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Abstract: A hydroxy-sodalite/cancrinite zeolite composite was synthesized from low-grade
calcite-bearing kaolin by hydrothermal alkali-activation method at 160 ◦C for 6 h. The effect
of calcite addition on the formation of the hydroxy-sodalite/cancrinite composite was investigated
using artificial mixtures. The chemical composition and crystal morphology of the synthesized
zeolite composite were characterized by X-ray powder diffraction, infrared spectroscopy, scanning
electron microscopy, and N2 adsorption/desorption analyses. The average specific surface area is
around 17–20 m2

·g−1, whereas the average pore size lies in the mesoporous range (19–21 nm). The
synthesized zeolite composite was used as an adsorbent for the removal of heavy metals in aqueous
solutions. Batch experiments were employed to study the influence of adsorbent dosage on heavy
metal removal efficiency. Results demonstrate the effective removal of significant quantities of Cu,
Pb, Ni, and Zn from aqueous media. A comparative study of synthesized hydroxy-sodalite and
hydroxy-sodalite/cancrinite composites revealed the latter was 16–24% more efficient at removing
heavy metals from water. The order of metal uptake efficiency for these zeolites was determined
to be Pb > Cu > Zn > Ni. These results indicate that zeolite composites synthesized from natural
calcite-bearing kaolin materials could represent effective and low-cost adsorbents for heavy metal
removal using water treatment devices in regions of water shortage.
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1. Introduction

The use of treated wastewater has become a potential solution to alleviate seasonal water shortages
caused by drought or problems of infra structure in many dry countries and is particularly important
for use in irrigation, toilet flushing, and firefighting [1,2]. Local water treatment systems rely on the
removal of heavy metals and organic pollutants largely by chemical adsorption. This is often achieved
by complicated and expensive methods such as ion exchange, membrane filtration, and electrochemical
processes [3,4]. Heavy metals are considered the most hazardous groundwater pollutants and originate
from industrial activities as well as the overuse of fertilizers in agriculture. Among these heavy metals,
Pb, Cu, Zn, and Ni are considered to be the most studied and problematic of water pollutants [5,6].
According to World Health Organization standards (WHO), the permissible limits of Pb, Cu, Zn, and
Ni in drinking water are 0.01, 2.0, 3.0, and 0.02 ppm, respectively [7]. The principal challenges of
effective treatment are to overcome the high costs involved and deal with the large volumes of water
that fluctuate significantly in quality [4,8].
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Over the last years, a number of investigations were conducted to test the use of natural zeolites
as low-cost adsorbents for the removal of heavy metals [9], salts [10], and ammonium ions [11].
Zeolite-based adsorbents have a unique crystalline microporous structure and high metal-binding
capacity [12,13], and in some cases are suitable for detoxifying the body by consumption [14]. These
minerals are characterized by a notably uniform pore structure with a molecular dimension <0.13 nm
formed between tetrahedrally coordinated Si4+ and Al3+ that are connected via oxygen atoms [15].
Due to the limited availability of pure natural zeolites, researchers have turned towards synthetic
zeolites for adsorbent purposes [16–18]. Zeolites are most commonly synthesized by hydrothermal
alkali-activation of aluminosilicate materials at appropriate temperatures (100–1000 ◦C) and pressures
(1~100 MPa) in high-pressure autoclaves [19–21].

The most used natural aluminosilicate for zeolites synthesis is kaolinite and its thermally activated
phase (metakaolinite), which constitute highly reactive and pure precursor materials [22,23]. Kaolinite
and metakaolinite based zeolite synthesis involves mixing the solid precursor with sodium hydroxide
and sodium silicate as the alkaline activating solution [24]. Important synthesis parameters are (i) the
SiO2/Al2O3 molar ratio, (ii) the alkalinity of the reacting solution, (iii) the curing temperature, and (iv)
the reaction time. Among these parameters, the alkalinity is known to be a key factor that determines
the type of synthesized zeolite [24]. In addition to kaolinite/metakaolinite materials, industrial waste
such as coal fly ash has also been used to produce Na-A, Na-X, and Na-P1 zeolites [25–27].

