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Abstract: The aim of this paper is to construct generating functions, related to
nonnegative real parameters, for q-Eulerian type polynomials and numbers (or q-Apostol
type Frobenius–Euler polynomials and numbers). We derive some identities for these
polynomials and numbers based on the generating functions and functional equations.
We also give multiplication formula for the generalized Apostol type Frobenius–Euler
polynomials.
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1. Introduction

Throughout this paper we assume that q ∈ C, the set of complex numbers, with |q| < 1 and

[x] = [x : q] =

{
1−qx

1−q , if q 6= 1

x, if q = 1

We use the following standard notions:
N = {1, 2, · · · }, N0 = {0, 1, 2, · · · } = N ∪ {0} and also, as usual R denotes the set of real number,

R+ denotes the set of positive real number and C denotes the set of complex numbers.
In this section, we define q-Apostol type Frobenius–Euler polynomials and numbers, related to

nonnegative real parameters. numbers).

Definition 1 Let a, b ∈ R+ (a 6= b) and u ∈ C� {1}. A q-Apostol type Frobenius–Euler numbers

Hn(u; a, b;λ; q) (λ, q ∈ C)
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are defined by means of the following generating function:

Fλ,q(t;u, a, b) =

(
1− at

u

) ∞∑
n=0

(
λ

u

)n
b[n]t (1)

=
∞∑
n=0

Hn(u; a, b;λ; q)
tn

n!

where ∣∣∣∣λu
∣∣∣∣ < 1

Definition 2 Let a, b ∈ R+ (a 6= b) and u ∈ C� {1}. A q-Apostol type Frobenius–Euler polynomials

Hn(x;u; a, b;λ; q) (λ ∈ C)

are defined by means of the following generating function:

Fλ,q(x, t;u, a, b) =

(
1− at

u

) ∞∑
n=0

(
λ

u

)n
b[n+x]t =

∞∑
n=0

Hn(x;u; a, b;λ; q)
tn

n!
(2)

where ∣∣∣∣λu
∣∣∣∣ < 1

with, of course
Hn(0;u; a, b;λ; q) = Hn(u; a, b;λ; q)

whereHn(u; a, b;λ; q) denotes the q-Apostol type Frobenius–Euler numbers.

By using the following well-known identity

[n+ x] = [x] + qx[n]

in Equation (2), we derive the following functional equation:

Fλ,q(x, t;u, a, b) = Fλ,q(q
xt;u, a, b)bt[x] (3)

By using Equation (3), we arrive at the following theorem:

Theorem 1 Let n ∈ N0. Then we have

Hn(x;u; a, b;λ; q) =
n∑
k=0

(
n

k

)
qkx ([x] ln b)n−kHk(u; a, b;λ; q)

By using Theorem 1, one can easily obtain the following result:

Corollary 1 Let n ∈ N0. Then we have

Hn(x;u; a, b;λ; q) = ([x] ln b+ qxH(u; a, b;λ; q))n (4)

with the usual convention of replacingHj byHj .
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Remark 1. One can easily see that

lim
q→1

Fλ,q(x, t;u, a, b) =
(at − u) bxt

λbt − u

=
∞∑
n=0

Hn(x;u; a, b;λ)
tn

n!

(cf. [1]).

Remark 2. In their special case when λr = 1 (λ 6= 1) and a = 1 and b = e, the q-Apostol
type Frobenius–Euler polynomials Hn(x;u; 1, e;λ; q) are reduced to the twisted q-Frobenius–Euler
polynomials (cf. [2]).

Remark 3. Substituting a = 1, λ = 1 and b = e into Equation (2), then we get the generating
function of q-Frobenius–Euler numbers and polynomials respectively:(

1− 1

u

) ∞∑
n=0

e[n]t

un
=
∞∑
n=0

Hn(u, q)
tn

n!
(5)

and (
1− 1

u

) ∞∑
n=0

e[n+x]t

un
=
∞∑
n=0

Hn(x, u, q)
tn

n!

where | u |> 1 (cf. [2,3]). Substituting a = 1, λ = 1 and b = e into Equation (4), in this paper, we also
generalize the Carlitz’s q-Frobenius–Euler polynomials Hk(x, u, q) as follows:

Hn(u, x, q) = (qxH + [x])n

(cf. [2,4–9]) and the Carlitz’s q-Frobenius–Euler numbersHk(u, q), which can be determined inductively
by (cf. [4,6–13]):

H0(u, q) = 1

and for n ≥ 1,
(qH + 1)n − uHn(u, q) = 0

(cf. [1–43]).

