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Abstract: Since the advent of Drinfel’d’s double construction, Hopf algebraic structures
have been a centrepiece for many developments in the theory and analysis of integrable
quantum systems. An integrable anyonic pairing Hamiltonian will be shown to admit Hopf
algebra symmetries for particular values of its coupling parameters. While the integrable
structure of the model relates to the well-known six-vertex solution of the Yang–Baxter
equation, the Hopf algebra symmetries are not in terms of the quantum algebra Uq(sl(2)).
Rather, they are associated with the Drinfel’d doubles of dihedral group algebras D(Dn).
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1. Introduction

Integrable quantum systems which admit exact solutions are central in advancing understanding of
many-body systems. Classic examples are provided by the Heisenberg spin chain [1], the Bose [2] and
Fermi [3] gases with delta-function interactions, the Bardeen–Cooper–Schrieffer pairing Hamiltonian
with uniform scattering interactions [4], and the Hubbard model in one dimension [5]. With the
development of the Quantum Inverse Scattering Method [6] as a systematic prescription for constructing
integrable quantum systems through the Yang–Baxter equation [3,7,8], and solving them through the
algebraic Bethe ansatz, it subsequently emerged that Hopf algebraic structures are fundamental in
quantum integrability. The works of Jimbo [9] and Drinfel’d [10] were instrumental in formulating the
notion of quantum algebras Uq(g), deformations of the universal enveloping algebras of a Lie algebra g,
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which have the structure of a quasi-triangular Hopf algebra. The significance of the quasi-triangular
structure is that it affords an algebraic solution of the Yang–Baxter equation. Matrix solutions of
the Yang–Baxter equation are then generated through representations of these algebras. The simplest
example of the two-dimensional loop representation of the untwisted affine quantum algebra Uq(sl(2)(1))

leads to the six-vertex model solution of the Yang–Baxter equation, which establishes integrability of the
anisotropic (XXZ) Heisenberg chain. The precise form of six-vertex solution obtained depends on the
choice of gradation for Uq(sl(2)(1)). The principal gradation leads to the symmetric solution, while the
homogeneous gradation leads to an asymmetric solution [11]. Only in the latter case is the solution
invariant with respect to the action of the non-affine subalgebra Uq(sl(2)).

The work of Drinfel’d [10] also provides a means to construct a quasi-triangular Hopf algebra from
any Hopf algebra and the dual algebra, through a procedure known as the double construction. The
double construction applied to finite group algebras [12] yields a framework in which to develop anyonic
models that lead to notions of topological quantum computation [13]. In a series of works [14–16],
solutions of the Yang–Baxter associated with Drinfel’d doubles of dihedral group algebras, denoted
D(Dn), have been studied. In particular, it was found that two-dimensional representations of these
algebras belong to the aforementioned six-vertex model solution in the symmetric case. The symmetric
solution was employed in [17] to construct an integrable anyonic pairing Hamiltonian, which generalises
the pairing Hamiltonian with uniform scattering interactions solved by Richardson [4]. Below, this
integrable anyonic pairing Hamiltonian will be shown to admit Hopf algebra symmetries given byD(Dn)

for particular values of the coupling parameters.

2. The Integrable Hamiltonian for Anyonic Pairing

Consider a general anyonic pairing Hamiltonian of the reduced Bardeen–Cooper–Schrieffer form,
which acts on a Hilbert spaceH of dimension 4L, given by

H =
1

2

L∑
j=1

εj

(
a†j+aj+ + a†j−aj−

)
−

L∑
k>l

(
Gkla

†
l+a
†
l−ak−ak+ + h.c.

