Communication

An Itô Formula for an Accretive Operator

Rémi Léandre

Laboratoire de Mathématiques, Université de Franche-Comté, route de Gray, Besançon 25030, France; E-Mail: Remi.leandre @univ-fcomte.fr; Tel.: +33-03 8166633

Received: 21 November 2011; in revised form: 12 March 2012 / Accepted: 13 March 2012 / Published: 21 March 2012

> Abstract: We give an Itô formula associated to a non-linear semi-group associated to a m-accretive operator.

Keywords: non-linear semi-group; Itô formula

1. Introduction

Let us recall the Itô formula in the Stratonovich Calculus [1]. Let B_{t} be a one dimensional Brownian motion and f be a smooth function on R. Then

$$
\begin{equation*}
f\left(B_{t}\right)=f\left(B_{0}\right)+\int_{0}^{t} f^{\prime}\left(B_{s}\right) d B_{s} \tag{1}
\end{equation*}
$$

where we consider the Stratonovich differential.
In [2,3], we have remarked that the couple $\left(B_{t}, f\left(B_{t}\right)\right)$ is a diffusion on $R \times R$ whose generator can be easily computed. This leads to an interpretation inside the semi-group theory of the Itô formula. Various Itô formulas were stated by ourself for various partial differential equations where there is no stochastic process [4-9]. See [9] for a review. For an Itô formula associated to a bilaplacian viewed inside the Fock space, we refer to [10].

There is roughly speaking following Hunt theory a stochastic process associated to a linear semi-group when the infinitesimal generator of the semi-group satisfied the maximum principle.

For nonlinear semi-group, the role of maximum principle is played by the notion of accretive operator. The goal of this paper is to state an Itô formula for a nonlinear semi-group associated to a m-accretive operator on $C_{b}\left(T^{d}\right)$, the space of continuous functions on the d-dimensional torus T^{d} endowed with the uniform metric $\|.\|_{\infty}$.

2. Statement of the Theorems

Let $(E,\|\cdot\|)$ be a Banach space. Let L be a non-linear operator densely defined on E. We suppose $L 0=0$. We recall that L is said to be accretive if for $\lambda \geq 0$

$$
\begin{equation*}
\left\|e_{1}-e_{2}+\lambda\left(L\left(e_{1}\right)-L\left(e_{2}\right)\right)\right\| \geq\left\|e_{1}-e_{2}\right\| \tag{2}
\end{equation*}
$$

It is said to be m -accretive if for $\lambda>0$

$$
\begin{equation*}
\operatorname{Im}(I+\lambda L)=E \tag{3}
\end{equation*}
$$

Let us recall what is a mild solution of the non-linear parabolic equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u_{t}+L u_{t}=0 ; \quad u_{0}=e \tag{4}
\end{equation*}
$$

We consider a subdivision $0 \leq t_{1}<\cdots<t_{N}=1$. We say that $u_{t_{i}}$ is an ϵ-discretization of Equation (4) if:

$$
\begin{array}{r}
t_{i+1}-t_{i}<\epsilon \\
\frac{u_{t_{i}}-u_{t_{i-1}}}{t_{i+1}-t_{i}}+L u_{i}=0 \tag{6}
\end{array}
$$

Definition 1. v is said to be a mild solution of Equation (4) iffor all ϵ there exist an ϵ-discretization u of Equation (6) such that $\left\|u_{t}-v_{t}\right\| \leq \epsilon$.

Let us recall the main theorem of [11,12]:
Theorem 1. If L is m-accretive, there exists for all e in E a unique mild-solution of Equation (4). This generates therefore a non-linear semi-group $\exp [-t L]$.

We consider the d-dimensional torus. We consider $E=C_{b}\left(T^{d}\right)$ and let L be an m-accretive operator whose domain contains $C_{b}^{\infty}\left(T^{d}\right)$, the space of smooth functions on T^{d} with bounded derivatives at each order which is continuous from $C_{b}^{\infty}\left(T^{d}\right)$ into $C_{b}\left(T^{d}\right)$.

