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Abstract: The Per Geijer iron oxide apatite deposits are important potential future resources
for Luossavaara-Kiirunavaara Aktiebolag (LKAB) which has been continuously mining
magnetite/hematite ores in northern Sweden for over 125 years. Reliable and quantitative
characterization of the mineralization is required as these ores inherit complex mineralogical and
textural features. Scanning electron microscopy-based analyses software, such as mineral liberation
analyzer (MLA) provide significant, time-efficient analyses. Similar elemental compositions of
Fe-oxides and, therefore, almost identical backscattered electron (BSE) intensities complicate their
discrimination. In this study, MLA and Raman imaging are compared to acquire mineralogical data for
better characterization of magnetite and hematite-bearing ores. The different approaches demonstrate
advantages and disadvantages in classification, imaging, discrimination of iron oxides, and time
consumption of measurement and processing. The obtained precise mineralogical information
improves the characterization of ore types and will benefit future processing strategies for this
complex mineralization.
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1. Introduction

The mineralogical characterization of ore deposits using scanning electron microscopy (SEM)-based
automated mineralogy systems such as mineral liberation analyzer (MLA) or QEMSCAN® are of
major importance for mineral processing. Declining ore grades, the reconnaissance of new targets, and
demands for improved energy efficiency require fast, reliable, and high-quality information on mineral
resources. Highly variable and complex mineralogy affects mineral processing and extractive metallurgy,
as has been shown by authors in the past [1–6]. Collecting quantitative data of mineral distributions,
associations and textures are one of its key abilities. Using this technique, information gained by
traditional bulk mineralogical analysis, chemical assay, and optical microscopy can be supported and
expanded. Automated mineralogy is widely used in the mining business as it allows rapid identification
and characterization of key minerals in ore and rock samples. Furthermore, it can be applied to all
sorts of different mineral deposit types [1,7–11]. Mineral liberation analysis (MLA) software is one of
the widely applied SEM-based applications offering a rapid quantitative characterization of mineral
species and their relations in polished samples [12]. It is commonly used in conjunction with other
micro-compositional or microstructural techniques such as electron-probe microanalyses (EPMA)
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or X-ray diffraction (XRD). However, SEM-based techniques cannot precisely distinguish mineral
polymorphs (e.g., rutile-anatase-brookite) or discriminate between minerals having a similar elemental
composition (e.g., magnetite and hematite). Especially the discrimination of magnetite and hematite
becomes an important factor in future processing stages at the Luossavaara-Kiirunavaara Aktiebolag
(LKAB) enterprise. Almost pure magnetite mineralization is only prevalent in the Kiirunavaara deposit.
Increasing hematite contents in the other deposits in the Kiruna district (Malmberget and Leveäniemi),
and most predominantly in Per Geijer will significantly influence the beneficiation and pelletizing
process. In order to sustain efficient comminution and magnetic separation processes evaluation by
automated mineralogy or similar methods will add significant value in the future.

The effect that similar average atomic numbers result in similar BSE intensities (BSE grey values)
requires modification of the MLA technique, especially in the data processing stage. A technique for
distinguishing between hematite and magnetite by MLA has been established by Figueroa et al. [13].
However, stable beam currents and even sample surfaces are obligatory for maintaining constant BSE
grey values. As this often proves problematic, there is demand for additional analytic solutions.

In this study, Raman imaging is used as an alternative tool to highlight advantages and
disadvantages of both methods with the focus on magnetite-hematite mineralization of the Per
Geijer iron ore deposits close to the well-known Kiirunavaara deposit. This comparative approach for
ore characterization provides detailed information by mapping mineral distributions of a potential
new iron ore resource.

