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Abstract

:

The Banzhusi granite porphyry is located in the Xiong’ershan area, East Qinling orogenic belt (EQOB). This study presents an integrated whole-rock geochemistry and zircon U-Pb-Hf-O isotope analysis of the Banzhusi granite porphyry. These rocks have metaluminous, high-K alkali-calcic and shoshonitic features and show significant enrichment in light rare earth elements (LREEs) over heavy rare earth elements (HREEs) with negative Eu anomalies. These samples are also greatly enriched in Rb, Ba, K, Pb, Th and U and depleted in Nb, Ta, P and Ti, and they mostly overlap the ranges of the Taihua Group tonalite–trondhjemite–granodiorite (TTG) gneiss. Magmatic zircons from three samples of the Banzhusi granite porphyry yield U-Pb ages of 125.1 ± 0.97 Ma, 128.1 ± 1.2 Ma and 128.2 ± 1.3 Ma. The Hf-O isotope features of zircons from the three samples are very similar (δ18Ozircon = 4.84‰ to 6.51‰, εHf(t) = −26.9 to −14.4). The co-variations of geochemical and isotopic data in these granite porphyries imply that the Banzhusi granite porphyry resulted from the mixing of the partially melted Taihua Group and mantle-derived material in a post-collisional setting from 128–125 Ma.
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1. Introduction


In the East Qinling orogenic belt (EQOB), late Mesozoic granitoid plutons are widely distributed (Figure 1) [1,2,3,4]. Most late Mesozoic granitoids are spatially, temporally and genetically correlated with Mo, Au and Ag-Pb-Zn mineralization in the EQOB [2,5,6,7]. However, the petrogenesis and magma source of these Late Jurassic to Early Cretaceous granitoids remain under debate. The diverse sources of late Mesozoic magmatism include (1) a mixture between partial melting of the lower crust or Archaean-Palaeoproterozoic metamorphic crystalline basement of the North China Craton (NCC) and mantle material [8,9,10,11,12] and (2) partial melting of continental crust of the Yangtze Craton (YC) that subducted beneath the southern margin of the NCC [13,14,15,16]. The Banzhusi granite porphyry is located in the eastern part and represents the largest intrusion in the eastern Xiong’ershan area. Previous studies have shown that the Banzhusi granite porphyry was formed at 129 Ma, which correspond to Late JurassicEarly Cretaceous magmatic activity [17,18]. The Banzhusi granite porphyry shows C-type adakitic features with high Sr and low Yb and Y, which indicates that the magma source originated from partial melting of the thickened crust [17]. However, much previous evidence has suggested that the late Mesozoic magmatism in the Xiong’ershan area was the product of crust-mantle interactions [8,12,19]. Whether the Banzhusi granite porphyry has the same magma sources with the input of mantle materials is unknown.



Zircon is a common accessory mineral that can forcefully resist the effects of later geological activities. Therefore, zircon U-Pb-Hf-O isotopes provide insights into the emplacement ages, the magma sources, the physico-chemical conditions of magma and the petrogenetic processes of granitoids [25,26]. In the present study, we measured the whole-rock geochemistry and in situ zircon U-Pb-Hf-O isotopes for the Banzhusi granite porphyry from the Xiong’ershan area in order to (1) precisely determine the emplacement ages of the granite porphyry and (2) decipher the magma source, petrogenesis and tectonic implications.




2. Geological Setting


The Xiong’ershan area is situated along the border of the North Qingling Belt and the Huaxiong Blockin the Qinling orogenic belt (QOB) [27] and consists of two lithospheric units (late Neoarchean-Palaeoproterozoic Taihua Group and Palaeoproterozoic Xiong’er Group, Figure 1) [20,28]. A suite of biotite-plagioclase gneisses, plagioclase-amphibole gneisses, amphibolites, granulites and quartz schists constitute the Taihua Group [29,30,31,32,33,34]. The Xiong’er Group has been classified as a low-grade, low-strain metamorphosed volcanic sequence that unconformably overlies the Taihua Group, and its lithology consists of basaltic andesite and andesite, with minor dacite and rhyolite [35,36,37,38,39,40,41,42]. In the Xiong’ershan area, magmatic events can be divided into three periods: (i) Palaeoproterozoic magmatism represented by the Xiong’er Group volcanic rocks [39]; (ii) Triassic alkaline magmatism that formed the Mogou granite porphyry, which is exposed as several elliptic syenite stocks [28]; (iii) late Mesozoic magmatism is the most important magmatic event mainly exposed as granite plutons and granite porphyries (Figure 1b) [21]. Late Mesozoic magmatism is closely associated with the most important regional metallogenic events, including orogenic gold lode deposits [43,44]; porphyry, quartz-vein and carbonatite-vein Mo deposits [45,46,47,48]; breccia pipe-hosted gold deposits [49,50,51]; and hydrothermal vein-type Au and Ag-Pb-Zn deposits [52,53].