As an example of the alkali-activation of kaolinite, it has been reported that hydroxy-sodalite is
produced when using NaOH at a molarity of 10 or higher [28]. In contrast, zeolite Na-P1, zeolite LTA,
sodalite, and analcime result when the concentration of NaOH in the reaction mixture is lower than a
molarity of 4 [24,29]. Different cost-effective binary alkaline systems of low causticity have also been
developed for the alkali-activation of kaolinite [22,30]. Esaifan et al. [22] reported the formation of a
kaliophilite zeolite by reacting kaolinite with calcium hydroxide/potassium carbonate (Ca(OH)2/K2CO3)
as the alkaline activating mixture. Shaqour et al. [30] also synthesized a cancrinite-type zeolite by
activating kaolinite with a calcium hydroxide/sodium carbonate (Ca(OH)2/Na2CO3) alkaline mixture.

The high adsorption capacity of synthetic hydroxy-sodalite and cancrinite zeolites has led
a number of researchers to propose them as potential adsorbents for heavy metal removal from
contaminated water [16,31,32]. Sodalite and cancrinite zeolites have the common chemical formula
of Na6(Al6Si6O24)·2X·nH2O but vary in their crystal structure. Sodalite has a cubic crystal structure
formed by the stacking of 14-hedra composed of eight six-membered rings (β cage: 6.6 Å) with
alternating AlO4 and SiO4 tetrahedra, and six four-membered rings (ε cage: 2.2 Å). In contrast,
cancrinite has a hexagonal crystal structure formed by the stacking of 11-hedra of five 12-membered
rings (β cage: 6.2 Å) and six four-membered rings. The β cages contain large continuous channels for
extra-framework cations (Na+, Ca2+), anions (CO3

2−, OH−), and H2O molecules whereas the ε cage
hold [Na·H2O+] clusters. The presence of these continuous channels allows NaOH or CaCO3 to replace
X in the above formula to form hydroxy-sodalite and cancrinite, respectively [33–35]. Xu et al. [35]
studied the effect of calcium addition on the transformation of sodalite to cancrinite during Bayer
digestion and found it accelerated both the formation of cancrinite and the transformation of sodalite
to cancrinite.

Composite adsorbent materials are currently of considerable interest due to their cost-effective
treatment of metal-contaminated wastewater [36–39]. Ahmad and Mirza [37] prepared a
bionanocomposite synthesized from Alginate-Au-Mica with a high effective adsorption capacity
for removing Pb2+ and Cu2+ from wastewater (225.0 and 169.8 mg g−1, respectively). Ahmad and
Mirza [36] also showed that a chitosan-iron oxide nanocomposite can be used to effectively remove
Pb2+ and Cd2+ from aqueous solutions, with similarly high maximum adsorption capacities (214.9 and
204.3 mg·g−1, for Pb2+ and Cd2+).

In light of the above development, the aim of this work was to synthesize a low-cost composite
adsorbent comprised of hydroxy-sodalite/cancrinite by hydrothermal and alkali-activation treatment of
a widely available, cost-effective, calcite-bearing kaolin material. The effect of accessory calcite on the
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synthesis of zeolite from powdered kaolin rock was investigated in terms of the quality of the resulting
adsorbent. The chemical and morphological structure of the synthesized adsorbent was studied by
X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 adsorption/desorption isotherms.
The synthesized zeolite composite was then tested as an adsorbent to remove Pb2+, Cu2+, Zn2+, and
Ni2+ ions from aqueous media. The influence of the adsorbent dosage on the efficiency of removing
heavy metals was also studied on the basis of further batch experiments. Based on these results, we
highlight the usefulness of developing, low cost, water-purifying composite adsorbents synthesized
from regionally available materials.

2. Materials and Methods

2.1. Raw Material

The natural calcite-bearing kaolin used in this study as a solid precursor was collected from
the Batn El-Ghoul deposit, Jordan. According to the Ministry of Energy and Mineral Resources of
Jordan, the estimated reserve of this deposit is about 2.2 billion tons [40]. Its clay mineralogy was
studied by Khoury and El-Sakka [41] who classified it as low-grade kaolin clay due to the presence
of calcite (5–10%) and iron oxide (2–6%). The amount of kaolinite in this deposit was estimated by
Esaifan et al. [28] to be about 68% based on thermogravimetric analysis. According to XRF analysis,
calcite-bearing kaolin contains a CaO content of 5.3%, which is equivalent to 9.5% CaCO3. This low
grade kaolin is therefore not a prime choice for use in the paper or ceramic industry. China clay
in the form of almost pure kaolinite was also used for comparison, which was supplied by Carl
Roth chemicals, Germany. The chemical composition of the two clay samples, determined by X-ray
fluorescence analyses following the procedure of described by Dietel et al. [42], is given in Table 1.