2. Geology of the Per Geijer Deposits

The iron oxide apatite ores (IOA) in the Kiruna area are hosted by the Svecofennian Kiirunavaara
Group. Svecofennian rocks are represented by volcanic and sedimentary units generated by reworking
of older crust and subduction and accretion of several volcanic arc complexes [14–17]. Three formations
account for that group: (1) Hopukka Formation, (2) Luossavaara Formation, and (3) Matojärvi
Formation. The giant Kiirunavaara ore body with pre-mining resources of more than 2000 Mt [18], is a
massive tabular almost purely magnetite body with generally low phosphorus content. The smaller,
magnetite-rich Luossavaara deposit north of Kiirunavaara is situated in the same stratigraphy. Closely
associated with the east and northeast reside the Per Geijer orebodies at the stratigraphically upper
contact of the Luossavaara Formation or within the lower part of the Matojärvi Formation [19].
These deposits are located north of the town of Kiruna and consist of five orebodies that have
been mined in intervals during the 20th century as open pits. The Nukutus, Henry, and Rektorn
mineralization occur stratigraphically at the upper contact of the Luossavaara Formation, while the
Haukivaara and Lappmalmen deposits, at least partly, are located within the overlying Matojärvi
Formation. Lappmalmen is a blind and, so far, unexploited ore body only known from exploration
drilling. The ores exhibit large variations in texture, mineral composition, and relation to wall
rocks [18]. Depending on the orebody and the vertical position of the mineralization in the deposit,
magnetite and hematite occur in varying textures and proportions leading to different ore types
(e.g., hematite-dominated, magnetite-dominated, magnetite/hematite-mixed), as proposed by [20].
Generally, hematite occurs together with magnetite often replacing it, especially close to the upper
part of the deposit. The overall phosphorus content is high and occurs as apatite. Other main gangue
minerals are carbonate and quartz. The Per Geijer deposits have an average composition of 40–50% Fe
and 3–5% P but higher and lower iron and phosphorus contents can locally occur.

3. Materials and Methods

3.1. Samples and Preparation

Sixty-five samples were selected from drill cores representing all five Per Geijer ore bodies
after specific pre-defined ore type sections and macroscopic petrographic evaluation. For this study,
18 polished thin sections were prepared by the preparation laboratory of the Helmholtz Institute
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Freiberg for Resource Technology. Sample HA-81155-2 was selected for comparative SEM-MLA and
Raman measurements because of the occurrence of magnetite, hematite, and Ti-bearing hematite in
satisfying abundances.

3.2. Scanning Electron Microscope (SEM) and Mineral Liberation Analyzer (MLA)

Samples were studied with the scanning electron microscope (SEM) including mineral liberation
analyzer (MLA) (FEI, Brisbane, Australia) software on a Quanta 650 FEG-MLA650F (FEI©,
Brno, Czech Republic). The analyses were carried out at the geometallurgical laboratory of the
Department of Mineralogy at TU Bergakademie Freiberg, Germany. Energy-dispersive X-ray
spectroscopy (EDS) was performed with two Bruker Nano Dual X-Flash 5030 detectors (Bruker,
Berlin, Germany), using an accelerating voltage of 25 kV and a working distance of 12 mm. The workflow
of the SEM-MLA analysis described in the following sections is shown in Figure 1.
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3.2.1. Measurement Mode and Setup

The grain-based X-ray mapping (GXMAP) mode was selected for this study. The GXMAP
technique analyses selected grains (in this case, the whole thin section) with a closely spaced grid
of X-ray measurements resulting in false-colored mineral maps [12,21]. Here, the whole sample was
continuously mapped with an EDS analysis every 12 µm (slower mapping) or 36 µm (faster mapping).
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In both measurements, the frame resolution was 500 × 500 pixel with a magnification of either 3 or
2 µm/pixel, respectively. Based on backscattered images, the minerals were first separated according to
their grey values and then mapped in a definite grid of EDS analysis. The basic setup included the
definition of a BSE grey value range (BSE trigger). As element contents are responsible for the BSE
contrast, chemically similar minerals have identical BSE grey levels. Thus, for hematite and magnetite
classification, reference BSE values had to be manually defined. Furthermore, they were compared with
optical reflected light images of the sample in which the two iron oxides have characteristic reflection
properties. The details of the SEM image acquisition are listed in Table 1. A detailed description of the
functionality of MLA and the measuring modes can be found in the literature [12,22–24].

Table 1. Details of the scanning electron microscope (SEM) + mineral liberation analyzer (MLA) and
Raman measurements.