The Banzhusi granite porphyry occupies approximately 31 km2 and mainly intruded into the Paleoproterozoic Xiong’er Group (Figure 1c). The southern and southeastern parts of the Banzhusi granite porphyry are covered by Cenozoic sandy clays and marls. The Banzhusi granite porphyry is grey or light red in color with a typical porphyritic texture. The phenocrysts of granite porphyry mainly consist of 25–40% quartz, plagioclase and K-feldspar. The matrix minerals are made up of quartz (15–30%), plagioclase (10–20%), amphibole (5%) and biotite (<5%). The accessory minerals present a consistent suite that includes magnetite, apatite, titanite, zircon and pyrite (Figure 2).




3. Sampling and Analytical Methods


3.1. Samples


Eight representative samples were collected along the section line that cuts across the Banzhusi granite porphyry and used for lithogeochemical analyses and petrographic studies (BZS-1, location: 34°15′47″N, 112°9′31″E; BZS-2, location: 34°16′20″N, 112°8′31″E; BZS-3, location: 34°16′21″N, 112°8′31″E; BZS-4, location: 34°17′13″N, 112°6′40″E; BZS-5 and BZS-6, location: 34°17′20″N, 112°6′17″E; BZS-7, location: 34°17′58″N, 112°6′33″E; BZS-8, location: 34°18′5″N, 112°6′32″E, BZS is an abbreviation of Banzhusi). Samples BZS-1, BZS-4, BZS-5, BZS-6, BZS-7 and BZS-8 were collected from border of the exposed intrusion and BZS-2 and BZS-3 were collected from core of the exposed intrusion. Zircon U-Pb geochronology and Hf-O isotope analyses were performed on samples BZS-1, BZS-2 and BZS-6.




3.2. Whole-Rock Geochemistry


Samples were prepared by clearing away the weathered surfaces and then grinding to ~200 mesh. Subsequently, lithogeochemical analyses were carried out using standard X-ray fluorescence (XRF), although the FeO content was analyzed with the potassium bichromate titrimetric method at the Analytical Laboratory of the Beijing Research Institute of Uranium Geology. The precision and accuracy for most major oxides were better than 2% (5% for MnO and P2O5). Almost all corrected values of trace elements had uncertainties within 5% (10% for Zr, Hf, Nb and Ta). The detailed analytical method was described by [54,55].




3.3. Zircon U-Pb Analysis


Samples BZS-1, BZS-2 and BZS-6 were crushed and sieved for separating zircon grains at the Langfang Honesty Geological Services Co., Ltd., China. The polished mounts were imaged under cathodoluminescence (CL).



Zircon U-Pb isotopes were analyzed on single ablation spots at the National Research Centre for Geoanalysis, Chinese Academy of Geological Sciences. A NWR193UC laser system (Elemental Scientific Lasers, Bozeman, MT, USA) operating at a wavelength of 193 nm and consisting of 35 mm spot diameters was employed for the laser ablation at a constant repetition rate of 10 Hz and a fluence of 8 J/cm2. Each analysis incorporated a background acquisition lasting approximately 20 s (gas blank), which was followed by data acquisition from the sample for 40 s. The ablated material was carried in He and then mixed with N and Ar before being introduced to the inductively coupled plasma (ICP) source of an Agilent 7900 quadrupole inductively coupled plasma mass spectrometry (ICP-MS, Agilent, Santa Clara, CA, USA). Standard zircons 91500 (1062.4 ± 0.4 Ma) [56] and Plesovice (337.13 ± 0.37 Ma) [57] were used as the primary reference materials for the U-Pb geochronology. GJ1 [58] was used as a secondary standard. The instrumental conditions and data acquisition were similar to those described by [54]. Concordia plots and weighted mean ages were obtained using Isoplot 4.15.