Remark 4. Substituting u = −1 in Equation (5), we have

2
∞∑
n=0

(−1)ne[n]t =
∞∑
n=0

En(q)
tn

n!

and also Hn(x,−1, q) = En(x, q) (cf. [21]). If q → 1, then Equation (5) reduces to the generating
function for the classical Frobenius–Euler numbers Hn(u):

1− u
et − u

=
∞∑
n=0

Hn(u)
tn

n!

(cf. [1–43]).
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In [1], we give the following generating function, which we need in the next section:

t

λat − 1
axt =

∞∑
n=0

Yn(x;λ; a)
tn

n!
(6)

We also note that
Yn(0;λ; a) = Yn(λ; a)

If we substitute x = 0 and a = 1 into Equation (6), we see that

Yn(λ; 1) =
1

λ− 1

(cf. [1])

2. Identities

In this section, we derive some identities related to the q-Apostol type Frobenius–Euler numbers and
polynomials, using generating functions.

We are now ready to give explicit formulas for computing the q-Apostol type Frobenius–Euler
numbers and polynomials.

Theorem 2 Let n ∈ N0. Then we have

Hn(u; a, b;λ; q) = u

(
ln b

1− q

)n n∑
k=0

(−1)k

(
n

k

)
1

u− λqk

+
n∑
k=0

(−1)k+1

(
n

k

) (
ln a+ ln b

1−q

)n−k (
ln b
1−q

)k
u− λqk

Proof 1 By using Equation (1), we get

∞∑
n=0

Hn(u; a, b;λ; q)
tn

n!
= (1− at

u
)b

t
1−q

∞∑
n=0

(
λ

u

)n
b−

qn

1−q
t

From the above equation, we obtain

∞∑
n=0

Hn(u; a, b;λ; q)
tn

n!

=
∞∑
n=0

(
u

(
ln b

1− q

)n n∑
k=0

(−1)k

(
n

k

)
1

u− λqk

)
tn

n!

+
∞∑
n=0

 n∑
k=0

(−1)k+1

(
n

k

) (
ln a+ ln b

1−q

)n−k (
ln b
1−q

)k
u− λqk

 tn

n!

Therefore, equating the coefficients of
tn

n!
on both sides of the above equation, we obtain the

desired result.
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Substituting n = 0 into Theorem 2, we have

H0(u; a, b;λ; q) =
u− 1

u− λ
By using Theorem 2, all the q-Apostol type Frobenius–Euler numbers are easily computed.

Remark 5. If we put a = 1, u = −1, λ = 1 and b = e, then Theorem 2 reduces to Theorem 1 in [21].
If we substitute a = 1, λ = 1 and b = e into Theorem 2, then we obtain an explicit formula, for the

q-Frobenius–Euler numbers Hn(u; q) = Hn(u; 1, e; 1; q), which is given by the following corollary:

Corollary 2 Let n ∈ N0. Then we have

Hn(u; 1, e; 1; q) = (u− 1)

(
1

1− q

)n n∑
k=0

(−1)k

(
n

k

)
1

u− qk

We give an explicit formula for the q-Apostol type Frobenius–Euler polynomials as follows:

Theorem 3 Let n ∈ N0. Then we have

Hn(x;u; a, b;λ; q) = u
n∑
k=0

(−1)k

(
n

k

)
qxk
(

ln b
1−q

)n
u− λqk

+
n∑
k=0

(−1)k+1

(
n

k

)
qxk
(
ln a+ ln b

1−q

)n−k (
ln b
1−q

)k
u− λqk

Proof 2 Proof of this theorem is the same as that of Theorem 2, so we omit it.