Device MLA GXMAP (f) MLA GXMAP (s) Raman

Sample type
Excitation energy

ca. 20 mm × 40 mm ts
25 kV

20 mm × 40 mm ts
25 kV

20 mm × 40 mm ts
532 nm,

5–20 mW laser power

Step size 36 µm 12 µm 30 µm

Acquisition time 7 ms 7 ms 275 ms/200 ms

Measurement time 0.75 h/cm2 1.5 h/cm2
9 h/cm2 (30 µm Renishaw)
45 h/cm2 (12 µm WITEC)
42 h/mm2 (1 µm WITEC)

(s)—slow measurement, (f)—fast measurement, (ts)—thin section.

3.2.2. Mineral Reference List

A preliminary mineral reference list was generated by collecting mineral standards manually.
Chemical compositions were obtained with the Bruker Esprit 1.9 software (Bruker, Berlin, Germany),
mineral names, and formulae, as well as physical properties (e.g., density), were added.

3.2.3. Online Data Processing

The preliminary mineral list had to be adjusted after first classification due to larger unknowns.
Unknowns are detected when the comparison between the spectra of the mineral reference list and the
measured X-ray spectra fails. This error in consistency occurs when the limits of a spectrum matching
threshold (80%) and/or a low count limit (800) exceed the predetermined values. Thus, an assignation
to a suitable mineral phase was not possible. However, some unknowns can be the result of mixed
spectra of two different phases.

3.2.4. Offline Data Processing

For off-line image and data processing collected X-ray spectra were classified. As for online
data processing, comparison with the spectra of the mineral reference list is necessary. Therefore,
the spectrum matching threshold and low count limit were set to 80% and 800 counts, respectively.
However, the X-ray spectra and the BSE grey level of the different iron oxides (e.g., hematite and
magnetite) are very similar. Consequently, the results from MLA were checked against the results from
optical microscopy and manual correction was applied. For most samples, BSE grey value ranges
were set at 150 to 190 for hematite and 191 to 250 for magnetite. These values were checked for every
sample after classification and adjusted, if necessary. However, single frames in some samples yielded
wrong classification of magnetite and hematite based on local BSE grey value variations. Manual
correction was obtained by using the edit selected particles mode. By re-defining wrongly classified
areas manually, the validity for the samples was improved.
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To remove small unknowns and other noise from the image, the touch-up tool was used. All
unknowns with a size smaller than 50 pixels were turned into the containing host (unknown to any
host), which mainly affected pixels with mixed spectra. The remaining unknowns generated by holes
and brackets of the thin section holder were turned into background (size < 2,000,000 pixels). Minerals,
which feature a pixel size smaller than 50 or 70 that are located in another mineral, were transformed
to the containing host mineral (mineral to any host). Finally, databases were created comprising
information about modal mineralogy, mineral associations, as well as grain properties. For this study,
only information of the modal mineral abundance was taken into account.

3.3. Raman Spectroscopy and Imaging

Raman maps were collected using an alpha300 M+ Raman Microscope System (WITec GmbH,
Ulm, Germany) or an inVia Qontor Raman Confocal Microscope (Renishaw, Pliezhausen, Germany).
The workflow of the Raman analysis described in the following sections is shown in Figure 1.

3.3.1. Measurement Mode and Setup

The measurements were carried out at Papiertechnische Stiftung (PTS) Heidenau and Center
for Molecular Bioengineering at TU Dresden (BCUBE). Both systems were equipped with an upright
microscope using a 532 nm laser excitation and a Charge Coupled Device (CCD) detector with 1024 pixel.
The Renishaw system was used with a 100× objective (Leica Objective N plan EPI 100×/NA 0.85) using
10% laser power (corresponding to approximately 5 mW) and a 1800 gr/mm grating (spectral range:
60–1837 cm−1). The Raman map of Figure 2 (2.127 cm × 2.232 cm) was collected with 30 µm step size
and 275 ms exposure time using the Renishaw system.
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Figure 2. Mineral distribution maps from reflected light (optical microscopy) and processed SEM-MLA
and Raman analysis.