3.4. Zircon Lu-Hf Analysis


In situ zircon Hf isotope measurements were performed using a New Wave UP213 laser-ablation microprobe attached to a Neptune multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS, Thermo Finnegan, San Jose, CA, USA) at the Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China. The measurements were performed on the same zircon grains previously analyzed for U-Pb isotopes using a beam size of 55 mm, a laser pulse frequency of 8–10 Hz, and a laser beam energy density of 10 J/cm2. Helium was used as an ablation carrier gas with an ablation time of 60 s. The primary reference material used for monitoring accuracy and precision of internally corrected Hf isotope ratios was zircon 91500 (0.282306 ± 0.000008 using 179Hf/177Hf = 0.7325) [59]. GJ1 (0.282000 ± 0.000005) [58] was used as a secondary standard. The instrumental conditions and data acquisition were similar to those described by [54].



Based on a decay constant value of 1.865 × 10−11 year−1 for 176Lu [60], the present-day 176Hf/ 177Hf and 176Lu/ 177Hf of the depleted mantle are 0.28325 and 0.0384, respectively [61]. The depleted mantle Hf model age (single-stage model age, TDM1) was calculated in reference to the depleted-mantle source with the present-day 176Hf/177Hf ratio of 0.28325 and 176Lu/177Hf ratio of 0.0384 [61]. The “crust” Hf model age (two-stage model, TDM2) was calculated with respect to the average continental crust with a 176Lu/177Hf value of 0.015 [62].




3.5. Zircon O Isotope Analysis


In situ zircon O isotopes were measured using a Cameca 1280 microprobe via secondary ion mass spectrometry (SIMS) at the Centre for Microscopy, Characterisation and Analysis (CMCA) at the University of Western Australia. The beam size was 15 μm in diameter, and the 133Cs + primary ion beam was accelerated at 10 kV, with a current intensity of −2.5 nA to −3.0 nA. Charge compensation of the Au-coated (30 μm) samples was accomplished using a normal incidence electron flood gun. The instrumental mass fractionation was corrected using the zircon reference materials Laura and Temora 2 [63]. The 91500, Penglai [64], BR266 [65] and GJ1 standards were analyzed 28 times as secondary reference materials. The analytical procedures and conditions and data acquisition were described in [66].





4. Results


4.1. Whole-Rock Geochemistry


The major and trace element analytical data of eight samples from the Banzhusi granite porphyry are listed in Table 1 and illustrated in Figure 3 and Figure 4.



The Banzhusi granite porphyries show elevated SiO2 (69.2 to 71.3 wt. %), Na2O (3.5 to 4.4 wt. %), K2O (4.1 to 5.6 wt. %), Al2O3 (14.1 to 15.1 wt. %), Sr (77 to 1015 ppm) and Ba (86.4 to 2293 ppm), moderate CaO (1.0 to 2.0 wt. %), K2O/Na2O (0.9 to 1.6), A/CNK (0.9 to 1.1) and Sr/Y (17.8 to 89.4) but low contents of MgO (0.24 to 0.67 wt. %) and FeOT (1.85 to 3.08 ppm). These rocks are high-K alkali-calcic rocks (Figure 5) that show metaluminous features (Figure 5c). The total rare earth element (ΣREE) values are between 46.7 ppm and 257.5 ppm, with light REE (LREE)/heavy REE (HREE) ratios of 11.6 to 23.8, (La/Yb)N of 9.0 to 37.0, δCe of 0.86 to 0.93 and δEu of 0.66 to 1.1. The samples are LREE-enriched with slightly negative Eu anomalies (Figure 4).




4.2. Zircon U-Pb Ages


Sample BZS-1 has a translucent brown, euhedral and short prismatic shape zircon population, which have a length of 100 to 150 μm and are dominated by oscillatory zoning, indicating a magmatic origin. The results yield a weighted mean 206Pb/238U age of 125.1 ± 0.97 Ma (MSWD = 1.4, Figure 5b), which represents the crystallization age of the granite porphyry.



Sample BZS-2 also has a translucent light-brown to colorless, euhedral to subhedral zircon population with a length of 150–200 μm (Figure 5c). All zircons show oscillatory zoning or heterogeneous fractured features, suggesting a magmatic origin. All 13 zircons from sample BZS-2 are concordant with 206Pb/238U ages ranging from 126 to 130 Ma (Table 2), thus yielding a weighted mean age of 128.1 ± 1.2 Ma (MSWD = 1.7, Figure 5d). This weighted mean age is interpreted to represent the crystallization age of the granite porphyry.



