

(2− α)M(α)
Ψ2t
]n

(72)

Therefore, for the obtained solution, continuity and existence are verified. Now, to
prove that Equation (72) is a solution for Equation (56), we consider:

u(x, t)− u(x, 0) = un(x, t)−K1n(x, t). (73)

Let us consider:

‖K1n(x, t)‖ = ‖ 2(1−α)
(2−α)M(α) (Q2(x, t, u)−Q2(x, t, un−1))

+ 2α
(2−α)M(α)

∫ t
0 (Q2(x, ζ, u)−Q2(x, ζ, un−1))dζ‖

≤ 2(1−α)
(2−α)M(α)

‖(Q2(x, t, u)−Q2(x, t, un−1))‖
+ 2α

(2−α)M(α)

∫ t
0 ‖(Q2(x, ζ, u)−Q2(x, ζ, un−1))‖dζ

≤ 2(1−α)
(2−α)M(α)

Ψ2‖u− un−1‖+ 2α
(2−α)M(α)

Ψ2‖u− un−1‖t.

(74)
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This process gives:

‖K2n(x, t)‖ ≤
(

2(1− α)

(2− α)M(α)
+

2α

(2− α)M(α)
t
)n+1

Ψn+1
2 M

Similarly, at t0 we can obtain:

‖K2n(x, t)‖ ≤
(

2(1− α)

(2− α)M(α)
+

2α

(2− α)M(α)
t0

)n+1
Ψn+1

2 M. (75)

Next, for the solution of the projected model, we prove the uniqueness. Suppose
u∗(x, t) is another solution, then:

u(x, t)− u∗(x, t) = 2(1−α)
(2−α)M(α) (Q2(x, t, u)−Q2(x, t, u∗))

+ 2α
(2−α)M(α)

∫ t
0 (Q2(x, ζ, u)−Q2(x, ζ, u∗))dζ.

(76)

Now, employing the norm on the above equation we obtain:

‖u(x, t)− u∗(x, t)‖ = ‖ 2(1−α)
(2−α)M(α) (Q2(x, t, u)−Q2(x, t, u∗))

+ 2α
(2−α)M(α)

∫ t
0 (Q2(x, ζ, u)−Q2(x, ζ, u∗))dζ‖

≤ 2(1−α)
(2−α)M(α)

Ψ2‖u(x, t)− u∗(x, t)‖+ 2α
(2−α)M(α)

Ψ2t‖u(x, t)− u∗(x, t)‖.
(77)

On simplification:

‖u(x, t)− u∗(x, t)‖
(

1− 2(1− α)

(2− α)M(α)
Ψ2 −

2α

(2− α)M(α)
Ψ2t
)
≤ 0. (78)

From the above condition, it is clear that u(x, t) = u∗(x, t), if(
1− 2(1− α)

(2− α)M(α)
Ψ2 −

2α

(2− α)M(α)
Ψ2t
)
≥ 0. (79)

Hence, Equation (79) proves our required result. �

5. Results and Discussion

Here, we capture the physical nature of two cases with different fractional order,
small-scale dispersion, and homotopy parameters. It is essential to illustrate the effect of
the fractional operator incorporated in the considered model. For Case I, we present the
surfaces of fractional values of the order in Figure 1, and then it is illustrated in Figure 2
with a particular value of time (t = 0.5). In the Ostrovsky equation, the dispersion term
plays a pivotal role and its effect is presented in Figure 3 with attained results. The main
advantage of the considered scheme is the association of homotopy parameters (n and }).
They play a critical role in the archiving solution for the modulation of convergence. For
Case I we presented }-curves in Figure 4.



Axioms 2021, 10, 123 12 of 16

Axioms 2021, 10, x FOR PEER REVIEW 13 of 17 
 

the fractional operator incorporated in the considered model. For Case I, we present the 

surfaces of fractional values of the order in Figure 1, and then it is illustrated in Figure 2 

with a particular value of time (𝑡 = 0.5). In the Ostrovsky equation, the dispersion term 

plays a pivotal role and its effect is presented in Figure 3 with attained results. The main 

advantage of the considered scheme is the association of homotopy parameters (𝑛 and ℏ). 

They play a critical role in the archiving solution for the modulation of convergence. For 

Case I we presented ℏ-curves in Figure 4. 

  
(a) (b) 

 
(c) 

Figure 1. Surfaces of 𝑞 -HATT solution for (𝒂) 𝛼 = 0.50 , (𝒃) 𝛼 = 0.75  and (𝒄) 𝛼 = 1  at 𝑛 = 1, ℏ = −1, 𝛽 = 1, 𝑐 =

−1, 𝜅1 = 1 and 𝜌 = 0.001 for Case I. 

 

Figure 2. Response of the obtained solution with distinct 𝛼 and time at 𝑛 = 1, 𝑡 = 0.5, ℏ = −1, 𝛽 =

1, 𝑐 = −1, 𝜅1 = 1 and 𝜌 = 0.001 for Case I. 

Figure 1. Surfaces of q-HATT solution for (a) α = 0.50, (b) α = 0.75 and (c) α = 1 at n = 1, } = −1, β = 1, c = −1, κ1 = 1
and ρ = 0.001 for Case I.

Axioms 2021, 10, x FOR PEER REVIEW 13 of 17 
 

the fractional operator incorporated in the considered model. For Case I, we present the 

surfaces of fractional values of the order in Figure 1, and then it is illustrated in Figure 2 

with a particular value of time (𝑡 = 0.5). In the Ostrovsky equation, the dispersion term 

plays a pivotal role and its effect is presented in Figure 3 with attained results. The main 

advantage of the considered scheme is the association of homotopy parameters (𝑛 and ℏ). 