)
(1)

Above, {εj : j = 1, ..., L} represent single-particle energy levels (two-fold denegerate labelled by ±)
and Gkl are the pairing interaction coupling parameters of the model. For q = exp(iβ), β ∈ R the
operators {aj±, a†j± : j = 1, ..., L} satisfy the relations

{ajσ, ajρ} = {aj+, ak−} = 0,

{ajσ, a†jρ} = δσρI,

ajσakσ = −qakσajσ j > k

a†jσakσ = −q−1akσa
†
jσ j > k

and those relations obtained by taking Hermitian conjugates. Throughout, I is used to denote an identity
operator. These types of anyonic operators are considered as q-deformations of fermionic operators,
with the usual fermionic commutation relations recovered in the limit q → 1. The anyonic creation
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and annihilation operators may be realised in terms of the canonical fermionic operators {cj±, c†j± :

j = 1, ..., L} through a generalised Jordan–Wigner transformation

ajσ = cjσ

L∏
k=j+1

q2nkσ−I

a†jσ = c†jσ

L∏
k=j+1

qI−2nkσ

where njσ = c†jσcjσ.
As with the more familiar fermionic pairing Hamiltonians, one of the notable features of Equation (1)

is the blocking effect. For any unpaired anyon at level j, the action of the pairing interaction is zero since
only paired anyons interact. This means that the Hilbert space can be decoupled into a product of paired
and unpaired anyonic states in which the action of the Hamiltonian on the space for the unpaired anyons
is automatically diagonal in the natural basis. In view of this property, the pair number operator

N =
L∑
j=1

a†j+aj+a
†
j−aj−

commutes with Equation (1) and thus provides a good quantum number. Below, M will be used to
denote the eigenvalues of the pair number operator.

In [17] it was shown that, for a suitable restriction on the coupling parameters, the Hamiltonian
is integrable in the sense of the Quantum Inverse Scattering Method and admits an exact solution
derived through the algebraic Bethe ansatz. To characterise the integrable manifold of the coupling
parameter space, the set of parameters {α} ∪ {zj : j = 1, ..., L} are introduced with the following
constraints imposed:

εj = z2
j , (2)

Gkl =
zkzl sin(2β) exp(−iα)

sin(α− 2β)
k > l. (3)

The conserved operators for this integrable model are obtained via the Quantum Inverse Scattering
Method in a standard manner. Here, the key steps are noted. A transfer matrix t(u) ∈ End(H) is
constructed as

t(x) = tra (T (x)) (4)

where T (x) is the monodromy matrix and tra is the partial trace over an auxiliary space labelled by a.
The monodromy matrix is required to satisfy the relation

Rab(x/y)Ta(x)Tb(y) = Tb(y)Ta(x)Rab(x/y) (5)

which is an operator equation on V ⊗ V ⊗H, with the two auxiliary spaces labelled by a and b. Above,

R(x) =


q2x− q−2x−1 0 | 0 0

0 x − x−1 | q2 − q−2 0

− − − −
0 q2 − q−2 | x − x−1 0

0 0 | 0 q2x− q−2x−1

 (6)
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is the six-vertex solution (it is convenient for our purposes to express the deformation parameter as q2

rather than the more familiar q) of the Yang–Baxter equation [3,7,8]

R12(x/y)R13(x)R23(y) = R23(y)R13(x)R12(x/y) (7)

which acts on the three-fold space V ⊗ V ⊗ V . The subscripts above refer to the spaces on which the
operators act, e.g.,

R12(x) = R(x)⊗ I

Two important properties of R(x), which will be called upon later, are

R21(x) = R12(x), (8)

R(x)t2 = (x− x−1)(q−4x−1 − q4x)
[
R(q−4x−1)t2

]−1 (9)

where t2 denotes partial transposition in the second space of the tensor product.
The monodromy matrix is

Ta(x) = La1(xz
−1
1 )La2(xz

−1
2 )....LaL(xz−1

L )Ua (10)

where

U =

(
exp(i(β(L− 2M + 2)− α)) 0

0 exp(i(α− β(L− 2M + 2)))

)
(11)

and L(x) = R(q−1x). Bearing in mind the earlier comments regarding the blocking effect, we may write

Laj(x) = x

(
qnj−I 0

0 qI−nj

)
+ (q2 − q−2)

(
0 bj

b†j 0

)
− x−1

(
qI−nj 0

0 qnj−I

)
where

nj = c†j+cj+ + c†j−cj−

bj = cj−cj+

Note that U is defined in a sector-dependent manner in terms of the eigenvalues M of N , which is
legitimate since N is conserved.