The granite porphyry (Sample BZS-6) contains abundant euhedral- and long prismatic-shaped zircon population, which are translucent and colorless to brown. In the CL images, the euhedral- to short prismatic-shaped grains show a length of 50 - 150 μm and a length to width ratio of 3:1 to 1:1. These grains show obvious oscillatory zoning in the CL images (Figure 5e), suggesting a magmatic origin. Fifteen spots were analyzed on the representative zircon grains from BZS-6 (Table 2). These spots have concordant ages; a weighted mean 206Pb/238U age of 128.2 ± 1.3 Ma (MSWD = 2.1) was obtained, which is regarded as the crystallization age of the granite porphyry (Figure 5f).




4.3. Zircon Lu-Hf Isotope Compositions


The Hf isotope analyses on representative zircons from BZS-1 have low 176Lu/177Hf (0.000699 to 0.001490) and homogeneous 176Hf/177Hf ratios ranging from 0.281932 to 0.282288. These results yield εHf(t) values of −21.8 to −19.2 and fLu/Hf values of −0.97 to −0.96 (Figure 6, Table 3). The crustal model ages (TDM2) vary from 2400 Ma to 2563 Ma (Figure 7). Zircon crystals from BZS-2 yield Lu-Hf isotope features similar to those of BZS-1, and they show low 176Lu/177Hf ratios of 0.000699 to 0.001490 with a homogeneous 176Hf/177Hf ratios of 0.281932 to 0.282288, and have εHf(t) values ranging from −26.9 to −14.4 and fLu/Hf of −0.98 to −0.96. The TDM2 ages range from 2099 to 2889 Ma (Figure 7). Compared with BZS-1, magmatic zircons from BZS-6 yield similar 176Lu/ 177Hf ratios (0.000699 to 0.001490) and 176Hf/177Hf ratios (0.281932 to 0.282288), but more variable TDM2 ages (2099 to 2889 Ma) and εHf (t) values (−26.9 to −14.4) (Figure 6 and Figure 7). The fLu/Hf values are between −0.98 and −0.96 (Table 3).




4.4. Zircon O Isotope Compositions


The results of the SIMS oxygen isotope analyses of zircons are presented in Figure 8 and Table 4. Zircon grains from BZS-1 have δ18Ozircon values ranging from 4.84‰ to 5.85‰ (mean 5.31 ± 0.37‰, n = 11). Zircon grains from the BZS-2 have δ18Ozircon values ranging from 5.26‰ to 5.75‰ and a weighted mean δ18Ozircon of 5.51 ± 0.37‰ (n = 10). Zircon grains from BZS-6 have δ18Ozircon values ranging from 4.94‰ to 6.51‰, displaying a weighted mean δ18Ozircon of 5.55 ± 0.35‰ (n = 10).





5. Discussion


5.1. Petrogenesis of the Banzhusi Granite Porphyry


The Banzhusi granite porphyry is characterized by high-K alkalic-calc and metaluminous to slightly peraluminous features (A/CNK ratios = 0.93–1.17, Figure 3). All samples have negative Eu anomalies (δEu = 0.661.1; Table 1) and show significant enrichments in LREEs over HREEs on normalized diagrams ([La/Yb]N = 9.0–37.0; Figure 4a). The granite porphyry samples are enriched in Rb, Ba, K, Pb, Th and U, and moderately depleted in Nb, Ta, P and Ti compared to the primitive mantle, exhibiting distinct crustal source characteristics (Figure 4b). The data mostly overlap the ranges of metamorphic rocks from the Taihua Group but show a range and pattern distinct from those of the volcanic successions from the Xiong’er Group. The geochemical data of these samples from the Banzhusi granite porphyry suggest that they were mainly generated from partial melting of the Taihua Group.



The samples BZS-1, BZS-2 and BZS-6 from the Banzhusi granite porphyry have highly evolved εHf(t) values ranging from −18.3 to −22.2, −21.8 to −19.2 and −26.9 to −14.4, which present old TDM2 ages ranging from 2341 to 2580 Ma, 2400 to 2563 Ma and 2099 to 2889 Ma, respectively (Table 3; Figure 6 and Figure 7). The Hf isotope features suggest that the parental magma of the Banzhusi granite porphyry originated from an old crustal source. The Taihua Group, as the regional metamorphic crystalline basement, formed between 2.84 Ga and 2.19 Ga and presents TDM2 ages of 2.6–3.2 Ga [29], whereas the Paleoproterozoic Xiong’er Group volcanic rocks formed at 1.83–1.74 Ga and presents TDM2 ages mainly from 1.55 to 2.86 Ga [37,38,39,41]. Hence, we propose that the parental magma of the Banzhusi granite porphyry was dominantly derived from a crustal source in the Taihua Group based on the comparable formation ages of the Taihua Group and the TDM2 ages in this study.