Table 1. Chemical composition (wt. %) of the raw materials based on X-ray fluorescence analyses.
L.O.I—lost-on-ignition.

Sample
Weight Percentage (%)

Al2O3 SiO2 CaO Fe2O3 K2O MgO TiO2 Na2O L.O.I Total Si/Al

China Clay 39.4 48.0 - 0.5 1.0 - 0.1 0.1 13.6 102.7 1.1

Calcite bearing
kaolin 25.2 53.3 5.3 2.5 1.3 0.2 0.4 0.2 11.1 99.5 1.9

2.2. Synthesis of the Hydroxy-Sodalite/Cancrinite Zeolite Composite

Zeolite composite was synthesized by hydrothermal and alkali-activation treatment at 160 ◦C for
6 h. A set of high-pressure and high-temperature, Teflon-lined, stainless steel vessels were used for
the hydrothermal synthesis. The alkaline activator was prepared by dissolving NaOH pellets (Carl
Roth, 99.0%) in deionized water in a capped plastic bottle. Afterward, the synthesized zeolite was
dried at 105 ◦C for 24 h, then crushed using a Fritsch planetary micro-mill pulverisette 7 and sieved to
≤40 µm [28].

Three zeolite specimens were prepared using specific mass percentages of NaOH, water, clay, and
calcite as described in Table 2. The first specimen (labeled as China Clay + NaOH) was prepared by
mixing NaOH, water and China clay to prepare the hydroxy-sodalite zeolite. The second specimen
(labeled as China Clay + calcite + NaOH) was prepared by mixing NaOH, water, China clay, and
calcite (CaCO3) to prepare hydroxy-sodalite/cancrinite zeolites. This was used as a reference mixture
for comparison. The third specimen (labeled as Calcite-bearing kaolin + NaOH) was prepared by
mixing NaOH, water and the Jordanian calcite-bearing kaolin.
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Table 2. Specimen mix composition used in hydrothermal alkali-activation experiments.

Specimen Unit
Mix Composition

Total
Clay NaOH Water Calcite

China Clay +
NaOH

(fraction) 100 50 50 0 200
(mass %) 0.50 0.25 0.25 0.00 1.0
(grams) 50 25 25 0 100

China Clay +
calcite +
NaOH

(fraction) 100 50 50 8 208
(mass %) 0.48 0.24 0.24 0.04 1.0
(grams) 48 24 24 4 100

Calcite-bearing
kaolin +
NaOH

(fraction) 90.5 50.0 50.0 9.5 a 200
(mass %) 0.45 0.25 0.25 0.05 a 1.0
(grams) 45.25 25.00 25.00 4.75 a 100

a: calcite contained in natural sample and estimated by XRF analysis in Section 2.1.

2.3. Characterization of the Synthesized Zeolites

XRD diffraction patterns were obtained using a D8 Advance diffractometer (Bruker Corporation,
Billerica, USA) with Co Kα radiation, operated at 30 mA and 40 kV and equipped with a LynxEye
1-dimensional detector. The diffraction patterns of the synthesized zeolites were measured over the
2θ range of 5–80◦ (scan speed of 2◦/min and step scan size of 0.01). Mineral patterns were matched
using the powder diffraction pattern database (ICDD-PDF-2 release) in combination with the Bruker
Diffraction Eva software (Version 14, Bruker Corporation, Billerica, USA). Zeolite morphology was
investigated by placing the fine powder on carbon-coated samples and imaged using an EVO MA10
SEM (CARL ZEISS AG, Oberkochen, Germany) coupled with an EDAX TEAM energy-dispersive X-ray
spectroscopy (EDS) system. The samples were imaged under a vacuum pressure of 1 × 10−6 Pa and
using a 15 kV accelerating voltage. Infrared spectra were obtained by using a Fourier transform infrared
(FTIR)-attenuated total reflection (ATR) spectrometer (VERTX 80V, Bruker Corporation, Billerica, USA),
coupled with an attenuated total reflectance diamond crystal unit. Spectra were collected from
4000 to 650 cm−1 at a resolution of 2 cm−1 and averaged over 32 scans. Specific surface areas and
pore size properties of the synthesized zeolites were determined by an N2 adsorption-desorption
analyzer (NOVA, Quantachrome Instruments, Boynton Beach, FL, USA). Samples were outgassed
using nitrogen (99.99%) for 3 h at 350 ◦C. The adsorption/desorption data were treated using standard
multi-point Brunauer-Emmett-Teller (BET), Dubinin-Radushkevich (DR) and Barrett-Joyner-Halenda
(BJH) models [27,43].