A consequence of Equation (10), and the diagonal form of U , is that the transfer matrices form a
commutative family; i.e.,

[t(x), t(y)] = 0 ∀x, y ∈ C (12)

The transfer matrices can be expanded in a Laurent series

t(x) =
L∑

j=−L

t(j)xj

such that, because of Equation (12), the co-efficients commute[
t(j), t(k)

]
= 0, −L ≤ j, k ≤ L
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Finally it can be verified that the Hamiltonian Equation (1), subject to the constraints of Equations (2,3),
is expressible as (the corresponding expression in [17] contains typographical errors, which are
corrected here)

H =
1

4 sin(2β) sin(α− 2β)

[
t(L−2)

L∏
j=1

zj + 2 cos(α− 4β)
L∑
j=1

z2
j

]
(13)

establishing that {t(j) : j = 1, ..., L} provides a set of Abelian conserved operators for the system. In
this sense the system is said to be integrable.

In the remainder of this work it will be shown that for certain further restrictions on the coupling
parameters there are additional Hopf algebraic symmetries of the system. These non-Abelian symmetries
are not related to a quantum algebra Uq(sl(2)) structure, but are realised through the Drinfel’d doubles
of dihedral group algebras.

3. Drinfel’d Doubles of Dihedral Group Algebras

The dihedral group Dn has two generators στ satisfying:

σn = e, τ 2 = e, τσ = σn−1τ

where e denotes the group identity. Considering Dn as a group algebra, the Drinfel’d double [10] of Dn,
denoted D(Dn), has basis

{gh∗|g, h ∈ Dn}

where g are the group elements and g∗ are their dual elements. This gives an algebra of dimension 4n2.
Multiplication of dual elements is defined by

g∗h∗ = δ(g, h)g∗ (14)

where δ is the Kronecker delta function. The products h∗g are computed using

h∗g = g(g−1hg)∗ (15)

The algebra D(Dn) becomes a Hopf algebra by imposing the following coproduct, antipode and
counit respectively:

∆(gh∗) =
∑
k∈Dn

g(k−1h)∗ ⊗ gk∗ =
∑
k∈Dn

gk∗ ⊗ g(hk−1)∗ (16)

S(gh∗) = (h−1)∗g−1 = g−1(gh−1g−1)∗

ε(gh∗) = δ(h, e)

An important property of D(Dn) which will be called upon later is

S2(a) = a ∀ a ∈ D(Dn) (17)
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Defining e =
∑
g∈Dn

g∗ the universal R-matrix is given by

R =
∑
g∈Dn

ge⊗ eg∗ (18)

This can be shown to satisfy the relations for a quasi-triangular Hopf algebra as defined in [10]:

R∆(a) = ∆T (a)R, ∀ a ∈ D(Dn) (19)

(∆⊗ id)R = R13R23

(id⊗∆)R = R13R12

where ∆T is the opposite coproduct

∆T (gh∗) =
∑
k∈Dn

gk∗ ⊗ g(k−1h)∗ =
∑
k∈Dn

g(hk−1)∗ ⊗ gk∗

When n is even, D(Dn) admits eight one-dimensional irreducible representations, (n2 − 4)/2

two-dimensional irreducible representations, and eight n/2-dimensional irreducible representations.
When n is odd, D(Dn) admits two one-dimensional irreducible representations, (n2 − 1)/2

two-dimensional irreducible representations, and two n-dimensional irreducible representations. The
explicit irreducible representations are given in [14]. Our interest will be in the two-dimensional
irreducible representations. To describe them, let ω = e2πi/n. Then these representations have the form