The WITec confocal Raman system is based on a Zeiss microscope and was used with a 100×
objective (Zeiss EC Epiplan NA 0.9) using 20 mW laser power and a 600 gr/mm grating (spectral range:
−123–3777 cm−1). The Raman maps of Figure 3 were collected using the WITec system. The overview
map (2.38 cm × 1.3 mm) was collected with 12 µm step size, the detailed map with 1 µm step size
(160 µm × 120 µm). In both cases, spectra were collected using 200 ms exposure time.

Before measurement, we optimized spectral acquisition parameters (especially laser power).
Due to the large mapping areas (up to 2 cm × 2 cm), we decided to use the highest laser power while
reducing exposure time as much as possible to achieve a high mapping speed. We started with point
measurements on all minerals (acquisition time: 0.2 s) using increasing laser power to check for thermal
decomposition or oxidation. This way, the maximum laser power for each mineral can be determined.
In our samples, sulfides were found to be the most sensitive to laser damage resulting in significant
visible and spectroscopical changes. The most sensitive minerals determined the laser power that was
used. We did not observe any changes in the spectra of magnetite and hematite. In comparison, the
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literature reporting on hematite transformation [25], used exposure times from at least several seconds
up to several minutes (10 s–5 min). Samples were checked for oxidation effects after measurements
with optical reflected light microscopy.
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same area of sample HA-81155-2. Detailed comparison of magnetite, Ti-bearing hematite, and Ti-poor
hematite is shown in zoomed-in maps.

3.3.2. Mineral Reference List

Reference spectra were collected either by spot measurements, isolated by non-negative matrix
factorization (NMF), or extracted by averaging mineral-specific areas of Raman maps based on the
EDS maps obtained for MLA. Before linear combination, the spectra were background-corrected and
normalized. All reference spectra can be found in the Supporting Information (Figure S1).

3.3.3. Offline Data Processing-Data Preprocessing

Spectral datasets were imported into the in-house SpectralImaging software (TU Dresden,
Dresden, Germany) on the basis of Matlab provided and developed by Matthias Finger
(spectralimaging@outlook.com). First, cosmic ray removal was performed to eliminate spikes. Spectral
datasets were typically cut to a wavelength of 100–1900 cm−1 where significant spectral differences
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were found. Baseline correction was performed by asymmetric least squares correction (smoothness 5,
asymmetry 2). If necessary, smoothing (Savitzky-Golay, seven points, degree 2) was applied.

3.3.4. Offline Data Processing-Multivariate Analysis

Multivariate analysis was used to identify the number of principal components and to image
their distribution. We used two data analyses methods, principal component analysis (PCA) and
non-negative matrix factorization (NMF). Both techniques were conducted using the above-mentioned
in-house SpectralImaging software based on Matlab.

PCA and NMF are both unsupervised statistical methods to reduce the dimensionality of large
datasets. Using PCA, original variables of the dataset are summarized in new variables, the so-called
principal components. These components are calculated as the solution of an eigenvalue problem
responsible for the whole variance of the data set. As a result, PCA weights a set of principal
components with positive and negative values to represent the full spectral information.

NMF is similar to PCA but the weights and factors are constrained to be positive. Therefore, it is
well-suited to represent data with non-negative features. We found that the resulting spectral factors
are easier to inspect. That is why, if necessary, non-negative matrix factorization (NMF) was used to
extract spectral signatures of individual minerals from the total set. To validate these unsupervised
methods, a supervised linear combination approach was used to map the distribution of selected
components. All maps shown were prepared using linear combination of a set of measured reference
spectra (see above).

4. Results

The following results are presented as comparison and verification of SEM-MLA and Raman
mapping. Emphasis is given on imaging, discrimination of magnetite and hematite and modal
mineralogy in area % with respect to the time demands for measurements and processing.

4.1. Classification and Imaging

The mineral distribution maps of both classifications (SEM-MLA and Raman) correspond well
with the thin section of the reflected light photograph (Figure 2). Both methods recognized the present
minerals. The classification with MLA was manually adjusted with a BSE grey level range from 150
to 190 for hematite and 191 to 250 for magnetite. Mineral boundaries are pre-defined based on the
BSE grey values with the SEM-MLA. This function is not yet available for Raman imaging resulting
in a rasterized resolution. General features, textures of the sample material and the abundance and
location of important minerals are visible with both methods.