Mantle zircons are generally accepted to have a narrow range of δ18O values averaging 5.3 ± 0.6‰ (2σ) [74,75,76]. The δ18Ozircon values of less than 6.5‰ form from melts that contain minor to negligible sedimentary components, whereas δ18Ozircon values higher than 6.5‰ signify supracrustal contributions [77,78,79,80,81,82]. However, the zircon δ18Ozircon values of samples BZS-1, BZS-2 and BZS-6 range from 4.84‰ to 5.85‰, 5.26‰ to 5.75‰ and 4.94‰ to 6.51‰ (Figure 8), respectively, indicating the contribution from the mantle or mantle-derived sources during zircon growth. The combination of zircon Hf-O isotopes of the Banzhusi granite porphyry indicates that the magma source was originally derived from ancient continental crust together with the nonnegligible involvement of mantle-derived magmas (Figure 6, Figure 7 and Figure 8). Hence, our zircon O isotope data provide robust new evidence for the contribution of mantle-derived magmas in the origin of the Banzhusi granite porphyry.



The diagrams of εHf(t) versus δ18Ozircon and the integrated oxygen isotope reservoir of the Earth (Figure 8) also suggest mixed sources from the Taihua Group and mantle-derived magmas. The low δ18Ozircon values could be inherited from parental magmas. Relatively low δ18Ozircon fluids or melts can be generated through metasomatism of the lower crust or mantle degassing in post-collisional extensional settings [83,84,85]. The addition of low δ18Ozircon fluids or melts into the lower crust could accelerate the melting of the refractory Taihua Group. The required heat could be provided by underplating of hot asthenospheric mantle [86].




5.2. Relationship between the Banzhusi Granite Porphyry and Mineralization


Zircons from samples BZS-1, BZS-2 and BZS-6 of the Banzhusi granite porphyry analyzed by LA-ICP-MS in this study yielded weighted mean 206Pb/238U ages of 125.1 ± 0.97 Ma, 128.1 ± 1.2 Ma and 128.2 ± 1.3 Ma, respectively. These ages are consistent with previous zircon U-Pb ages from a recent study [18], indicating that the Banzhusi granite porphyry was formed contemporaneously with the widespread late Mesozoic magmatism in the Xiong’ershan area [21].



The late Mesozoic magmatic plutons and granite porphyries in the Xiong’ershan area include the Wuzhangshan, Haoping, Jinshanmiao, Haopinggou, Heyu and Taishanmiao granite plutons and the Leimengou, Banzhusi, Qiyugou and Shiyaogou granite porphyries. Available published data have provided good constraints for the crystallization age of these plutons and granite porphyries [2,12,18,19,21,42,55,87,88,89,90,91,92]. The late Mesozoic magmatic event in the Xiong’ershan area principally proceeded for 60 Ma, and we suggest that three main magmatic events occurred from 177–153 Ma (Wuzhangshan pluton) [89,90], 145–125 Ma (most of the plutons and granite porphyries mentioned above except for the Wuzhangshan and Taishanmiao granite plutons) [2,18,19,21,42,55,87,88,89,90,91,92] and 125–115 Ma (Taishanmiao pluton) [12].



In this study, the zircon U-Pb data obtained from the Banzhusi granite porphyry are consistent with the regional Mo, Au, Pb, Zn, and Ag mineralization ages of 133–125 Ma [42]. Based on previous studies, three main mineralization events during the late Mesozoic have been identified in the Xiong’ershan area (i.e., 160–142 Ma, 133–125 Ma and 125–115 Ma) [21]. The formation age (128–125 Ma) of the Banzhusi granite porphyry is contemporaneous with the second episode of magmatism and metallogeny, indicating that the granite porphyry and metallogenesis were probably generated under a unified geodynamic setting.




5.3. Geodynamic Implications


To date, previous researchers have proposed four tectonic models for the late Mesozoic evolution of the EQOB. (i) During the late Mesozoic, the NCC was still subducting southward and the YC was still subducting northward beneath the Qinling orogen. Accordingly, late Mesozoic magmatism was related to the syn-collisional setting, and the subsequent post-collisional magmatism continued after the Early Cretaceous [27,93]. (ii) Li [94] and Yang et al. [95,96] proposed a second model that suggested a post-collisional evolution for the EQOB during the late Mesozoic. Therefore, late Mesozoic post-collisional granitoids were distributed in the EQOB after the Triassic collision between the NCC and YC [95,96,97]. (iii) The third model considered that the Palaeo-Pacific slab was subducted northwestward beneath East China during the late Mesozoic [4,48,98]. iv) Li et al. [1] proposed a new viewpoint that the collision between the NCC and YC occurred at circa 195–160 Ma, which led to the thickening of the lower continental crust, and the subsequent post-collisional magmatism continued until circa 125 Ma. Therefore, the main controversy in the above models is the shifted timing of the tectonic systems of the Qingling orogenic belt from a compressional regime to an extensional regime.