Let $f \in C_{b}^{\infty}\left(T^{d}\right)$. We consider $g \in C_{b}\left(T^{d} \times R\right)$.
We consider the diffeomorphism ψ^{f} of $T^{d} \times R$:

$$
\begin{equation*}
\psi^{f}(x, y)=(x, y+f(x)) \tag{7}
\end{equation*}
$$

It defines a continuous linear isometry Ψ^{f} of $C_{b}\left(T^{d} \times R\right)$

$$
\begin{equation*}
\Psi^{f}[g](x, y)=g \circ \psi^{f}(x, y) \tag{8}
\end{equation*}
$$

Definition 2. The Itô transform L^{f} of L is the operator densely defined on $C_{b}\left(T^{d} \times R\right)$

$$
\begin{equation*}
L^{f}=\left(\Psi^{f}\right)^{-1} \circ\left(L \otimes I_{1}\right) \circ \Psi^{f} \tag{9}
\end{equation*}
$$

Let us give the domain of $L \otimes I_{1} . C_{b}\left(T^{d} \times R\right)$ is constituted of function $g(x, y)$.

$$
\begin{equation*}
L \otimes I_{1}[g](x, y)=L_{x} g(x, y) \tag{10}
\end{equation*}
$$

where we apply the operator L on the continuous function $x \rightarrow g(x, y)$ supposed in the domain of L for all y. We suppose moreover that $(x, y) \rightarrow L_{x} g(x, y)$ is bounded continuous. The domain contains clearly $C_{b}^{\infty}\left(T^{d} \times R\right)$.

Theorem 2. If L is m-accretive on $C_{b}\left(T^{d}\right)$, its Itô-transform is m-accretive on $C_{b}\left(T^{d} \times R\right)$.
We deduce therefore two non-linear semi-groups if L is m-accretive:

- $\exp [-t L]$ acting on $C_{b}\left(T^{d}\right)$.
- $\exp \left[-t L^{f}\right]$ acting on $C_{b}\left(T^{d} \times R\right)$.

Let g be an element of $C_{b}\left(T^{d} \times R\right)$. We consider $g^{f}(x)=g(x, f(x))$. We get:
Theorem 3. (Itô formula) We have the relation

$$
\begin{equation*}
\exp [-t L]\left[g^{f}\right](x)=\exp \left[-t L^{f}\right][g](x, f(x)) \tag{11}
\end{equation*}
$$

This formula is an extension in the non-linear case of the classical Itô formula for the Brownian motion. If we take $L=-1 / 2 \frac{\partial^{2}}{\partial x^{2}}$ acting densely on $C_{b}(R)$, we have

$$
\begin{equation*}
\exp [-t L][g](x)=E\left[g\left(B_{t}+x\right)\right] \tag{12}
\end{equation*}
$$

where $t \rightarrow B_{t}$ is a Brownian motion on R starting from $0 .\left(B_{t}+x, f\left(B_{t}+x\right)+y\right)$ is a diffusion on $R \times R$ whose generator is L^{f}.

3. Proof of the Theorems

Proof of Theorem 2. $L \otimes I_{1}$ is clearly m-accretive on $C_{b}\left(T^{d} \times R\right)$. Let us show this result.

- $L \otimes I_{1}$ is densely defined. Let g be a bounded continuous function on $T^{d} \times R$. By using a suitable partition of unity on R, we can write

$$
\begin{equation*}
g(x, y)=\sum g^{n}(x, y) \tag{13}
\end{equation*}
$$

where $g^{n}(x, y)=0$ if y does not belong to $[-n-1, n+1]$. By an approximation by convolution we can find a smooth function $g^{n, \epsilon}(x, y)$ close from $g(x, y)$ for the supremum norm and with bounded derivative of each order. $x \rightarrow L_{x} g^{n, \epsilon}$ is continuous in x and the joint function $(x, y) \rightarrow L_{x} g^{n, \epsilon}(x, y)$ is bounded continuous in (x, y) by the hypothesis on L.