4.2. Discrimination of Magnetite and Hematite

In the reflected light image of the polished sample of apatite iron ore, magnetite, hematite, and
gangue minerals (mostly apatite, carbonates, and silicates) can be seen (Figure 3). In SEM-based
backscattered electron images, iron oxides are hardly distinguishable from each other due to similar
BSE grey values. The processed false-colored mineral maps from MLA and Raman show all present
phases. However, the precise discrimination of magnetite and hematite varies with both techniques.
A smaller area (see the red square in Figure 3) was selected for high-resolution Raman mapping.
Six minerals were spectrally identified within this smaller area, corresponding to magnetite, Ti-free
hematite, Ti-bearing hematite, quartz, ankerite, bornite, and chalcopyrite. The different Raman spectra
for hematite were assigned to Ti-bearing hematite by EDS data.

4.3. Modal Mineralogy

The modal mineralogy can be extracted in the Dataview software for SEM-MLA measurements.
Raman does not commonly offer this data analysis feature as an in-built tool. However, quantification
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of phase abundances is possible based on the number of pixels identified for each phase in relation to
the total number of pixels in the scanned area.

The modal mineralogy of the major and minor components obtained for the area displayed in
Figure 2 shows similar results between the slow and the fast SEM-MLA and Raman measurements
(Table 2). However, magnetite occurs in higher modal abundance in the measurement with lower
step size (35.54 area %) compared to the fast measurement (33.62 area %) and Raman (34.9 area %).
Contrary, the modal mineralogy of hematite and Ti-bearing hematite is elevated in the fast GXMAP
but lower in Raman (Table 2). Quartz, apatite, and ankerite show slightly lower values compared to
SEM-MLA. The modal mineralogy of calcite is in the range of ± 0.2 area % for all measurements.

Table 2. Modal mineralogy (area %) of major and minor components obtained by SEM + MLA and
Raman measurements on sample HA-81155-2. Fe-oxides are highlighted for better comparison.

Mineral MLA GXMAP(s) MLA GXMAP(f) Raman

Magnetite 35.54 33.62 34.9
Hematite_Ti 14.62 15.59 11.6

Quartz 22.02 21.60 19.5
Apatite 9.78 9.38 9.0

Ankerite 8.61 8.85 7.4
Calcite 7.68 7.70 7.6

Hematite 0.72 2.21 0.7

4.4. Time Constraints

For this study, SEM-based MLA measurements were performed with two different resolutions
and step sizes on the same sample in addition to Raman mapping.

4.4.1. Measurement Time

The measurement time for fast GXMAP mapping with a resolution of 500 × 500 pixels and a
step size of 36 µm was 6 h. Mapping with a step size of 12 µm and the same resolution took 12 h.
The identical area of the same sample measured with Raman was the most time-intensive with 42 h
using a step size of 30 µm. The measurement time of the detailed Raman map (Figure 3) took 1 h using
a step size of 1 µm.

4.4.2. Data Processing Time

The processing time is dependent on many variables, including the operator in charge, technical
equipment, e.g., computational power, software requirements, and functions. In SEM-MLA
data processing of faster measurements using larger step sizes resulted in more unknowns and
misidentification of phases. In this case, additional processing time was required due to manual
correction of the sample set.

Data processing in Raman imaging depends strongly on the signal-to-noise ratio of the acquired
spectra. Since processing is done mainly offline after data acquisition, it is crucial to ensure the best
acquisition parameters (e.g., laser power, exposure time) before measurement. To discriminate similar
minerals (e.g., Ti-bearing and Ti-poor hematite) longer acquisition times are recommended.

5. Discussion

The presented results and images of SEM-MLA and Raman measurements of magnetite and
hematite-bearing ores from apatite iron oxide deposits in the Kiruna area depend, in both cases,
mainly on the correct classification of the present minerals. For SEM-MLA, a comprehensive mineral
database containing all present minerals that are correctly distinguished by their chemical information
is inevitable. Raman imaging does not necessarily require any preexisting knowledge about the existing
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minerals. Therefore, online data processing is not necessary and data analysis happens solely offline
after data acquisition, e.g., using unsupervised multivariate data analysis to identify different minerals.