Remark 6. If we put a = 1, u = −1, λ = 1 and b = e, then Theorem 3 reduces to Theorem 2 in [21].
By using Equation (4) and Theorem 3, we arrive at the following result:

Corollary 3 Let n ∈ N0. Then we have

([x] ln b+ qxH(u; a, b;λ; q))n

=
n∑
k=0

(−1)k

(
n

k

)
uqxk

(
ln b
1−q

)n
u− λqk

+
n∑
k=0

(−1)k+1

(
n

k

)
qxk
(
ln a+ ln b

1−q

)n−k (
ln b
1−q

)k
u− λqk

2.1. Multiplication Formula

Here we prove multiplication formula for the q-Apostol type Frobenius–Euler numbers and
polynomials. This formula is very important to investigate fundamental properties of these polynomials.

Theorem 4 Let n ∈ N. Then we have

n [f ]1−nHn−1(fx;u; a, b;λ; q)

= −u
n∑
j=0

(
n

j

)
Yn−j

(
1

u2f
; a

) f∑
l=1

λl

ul+f+1
Hj

(
x+

l

f
;uf ; a, b;λf ; qf

)

+
n∑
j=0

(
n

j

)
Yn−j

(
1

[f ]
;

1

u2f
; a

) f∑
l=1

λl

ul+f+1
Hj

(
x+

l

f
;uf ; a, b;λf ; qf

)
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Proof 3 Substituting n = l +mf with m = 0, 1, . . . ,∞, l = 1, 2, . . . , f into Equation (2), we get

∞∑
n=0

Hn(x;u; a, b;λ; q)
tn

n!
= (1− at

u
)
∞∑
m=0

f∑
l=1

(
λ

u

)l+mf
b[l+mf+x]t

From the above equation, we obtain

∞∑
n=0

Hn(x;u; a, b;λ; q)
tn

n!
=

1− at

u

1− a[f ]t

uf

f∑
l=1

(
λ

u

)l ∞∑
m=0

Hn

(
x+ l

f
;uf ; a, b;λf ; qf

)
[f ]n tn

n!

By using Equation (6) in the right side of the above equation, we have

[f ]
∞∑
n=0

nHn−1(x;u; a, b;λ; q)
tn

n!

= − u

uf+1

∞∑
m=0

Yn

(
1

u2f
; a

)
[f ]n tn

n!

∞∑
m=0

f∑
l=1

(
λ

u

)l
Hn

(
x+ l

f
;uf ; a, b;λf ; qf

)
[f ]n tn

n!

+
1

uf+1

∞∑
m=0

Yn

(
1

[f ]
;

1

u2f
; a

)
[f ]n tn

n!

∞∑
m=0

f∑
l=1

(
λ

u

)l
Hn

(
x+ l

f
;uf ; a, b;λf ; qf

)
[f ]n tn

n!

Thus, by using the Cauchy product in the above equation and then equating the coefficients of
tn

n!
on both

sides of the resulting equation, we get the desired result.

If we put a = 1 in Equation (2), we simplify Theorem 4 as follows:

∞∑
n=0

Hn(x;u; 1, b;λ; q)
tn

n!
=
uf − uf−1

uf − 1

f∑
l=1

(
λ

u

)l ∞∑
m=0

Hn

(
x+ l

f
;uf ; a, b;λf ; qf

)
[f ]n tn

n!

Equating the coefficients of
tn

n!
on both sides of the resulting equation, we obtain:

Hn(x;u; 1, b;λ; q) = [f ]n
uf − uf−1

uf − 1

f∑
l=1

(
λ

u

)l
Hn

(
x+ l

f
;uf ; 1, b;λf ; qf

)
Replacing x by fx in the above equation, we get the following result:

Corollary 4 Let n ∈ N0. Then we have

Hn(fx;u; 1, b;λ; q) = [f ]n
uf − uf−1

uf − 1

f∑
l=1

(
λ

u

)l
Hn

(
x+

l

f
;uf ; 1, b;λf ; qf

)
(7)

Remark 7. If we put u = −1, λ = 1 and b = e, and q → 1 in Equation (7), Equation (4,13) in [1].

Remark 8. If we put u = −1, λ = 1 and b = e, for odd f , in Equation (7), we get Theorem 4 in [21].
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