As shown in Figure 9a, few samples plot in the unfractionated M-, I- and S-type granite field (OGT), and most of the samples plot in the fractionated felsic granite field (FG). All samples plot in the post-collisional granite (post-COLG) field in Figure 9b. The above features suggest that the granite porphyry was emplaced in a post-collisional setting. The Banzhusi granite porphyry samples all plot in the post-COLG field and exhibit emplacement ages of 128–125 Ma, thus implying that the tectonic transition from a syn-collisional to a post-collisional setting could have accomplished at circa 128–125 Ma. In addition, the abovementioned zircon Hf-O isotope features (low εHf(t) and δ18Ozircon values) of the Banzhusi granite porphyry imply lithospheric thinning with a significant input of upwelling mantle-derived materials, which resulted in the partial melting of the lower crust in this period. Dong et al. [99] proposed that the Qinling orogenic belt evolved to orogenic collapse during the Late Cretaceous to Palaeogene after the intense compression and denudation during the Late Jurassic to Early Cretaceous. Therefore, the QOB evolved orogenic collapse event is restricted to the Early Cretaceous by the emplacement age (128–125 Ma) of the Banzhusi granite porphyry.





6. Conclusions


(1) The zircon U-Pb data show that three samples of the Banzhusi granite porphyry yield emplacement ages of 125.1 ± 0.97 Ma, 128.1 ± 1.2 Ma and 128.2 ± 1.3 Ma.



(2) Whole-rock geochemistry and zircon Hf-O isotopes indicate that the parental magma of the Banzhusi granite porphyry was mainly sourced from partial melting of the Taihua Group mixed with non-negligible mantle-derived materials.



(3) The Early Cretaceous (128–125 Ma) granitoid magmatism in the Xiong’ershan area likely occurred due to the evolved orogenic collapse event in the Qinling orogenic belt.
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Figure 1. Tectonic framework of the Qinling orogen (a), geology and distribution of intrusions in the Xiong’ershan area (b) and geological map of the Banzhusi granite porphyry (c) (Modified after [17,18,20,21,22,23,24]). 
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Figure 2. Photographs of representative samples from the Banzhusi granite porphyry. (a,b) Macroscopic Banzhusi granite porphyry with quartz, plagioclase and K-feldspar phenocrysts. (c) Photomicrographs of the granite porphyry, showing a mineral assemblage of K-feldspar + plagioclase + quartz + biotite, plane-polarized light. (d) Photomicrographs of the granite porphyry, showing a fine-grained granular matrix of K-feldspar + plagioclase + quartz, with K-feldspar + plagioclase + quartz phenocrysts; cross-polarized light. Abbreviations: Amp, amphibole; Bt, biotite; Kfs, K-feldspar; Pl, plagioclase; Qtz, quartz. 
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Figure 3. Geochemical classification of granitoids from the Banzhusi granite porphyry. (a) Total alkali-silica diagram [67], where the dashed line separating the alkaline series from the subalkaline series is from [68]. (b) Al2O3/(Na2O + K2O) versus Al2O3/(CaO + Na2O + K2O) plot [69]. (c) K2O versus SiO2 diagram (modified from [70,71]). (d) SiO2 versus Na2O + K2O − CaO [72]. 






Figure 3. Geochemical classification of granitoids from the Banzhusi granite porphyry. (a) Total alkali-silica diagram [67], where the dashed line separating the alkaline series from the subalkaline series is from [68]. (b) Al2O3/(Na2O + K2O) versus Al2O3/(CaO + Na2O + K2O) plot [69]. (c) K2O versus SiO2 diagram (modified from [70,71]). (d) SiO2 versus Na2O + K2O − CaO [72].