They play a critical role in the archiving solution for the modulation of convergence. For 

Case I we presented ℏ-curves in Figure 4. 

  
(a) (b) 

 
(c) 

Figure 1. Surfaces of 𝑞 -HATT solution for (𝒂) 𝛼 = 0.50 , (𝒃) 𝛼 = 0.75  and (𝒄) 𝛼 = 1  at 𝑛 = 1, ℏ = −1, 𝛽 = 1, 𝑐 =

−1, 𝜅1 = 1 and 𝜌 = 0.001 for Case I. 

 

Figure 2. Response of the obtained solution with distinct 𝛼 and time at 𝑛 = 1, 𝑡 = 0.5, ℏ = −1, 𝛽 =

1, 𝑐 = −1, 𝜅1 = 1 and 𝜌 = 0.001 for Case I. 
Figure 2. Response of the obtained solution with distinct α and time at n = 1, t = 0.5, } = −1,
β = 1, c = −1, κ1 = 1 and ρ = 0.001 for Case I.



Axioms 2021, 10, 123 13 of 16
Axioms 2021, 10, x FOR PEER REVIEW 14 of 17 
 

 

Figure 3. Response of the obtained solution with distinct 𝛽 and time at 𝑛 = 1, 𝑡 = 0.5, ℏ = −1, 𝛼 =

1, 𝑐 = −1, 𝜅1 = 1 and 𝜌 = 0.001 for Case I. 

  
(a) (b) 

Figure 4. ℏ-curves for Case I at 𝑥 = 1, 𝑡 = 0.01, ℏ = −1, 𝛽 = 1, 𝑐 = −1, 𝜅1 = 1 and 𝜌 = 0.001 for (𝑎) 𝑛 = 1 and (𝑏) 𝑛 =

2. 

Similarly, we present Case II (i.e., fractional Gardner–Ostrovsky equation). For the 

change in fractional values of the order, we capture the response in Figures 5 and 6. The 

effect of the small dispersion term in the FGO equation is cited in Figure 7. In Figure 2, we 

have a diverse change in between the range of −1 and 1 with 𝑥. With the change in 𝛽 

within the range of 0.4 and 1 for this case, we can observe peak variations with the same 

values that we observe for 𝑥 with fractional order in Figure 3, and similarly for Case II in 

Figures 6 and 7. For Case I and II, we respectively presented ℏ-curves in Figure 8.These 

types of studies can influence researchers to investigate physical phenomena.  

Figure 3. Response of the obtained solution with distinct β and time at n = 1, t = 0.5, } = −1,
α = 1, c = −1, κ1 = 1 and ρ = 0.001 for Case I.

Axioms 2021, 10, x FOR PEER REVIEW 14 of 17 
 

 

Figure 3. Response of the obtained solution with distinct 𝛽 and time at 𝑛 = 1, 𝑡 = 0.5, ℏ = −1, 𝛼 =

1, 𝑐 = −1, 𝜅1 = 1 and 𝜌 = 0.001 for Case I. 

  
(a) (b) 

Figure 4. ℏ-curves for Case I at 𝑥 = 1, 𝑡 = 0.01, ℏ = −1, 𝛽 = 1, 𝑐 = −1, 𝜅1 = 1 and 𝜌 = 0.001 for (𝑎) 𝑛 = 1 and (𝑏) 𝑛 =

2. 

Similarly, we present Case II (i.e., fractional Gardner–Ostrovsky equation). For the 

change in fractional values of the order, we capture the response in Figures 5 and 6. The 

effect of the small dispersion term in the FGO equation is cited in Figure 7. In Figure 2, we 

have a diverse change in between the range of −1 and 1 with 𝑥. With the change in 𝛽 

within the range of 0.4 and 1 for this case, we can observe peak variations with the same 

values that we observe for 𝑥 with fractional order in Figure 3, and similarly for Case II in 

Figures 6 and 7. For Case I and II, we respectively presented ℏ-curves in Figure 8.These 

types of studies can influence researchers to investigate physical phenomena.  

Figure 4. }-curves for Case I at x = 1, t = 0.01, } = −1, β = 1, c = −1, κ1 = 1 and ρ = 0.001 for (a) n = 1 and (b) n = 2.

Similarly, we present Case II (i.e., fractional Gardner–Ostrovsky equation). For the
change in fractional values of the order, we capture the response in Figures 5 and 6. The
effect of the small dispersion term in the FGO equation is cited in Figure 7. In Figure 2,
we have a diverse change in between the range of −1 and 1 with x. With the change in β
within the range of 0.4 and 1 for this case, we can observe peak variations with the same
values that we observe for x with fractional order in Figure 3, and similarly for Case II in
Figures 6 and 7. For Case I and II, we respectively presented }-curves in Figure 8.These
types of studies can influence researchers to investigate physical phenomena.
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6. Conclusions

In this study, we investigated the equations exemplifying the rotating ocean with
strong interacting internal waves with the fractional operator using q-HATT. With the help
of the fixed-point hypothesis, the existence of the solution of the two cases is illustrated
associated with the Caputo–Fabrizio operator. Furthermore, the effect of the coefficients of
small-scale dispersion is illustrated with change in space x for both the cases, and we found
noticeable variations in the archived results. The considered scheme is free from many
limitations, including conversion from PDE to ODE, nonlinear to linear, or discretization.
Finally, the present study demonstrates the effect of fractional order, parameters associated
with models, and methods with their corresponding consequences.
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