- Clearly Equation (2) is satisfied.
- It remains to show Equation (3). If g belong to $C_{b}\left(T^{d} \times R\right)$ we can find $x \rightarrow h(x, y)$ such that

$$
\begin{align*}
& h(x, y)+\lambda L_{x} h(x, y)=g(x, y) \tag{14}\\
& \left\|g(, y)-g\left(., y^{\prime}\right)\right\|_{\infty} \geq\left\|h(., y)-h\left(., y^{\prime}\right)\right\|_{\infty} \tag{15}
\end{align*}
$$

Therefore $(x, y) \rightarrow h(x, y)$ is jointly bounded continuous.
Since Ψ^{f} is a linear isometry of $C_{b}\left(T^{d} \times R\right)$ which transform a smooth function into a smooth function,

$$
\begin{equation*}
L^{f}=\left(\Psi^{f}\right)^{-1} \circ\left(L \otimes I_{1}\right) \circ \Psi^{f} \tag{16}
\end{equation*}
$$

is clearly still m-accretive.

Proof of Theorem 3. Let us consider $t_{i}=i / N$ to simplify the exposition. Let us consider an ϵ-discretization u. of the parabolic equation associated to L^{f}. This means that

$$
\begin{equation*}
u_{t_{i}} \in\left(\Psi^{f}\right)^{-1}\left(I_{d+1}+1 / N\left(L \otimes I_{1}\right)\right)^{-i} \Psi^{f} g \tag{17}
\end{equation*}
$$

I_{d+1} is the identity on $C_{b}\left(T^{d} \times R\right)$. But

$$
\begin{equation*}
\left(I_{d+1}+1 / N\left(L \otimes I_{1}\right)\right)=\left(I_{d}+1 / N L\right) \otimes I_{1} \tag{18}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left(\left(I_{d}+1 / N L\right)^{i} \otimes I_{1}\right) \Psi^{f} u_{t_{i}}=\Psi^{f} g \tag{19}
\end{equation*}
$$

By doing $y=0$ in the previous equality, we deduce that

$$
\begin{equation*}
(1+L / N)^{i} u_{t_{i}}^{f}=g^{f} \tag{20}
\end{equation*}
$$

Therefore $u_{t_{i}}^{f}$ is an ϵ-discretization to the parabolic equation associated to L.

Acknowledgements

We thank M. Mokhtar-Karroubi and B. Andreianov for helpful discussion.

References

1. Dellacherie, C.; Meyer, P.A. Probability and Potential B: Theory of Martingales; North-Holland: Amsterdam, The Netherlands, 1982.
2. Léandre, R. Wentzel-Freidlin Estimates in Semi-Group Theory. In Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision (ICARCV '08), Hanoi, Vietnam, 17-20 December 2008; pp. 2233-2235.
3. Léandre, R. Large Deviation Estimates in Semi-Group Theory. In Proceedings of the International Conference on Numerical Analysis and Applied Mathematics, Kos, Greece, 16-20 September 2008; Volume 1048, pp. 351-355.
4. Léandre, R. Itô-stratonovitch formula for four order operator on a torus. Acta Phys. Debr. 2008, 42, 133-137.
5. Léandre, R. Itô-Stratonovitch formula associated with a big order operator on a torus. Phys. Scr. 2009, 136, doi:10.1088/0031-8949/2009/T136/014028.
6. Léandre, R. Itô-Stratonovitch formula for the wave equation on a torus. Trans. Comput. Sci. 2010, 5890, 68-74.
7. Léandre, R. Itô Formula for an Integro-Differential Operator without an Associated Stochastic Process. In Proceedings of the 7th ISAAC Congress, London, UK, 13-18 July 2009; World Scientific: Singapore, 2010; pp. 226-231.
8. Léandre, R. The Itô transform for a general class of pseudo-differential operators. In Stochastic Models Data Analysis, in press.
9. Léandre, R. Stochastic analysis without probability: Study of some basic tools. J. Pseudo-Differ. Oper. Appl. 2010, 1, 389-400.
10. Léandre, R. A Generalized Fock Space Associated to a Bilaplacian. In Proceedings of the International Conference on Applied and Engineering Mathematics 2011, Shanghai, China, 28-30 October 2011; pp. 68-72.
11. Bénilan, P. Équations D'évolution Dans un Espace de Banach Quelconque et Applications; These d'Etat: Orsay, Franch, 1972.
12. Crandall, M.; Liggett, T.M. Generation of semi-groups of non-linear transformations on general Banach spaces. Am. J. Math. 1971, 93, 265-298.
(c) 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