π1(j)(σe) =

(
ωj 0

0 ω−j

)
, π1(j)(τe) =

(
0 1

1 0

)
, π1(j)(eg

∗) = δ(g, e)

(
1 0

0 1

)
for j = 1, ..., (n− 2)/2 if n is even and j = 1, ..., (n− 1)/2 if n is odd,

π2(j)(σe) =

(
ωj 0

0 ω−j

)
, π2(j)(τe) =

(
0 1

1 0

)
, π2(j)(eg

∗) = δ(g, σn/2)

(
1 0

0 1

)
for j = 1, ..., (n− 2)/2 if n is even, and

π(j,k)(σe) =

(
ωj 0

0 ω−j

)
, π(j,k)(τe) =

(
0 1

1 0

)
, π(j,k)(eg

∗) =

(
δ(g, σk) 0

0 δ(g, σ−k)

)

for j = 1, ..., n and where k = 1, ..., (n− 2)/2 if n is even, and k = 1, ..., (n− 1)/2 if n is odd.
For any of the above two-dimensional representations πµ, µ = 1(j), 2(j), (j, k) the tensor product

representation applied to the universal R-matrix Equation (18) yields the general form

(πµ ⊗ πµ)R =


ωl 0 | 0 0

0 ω−l | 0 0

− − − −
0 0 | ω−l 0

0 0 | 0 ωl

 (20)
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for some l = 1, ..., n. Choosing q = ωl in Equation (6) we then find

R(x) =


ω2lx− ω−2lx−1 0 | 0 0

0 x − x−1 | ω2l − ω−2l 0

− − − −
0 ω2l − ω−2l | x − x−1 0

0 0 | 0 ω2lx− ω−2lx−1


= (x− 1)ωl(πα ⊗ πα)R− (x−1 + 1)ω−l(πα ⊗ πα)R−1 + (ω2l − ω−2l)P (21)

where

P =


1 0 | 0 0

0 0 | 1 0

− − − −
0 1 | 0 0

0 0 | 0 1


is the permutation operator on the tensor product space. This shows that the Baxterisation of the D(Dn)

R-matrix in two-dimensional representations leads to the symmetric six-vertex model at q a root of unity,
which was previously reported in [14]. Baxterisation of the D(Dn) R-matrix in higher-dimensional
representations lead to the Fateev–Zamolodchikov solution of the Yang–Baxter equation, as discussed
in [15,16].

Having identified the relationship Equation (21) between the solution Equation (6) of the Yang–Baxter
equation and representations of the universal R-matrix Equation (18) for D(Dn), we can now proceed
to determine when D(Dn) is a symmetry algebra of the transfer matrix associated to the Hamiltonian
Equation (1) subject to the constraints Equations 2 and 3.

4. Symmetries of the Transfer Matrix and Hamiltonian

First we define

R+ = q−1 lim
x→∞

1

x
R(x) =


q 0 | 0 0

0 q−1 | 0 0

− − − −
0 0 | q−1 0

0 0 | 0 q



R− = −q lim
x→0

xR(x) =


q−1 0 | 0 0

0 q | 0 0

− − − −
0 0 | q 0

0 0 | 0 q−1

 = (R+)−1



Axioms 2012, 1 233

It follows from Equation (7) that

R12(u)R+
13R

+
23 = R+

23R
+
13R12(u) (22)

R+
12R13(u)R−23 = R−23R13(u)R+

12 (23)

We then define a modified monodromy matrix

Ta(x) = La1(xz
−1
1 )La2(xz

−1
2 )....LaL(xz−1

L )R+
aL....R

+
a2R

+
a1 (24)

Through use of Equations (7,22,23) it can be shown that this monodromy matrix satisfies a generalised
version of Equation (5):

Rab(x/y)Ta(x)R+
abTb(y) = Tb(y)R+

abTa(x)Rab(x/y)

The transfer matrix is again defined by Equation (4). From the results of [18] it is known that
Equation (12) still holds by use of Equation (9).