When it comes to mineral classification, Raman shows some major advantages, especially in
the discrimination of magnetite and hematite due to their distinct Raman spectral signatures [25–30].
A diagnostic Raman peak for magnetite is 663 cm−1 (T2g), whereas hematite is dominated by strong
peaks at 293 (Eg), 410 (Eg), 615 (Eg) and 1320 cm−1 (Figure 4). In comparison, Figueroa et al. [13]
showed that using the SEM-based MLA method discrimination of magnetite and hematite is possible
but needs significant adjustments prior to and during measurements. It was stated, that measurement
times did not increase significantly but the process of time-consuming offline modification and the
effect of fluctuations in beam current was neglected. The ability of Raman spectroscopy to intrinsically
discriminate clearly between magnetite and hematite shows great potential for the characterization
of iron oxide deposits. However, it needs to be noted that Fe(II)-containing minerals can be easily
converted into Fe(III)-oxides like hematite by high laser powers [25,29,30]. In order to avoid conversion,
it is crucial to optimize spectral acquisition parameters prior to mapping (see experimental details).
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Another great advantage of Raman spectroscopy is its ability to not only identify, but
also quantify incorporated foreign elements. Substitution of iron with aluminum [31–33],
manganese/chromium [34,35], or titanium [36] results in a shift of Raman peak positions due to
differences in mass. In a similar manner, carbonates show changes in peak location and shape
depending on the amount of magnesium, iron, and manganese replacing calcium [37–40]. Ti-bearing
hematite was classified by both methods because of the incorporation of ca. 3 wt % Ti. In Raman,
we observed a change in the peak intensity at 295 cm−1 and 660 cm−1 (LO Eu) and an increased
peak width, especially at 660 cm−1 and 1320 cm−1. A shift to higher wavenumbers, as described by
Varshney et al. [36] was not observed most likely due to lack of spectral resolution. The IR-active
Eu (LO) at 660 cm−1 is theoretically not allowed (Raman-inactive). The intensity increase at about
660 cm−1 is a common indication for the incorporation of foreign elements. It becomes Raman-active
due to structural disorder induced by surface defects or stress [34–36].
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Please note that Raman imaging can be compromised by fluorescence excited by the laser source.
The use of different laser wavelengths, bleaching, or fluorescence correction algorithms can efficiently
counter the possible fluorescence of geological samples. If necessary, fluorescent areas can also be
visualized using the Raman system.

Raman spectroscopy offers a variety of additional possibilities to characterize inorganic materials
in terms of polymorphism, crystal orientation, crystallinity, phase, stress, and strain [41,42].
The combination of the strong and distinct Raman signatures with its nondestructive nature makes
Raman spectroscopy a powerful tool for fine-scale identification and characterization of iron oxides.

A summary of the pros and cons of SEM-MLA and Raman imaging is given in Table 3.

Table 3. Pros and cons of MLA and Raman imaging for characterization of iron ores.

MLA Raman Imaging

+ ast acquisition of large areas
+ quantitative mineralogical data (abundance,

associations, distributions)
+ no influence of fluorescence

+ higher resolution
+ easy discrimination of minerals of

identical composition
+ identification and quantification of

incorporated foreign elements/trace minerals
+ polymorphism, crystal orientation, crystallinity,

phase, stress, strain
+ no sample preparation necessary
+ direct field measurements possible with