[image: Minerals 09 00538 g003]







[image: Minerals 09 00538 g004 550] 





Figure 4. Chondrite-normalized rare earth element (REE) patterns (a) and primitive mantle-normalized multi-element diagrams (b) for granitoids from the Banzhusi granite porphyry. Whole-rock data for the Taihua Group and Xiong’er Group are shown for comparison [30,36]. Chondrite and primitive mantle normalizing values are from [73]. 
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Figure 5. Cathodoluminescence images of representative analysed zircons with in situ U-Pb-Hf and O isotope data and zircon U-Pb concordia diagrams for Sample BZS-1 (a,b), Sample BZS-2 (c,d) and Sample BZS-6 (e,f) from the Banzhusi granite porphyry. Abbreviations: MSWD, weighted mean square. 
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Figure 6. Variations in the initial εHf values versus the U-Pb ages of the zircons from the Banzhusi granite porphyry. Data include zircons from the Taihua Group [30] and Xiong’er Group [38]. 
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Figure 7. Histograms of the TDM2 ages for the zircons from the Banzhusi granite porphyry. 
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Figure 8. Combined zircon Hf-O isotope diagram from the Banzhusi granite porphyry. The range of δ18O values of mantle zircons is from [74,75,76]. 
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Figure 9. Geochemical discrimination diagrams of TFeO/MgO versus Zr + Nb + Ce + Y (a) [100] and Rb versus Y + Nb (b) [101] of the Banzhusi granite porphyry. A previous study was conducted by [17]. Abbreviations: A-type, A-type granites; FG, fractionated felsic granites; OGT, unfractionated M-, I- and S-type granites; syn-COLG = syn-collisional granite; post-COLG = post-collisional granite; VAG = volcanic arc granite; WPG = within-plate granite; ORG = ocean ridge granite. 
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Table 1. X-ray fluorescence whole-rock major oxide and trace element compositions for the Banzhusi granite porphyry.






Table 1. X-ray fluorescence whole-rock major oxide and trace element compositions for the Banzhusi granite porphyry.