The action ofD(Dn) on an L-fold tensor product space is given through iterated use of the co-product
action Equation (16):

∆(L) = (∆⊗ id)∆(L−1) = (id⊗∆)∆(L−1), ∆(2) = ∆

Below, for ease of notation, we will omit the representation symbols πµ when dealing with tensor product
representations obtained through this action. Whenever we have

β =
2πl

n
, l = 1, ..., n (25)

the monodromy matrix Equation (24) commutes with the action of D(Dn) as a consequence of
Equations (8–21). From the results of [19], the transfer matrix obtained from Equation (24) also
commutes with the action of D(Dn) due to Equation (17).

Observing that we may write

R+
aj =

(
qnj−I 0

0 qI−nj

)
we may simplify Equation (24) as

Ta(x) = La1(xz
−1
1 )La2(xz

−1
2 )....LaL(xz−1

L )Ũa

where

Ũ =

(
exp(iβ(2M − L)) 0

0 exp(iβ(L− 2M))

)
(26)

Comparing Equations 11 and 26 and taking note of Equation (25), these matrices are made equal
by choosing

α =
4πl(L− 2M + 1)

n
(27)
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meaning that the transfer matrices obtained from the monodromy matrices Equations 10 and 24 are equal.
Thus we have established that the transfer matrix associated to the integrable Hamiltonian Equation (1)
subject to the constraints of Equations 2 and 3 commutes with action of the quasi-triangular Hopf algebra
D(Dn) whenever Equations 25 and 27 hold.

A crucial point to bear in mind is that the transfer matrices were defined in a sector-dependent manner,
where each sector is associated with a fixed number of Cooper pairs. However the D(Dn) action does
not preserve sectors, and specifically τe acts as a particle-hole transformation:

∆(L)(τe)N = (L−N)∆(L)(τe) (28)

whereas

∆(L)(σe)N = N∆(L)(σe) (29)

∆(L)(eg∗)N = N∆(L)(eg∗) (30)

These relations follow from the above two-dimensional matrix representations for which it is seen that
representations of σe and eg∗ are always diagonal in the basis in which the action of N is diagonal. In
the same basis, representations of τe are orthogonal matrices with non-zero off-diagonal entries.

Recall that the Hamiltonian is defined through the transfer matrix by Equation (13). Consequently,
whileD(Dn) is a symmetry of the transfer matrix obtained from Equation (24) in the conventional sense,
the interpretation of D(Dn) as a symmetry of the Hamiltonian is more subtle as the choice Equation (27)
is sector-dependent and thus α needs to be treated as an operator-valued quantity. From Equation (28)
we have for α given by Equation (27) that for each sector where N has eigenvalue M

∆(L)(τe)α = ∆(L)(τe)2β(L− 2M + 1)

= 2β(L− 2(L−M) + 1)∆(L)(τe)

= (4β − α)∆(L)(τe)

Using Equation (13) we obtain

∆(L)(τe)t(L−2) = t(L−2)∆(L)(τe)

∆(L)(τe)

(
2 sin(2β) sin(α− 2β)H − cos(α− 4β)

L∑
j=1

z2
j

)

=

(
2 sin(2β) sin(α− 2β)H − cos(α− 4β)

L∑
j=1

z2
j

)
∆(L)(τe)

2 sin(2β) sin(2β − α)∆(L)(τe)H − cos(α)
L∑
j=1

z2
j∆

(L)(τe)

=

(
2 sin(2β) sin(α− 2β)H − cos(α− 4β)

L∑
j=1

z2
j

)
∆(L)(τe)

From the trigonometric identity

cos(α)− cos(α− 4β) = 2 sin(2β) sin(α− 2β)
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this then leads to the following anti-symmetry relation for the integrable Hamiltonian Equations (1–3)
whenever Equations 25 and 27 hold

∆(L)(τe)

(
H − 1

2

L∑
j=1

z2
j I

)
= −

(
H − 1

2

L∑
j=1

z2
j I

)
∆(L)(τe)