handheld Raman
+ confocal measurements possible

+/− resolution
+/− discrimination of Fe-oxides possible

+/− fluorescence imaging possible but impairing
Raman signal detection

− discrimination of minerals with identical
composition not possible

− ample preparation and carbon
coating necessary

− no confocal measurements

− fixed mapping grid
− slow acquisition of large areas

Quantification of the mineral abundance is well established using the MLA software (FEI,
Brisbane, Australia) [12]. For Raman imaging, quantification using a similar algorithm as described by
Fandrich et al. [12] and FEI [21], needs to be implemented for geological applications. For this reason,
we decided to compare area % in Table 2, which are easily accessible by both methods. For mineral
quantification of the Raman map, we relied solely on the results of linear combination of reference
spectra, not taking into account any microscopic data. The results also rely on color thresholds set in
the SpectralImaging software. Therefore, it should be noted that the error of the Raman quantification
method described here is larger than that of MLA quantification. Nevertheless, both methods reveal
similar quantitative analyses of mineral abundance in the range of 1.5% with the exception of Ti-bearing
hematite. The discrepancy of >3% is assumed to be caused by the fact that Raman relies on a fixed
mapping grid neglecting mineral boundaries visible in the BSE image. Therefore, in some areas the step
size of 30 µm is too big to resolve fine structures smaller than 30 µm size. Furthermore, the increased
Raman intensity at 660 cm−1 for Ti-bearing hematite could, at least partially, result in a misassignment
of magnetite using the linear combination approach.

Another important criterion for institutions and companies working on iron ores is the cost of
analysis when making feasible assumptions according to improved characterization and extraction of
the ore mineral. In purchase and maintenance, the financial advantage is on the Raman side, as the
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acquisition of an SEM-MLA (~800.000€) is roughly three times higher than a Raman imaging device
including software (~250.000€). Furthermore, operating an SEM requires high vacuum pumps and
nitrogen supply. Both techniques require a skilled operator to efficiently adjust measurements and they
should be operated in an air-conditioned laboratory. In this study, the analyses were conducted on
prepared thin sections for both methods. However, the advantage of Raman on the cost side is further
supported by the fact that no sample preparation is needed, whereas SEM-MLA requires preparation
and carbon coating of the samples.

Taking into account the limits and potentials of both methods, it is essential to define the right
questions to a problem in order to find the most suitable analytical solution. Samples that contain very
fine-grained aggregates or minerals that have fine intergrowths may need to be resolved in higher
resolution. These detailed maps with a spot size in nm range (up to around half the laser wavelength)
are one of the major advantages of the Raman technique, whereas the SEM is limited to µm range
(~1 µm) even with the best operating conditions. It should be noted that, with higher resolution and
smaller spot, size measurements become more time-consuming. In this study, Raman measurements
on the same sample area with the same spot size took at least 10 times longer than MLA mapping,
thus they are not nearly as time-efficient. Although Ramanaidou and Wells [43], suggested Raman
spectroscopy as a potential method for large volume or bulk analysis, this seems not applicable with
stationary Raman spectroscopes at this stage. Transportable Raman devices may offer fast field analysis
by point measurements, but the loss of spectral information due to the downsized equipment needs to
be compensated. Future instrumental research and development may lead to Raman spectroscopy and
imaging as the first order application in process mineralogical analysis of iron ore. However, solely
imaging will not solve the need for precise characterization of these complex ores, thus parameters,
such as mineral liberation, association or locking, especially from processed ore, need to be extracted.
Raman manufacturers start to offer software solutions for particle analysis, e.g., ParticleScout (WITec
GmbH, Ulm, Germany), applicable to large sample areas typical for geosciences. The authors of
this study are currently working on the development of these functions too, to further enhance the
application of Raman imaging as a modern tool for analysis, especially for iron ore.

6. Conclusions

This study has demonstrated the potential of both SEM- and Raman-based mineralogical imaging
for the characterization of iron oxide apatite deposits (IOA). In polished sections of IOA, magnetite,
hematite, apatite, carbonates, and silicates were easily detected and mapped. The discrimination of
magnetite and hematite, however, is strongly dependent on operating conditions in SEM-MLA. Raman
imaging shows a major advantage due to distinct Raman spectra that enable in situ identification.
Raman spectroscopy allows the determination of mineral composition and can detect contaminants in
iron oxides, further advancing iron ore characterization. However, the main “struggles” of Raman are
the time demands, especially when it comes to large volume or bulk analysis of iron ores. Further
enhancement of the Raman technique is pursued for better characterization of iron ores.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/9/544/s1,
Figure S1: Reference Raman spectra. Background-corrected and normalized Raman reference spectra used for
linear combination.
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