	
Analysis Name

	
BZS-01

	
BZS-02

	
BZS-03

	
BZS-04

	
BZS-05

	
BZS-06

	
BZS-07

	
BZS-08






	
wt. %




	
SiO2

	
71.3

	
70.2

	
71.1

	
69.2

	
70.2

	
71.1

	
70.6

	
71.1




	
TiO2

	
0.25

	
0.29

	
0.23

	
0.38

	
0.28

	
0.26

	
0.27

	
0.27




	
Al2O3

	
14.5

	
15.0

	
14.1

	
14.5

	
14.8

	
14.6

	
15.1

	
14.7




	
ΣFe2O3

	
1.85

	
2.24

	
2.11

	
3.08

	
2.37

	
2.11

	
1.99

	
2.17




	
MnO

	
0.04

	
0.05

	
0.04

	
0.08

	
0.08

	
0.06

	
0.04

	
0.07




	
MgO

	
0.24

	
0.33

	
0.42

	
0.67

	
0.38

	
0.39

	
0.28

	
0.38




	
CaO

	
1.29

	
1.20

	
1.10

	
2.03

	
1.57

	
1.59

	
0.96

	
1.34




	
Na2O

	
3.79

	
4.18

	
3.63

	
4.37

	
4.08

	
4.18

	
3.49

	
4.13




	
K2O

	
4.41

	
4.87

	
4.54

	
4.11

	
4.54

	
4.72

	
5.61

	
4.65




	
P2O5

	
0.12

	
0.14

	
0.11

	
0.21

	
0.13

	
0.12

	
0.11

	
0.12




	
LOI

	
1.69

	
1.05

	
2.05

	
0.84

	
1.11

	
0.45

	
1.06

	
0.57




	
Total

	
99.4

	
99.5

	
99.5

	
99.5

	
99.5

	
99.5

	
99.5

	
99.5




	
K2O/Na2O

	
1.16

	
1.17

	
1.25

	
0.94

	
1.11

	
1.13

	
1.61

	
1.13




	
A/CNK

	
1.08

	
1.04

	
1.10

	
0.94

	
1.02

	
0.98

	
1.11

	
1.03




	
ppm




	
Li

	
13.4

	
14.4

	
23.1

	
29.9

	
18.7

	
16.9

	
11.2

	
16.5




	
Be

	
3.67

	
3.81

	
3.69

	
3.62

	
3.41

	
3.82

	
3.17

	
3.87




	
Sc

	
2.30

	
2.55

	
2.23

	
3.10

	
2.24

	
2.37

	
2.51

	
2.54




	
V

	
31.4

	
32.4

	
20.7

	
31.4

	
28.9

	
28.7

	
25.3

	
27.1




	
Cr

	
3.53

	
2.48

	
1.77

	
1.63

	
2.04

	
1.96

	
1.61

	
2.69




	
Co

	
2.21

	
2.15

	
2.34

	
3.24

	
2.54

	
2.12

	
2.22

	
2.56




	
Ni

	
2.10

	
1.77

	
2.28

	
2.21

	
2.39

	
1.87

	
2.29

	
2.97




	
Cu

	
5.23

	
3.79

	
4.51

	
4.58

	
5.14

	
3.85

	
3.83

	
3.95




	
Zn

	
43.8

	
43.8

	
34.9

	
51.6

	
64.9

	
55.9

	
41.6

	
41.0




	
Ga

	
21.7

	
22.2

	
18.5

	
23.9

	
21.5

	
23.1

	
24.8

	
25.9




	
Rb

	
163

	
172

	
168

	
131

	
163

	
169

	
267

	
180




	
Ba

	
1422

	
1971

	
1500

	
1460

	
1836

	
1696

	
1654

	
1704




	
Th

	
19.5

	
18.3

	
19.3

	
17.9

	
18.1

	
17.6

	
20.7

	
19.6




	
U

	
4.26

	
2.79

	
3.18

	
3.07

	
6.49

	
4.51

	
3.2

	
2.83




	
Nb

	
24.5

	
25.8

	
25.5

	
27.7

	
27.4

	
24.9

	
28.7

	
26.4




	
Ta

	
1.27

	
1.32

	
1.26

	
1.36

	
1.35

	
1.24

	
1.42

	
1.32




	
La

	
28.2

	
49.3

	
44.8

	
52.6

	
49.4

	
48

	
47.3

	
46




	
Ce

	
72.4

	
77.1

	
69.7

	
92.8

	
84.8

	
74.5

	
76.6

	
80.5




	
Pb

	
4.19

	
9.74

	
7.92

	
10.1

	
9.34

	
8.63

	
8.84

	
8.87




	
Pr

	
13.7

	
34.4

	
27.5

	
35.4

	
32

	
28.9

	
31.1

	
31.6




	
Sr

	
513

	
708

	
335

	
609

	
666

	
615

	
599

	
583




	
Nd

	
24.5

	
25.8

	
25.5

	
27.7

	
27.4

	
24.9

	
28.7

	
26.4




	
Sm

	
1.96

	
5.09

	
4.05

	
5.31

	
4.78

	
4.28

	
4.66

	
4.65




	
Zr

	
91.7

	
82.9

	
105

	
69.2

	
79.4

	
77.3

	
97.4

	
88.7




	
Hf

	
2.61

	
2.54

	
3.01

	
2.18

	
2.22

	
2.45

	
2.92

	
2.77




	
Eu

	
0.63

	
1.32

	
0.95

	
1.25

	
1.15

	
1.11

	
1.13

	
1.18




	
Gd

	
1.79

	
4.45

	
3.46

	
4.55

	
3.94

	
3.75

	
4.11

	
3.97




	
Tb

	
0.23

	
0.65

	
0.47

	
0.65

	
0.61

	
0.57

	
0.56

	
0.59




	
Dy

	
1.15

	
2.88

	
2.22

	
3.14

	
2.7

	
2.51

	
2.65

	
2.65




	
Y

	
5.7

	
15.9

	
11.1

	
16.3

	
14.3

	
12.9

	
13.5

	
13.6




	
Ho

	
0.22

	
0.53

	
0.39

	
0.54

	
0.46

	
0.45

	
0.46

	
0.49




	
Er

	
0.62

	
1.48

	
1.11

	
1.48

	
1.35

	
1.3

	
1.26

	
1.35




	
Tm

	
0.11

	
0.22

	
0.19

	
0.24

	
0.21

	
0.20

	
0.21

	
0.22




	
Yb

	
0.82

	
1.65

	
1.26

	
1.66

	
1.42

	
1.39

	
1.4

	
1.47




	
Lu

	
0.13

	
0.22

	
0.20

	
0.23

	
0.20

	
0.20

	
0.19

	
0.22




	
(La/Yb)N

	
23.3

	
20.3

	
24.2

	
21.5

	
23.6

	
23.5

	
23.0

	
21.3




	
Sr/Y

	
90.0

	
44.5

	
30.2

	
37.4

	
46.6

	
47.7

	
44.4

	
42.9




	
δEu

	
1.01

	
0.83

	
0.76

	
0.76

	
0.78

	
0.83

	
0.77

	
0.82








Notes: A/CNK = Al2O3/(Na2O + K2O + CaO); LOI = loss on ignition; δEu = 2 × Eun/(Smn + Gdn).
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