This relation shows how the spectrum of the Hamiltonian maps under a particle-hole transformation
M 7→ L−M induced by Equation (28). On the other hand,

∆(L)(σe)

(
H − 1

2

L∑
j=1

z2
j I

)
=

(
H − 1

2

L∑
j=1

z2
j I

)
∆(L)(σe),

∆(L)(eg∗)

(
H − 1

2

L∑
j=1

z2
j I

)
=

(
H − 1

2

L∑
j=1

z2
j I

)
∆(L)(eg∗), ∀ g ∈ Dn

Thus as a result of Equations 29 and 30, the action of σe and eg∗ leaves the spectrum of the Hamiltonian
invariant in each sector with fixed M .

Finally, if the above procedure is followed using the asymmetric R-matrix

R(x) =


(q2x− q−2x−1) 0 | 0 0

0 (x − x−1) | x−1(q2 − q−2) 0

− − − −
0 x(q2 − q−2) | (x − x−1) 0

0 0 | 0 (q2x− q−2x−1)


a transfer matrix is obtained which commutes with the co-product action of Uq(sl(2)) [20,21]. However
in this setting the corresponding conserved operator t(L−2) contains additional interaction terms. As a
result, an expression analogous to Equation (13) does not yield an operator in the form of Equation (1).

5. Conclusions

An analysis of an integrable Hamiltonian for anyonic pairing, as given by Equation (1) subject to
Equations 2 and 3, was undertaken. Values of the coupling parameters were identified for which
the model admits Hopf algebraic symmetries. In Section 2 the construction of the integrable model
was outlined in terms of the Quantum Inverse Scattering Method. This was achieved through the
symmetric, six-vertex solution of the Yang–Baxter equation. The Hamiltonian was identified through
a conserved operator associated to the corresponding transfer matrix. In Section 3 a description of the
quasi-triangular Hopf algebra D(Dn) was presented, including explicit expressions for all irreducible,
two-dimensional representations. Through these representations it was established that the symmetric,
six-vertex solution of the Yang–Baxter equation is related to representations of the universal R-matrix
for D(Dn). These results were utilised in Section 4 to construct a transfer matrix which preserved the
D(Dn) symmetry. From this transfer matrix, values of the coupling parameters were identified for which
the Hamiltonian Equation (1) subject to Equations 2 and 3 has D(Dn) as a symmetry algebra. However
the interpretation of D(Dn) as a symmetry algebra for the Hamiltonian is somewhat unconventional in
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that both commuting and anti-commuting actions for the generators were found. The anti-commuting
action is associated with a particular D(Dn) generator that induces a particle-hole transformation.
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17. Dunning, C.; Ibañez, M.; Links, J.; Sierra, G.; Zhao, S.-Y. Exact solution of the p + ip

pairing Hamiltonian and a hierarchy of integrable models. J. Stat. Mech. Theory Exp. 2010,
doi:10.1088/1742-5468/2010/08/P08025.

18. Links, J.; Foerster, A. On the construction of integrable closed chains with quantum supersymmetry.
J. Phys. A Math. Gen. 1997, 30, 2483–2487.

19. Links, J.R.; Gould, M.D. Casimir invariants for Hopf algebras. Rep. Math. Phys. 1992, 31, 91–111.
20. Grosse, H.; Pallua, S.; Prester, P.; Raschhofer, E. On a quantum group invariant spin chain with

non-local boundary conditions. J. Phys. A Math. Gen. 1994, 27, 4761–4771.
21. Karowski, M.; Zapletal, A. Quantum group invariant integrable n-state vertex models with periodic

boundary conditions. Nucl. Phys. B 1994, 419, 567–588.

c© 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	The Integrable Hamiltonian for Anyonic Pairing
	Drinfel'd Doubles of Dihedral Group Algebras
	Symmetries of the Transfer Matrix and Hamiltonian
	Conclusions
	Acknowledgments