2.4. Synthetic Wastewater Preparation

Single metal aqueous solutions were prepared by diluting analytical grade Pb2+, Cu2+, Zn2+, and
Ni2+ 1000 ppm standard solutions supplied by Carl Roth chemicals in distilled water to obtain metal
concentrations each with 100 ppm. The pH of the solutions was adjusted to be 5.5 ± 0.5 using 0.1 M
HNO3 or 0.1 M NaOH, to avoid heavy metal precipitation [44].

2.5. Heavy Metal Uptake Experiments

In order to study the effect of adsorbent (synthesized zeolites) dosage on the heavy metal removal
efficiency, batch experiments were conducted with 100 mL of 100 ppm metal ion concentration placed
in 250 mL conical flasks. The synthesized zeolites were dosed at 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, and
1.5 g. The solutions were shaken for 2 h at room temperature (25 ± 0.1 ◦C) using a GFL 3040 shaker
(Gesellschaft für Labortechnik mbH, Burgwedel, Germany) and then filtered using Whatman filter
paper (No. 42) with a particle retention of 2.5 µm. Metal ion concentrations in the filtrate were analyzed
using an Analytik Jena Contra 300 atomic absorption spectrometer (Analytik Jena, Jena, Germany).
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The adsorbent removal efficiency (%) was calculated using Equation (1).

Removal efficiency (%) = (Ci − Cf/Ci) × 100, (1)

where Ci (ppm) is the initial concentration of heavy metal ions and Ci (ppm) is the final concentration
of metal ions.

3. Results and Discussion

3.1. Characterization of the Synthesized Zeolite

The XRD patterns of china clay and its hydrothermal alkali-activation products show the
characteristic reflections of kaolinite (Figure 1a) completely disappeared after treatment to form a
crystalline hydroxy-sodalite zeolite phase (Figure 1b). The addition of calcite to the China clay led to
extra reflections upon alkali-activation attributable to cancrinite (Figure 1c). The XRD patterns of the
natural calcite-bearing kaolin sample show kaolinite as the major component and quartz and calcite
as impurities (Figure 2a). Two features were observed following hydrothermal alkali-activation of
the calcite-bearing kaolin (Figure 2b); (1) the complete disappearance of kaolinite and a significant
decrease in the intensity of quartz reflections. These features imply the complete dissolution of kaolinite
and partial dissolution of quartz to release free species of Al and Si. (2) The appearance of XRD
reflections assigned to cancrinite and hydroxy-sodalite indicates the crystallization of released Al and
Si species and reaction with calcite to form cancrinite (Equation (2)). Once the calcite was consumed,
hydroxy-sodalite started to crystallize (Equation (3)), similar to that observed in the hydrothermal
alkali-activation of the China clay and calcite mixture (Figure 1c). These reactions can be expressed as:

3Al2O3·2SiO2·H2O + CaCO3 + 6NaOH→ Na6Al6Si6O24(CaCO3)·2H2O + 4H2O, (2)

3Al2O3·2SiO2·H2O + 8NaOH→ Na8Al6Si6O24(OH)2·4H2O + 2H2O. (3)
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SEM images of the hydrothermal alkali-activation product of China clay (Figure 3a) are
characterized by homogenous pseudohexagonal crystals of hydroxy-sodalite zeolite, similar to
previously published studies [45]. The presence of calcite during the hydrothermal alkali-activation of
China clay gave rise to additional long hexagonal needles (Figure 3b) characteristic of cancrinite [46].
Similar morphologies are observed following hydrothermal alkali-activation of the calcite-bearing
kaolin (Figure 3c). This can be explained by the dissolution of calcite present in the calcite-bearing
kaolin, detectable in the XRD pattern (Figure 2).
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The complete transformation of kaolinite to zeolites in all three specimens was confirmed by
their infrared spectra (Figures 4 and 5). The untreated clays produced characteristic infrared bands
at 1400–400 cm−1 for Si–O, Si–O–Al vibrations, and at 4000–3500 cm−1 for the –OH vibration. The
conversion to zeolites resulted in the absence of these bands, leaving a sharp band at 945–960 cm−1 as
the major feature.
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The nitrogen adsorption-desorption isotherms of the synthesized zeolites are identified as type
IVa following the International Union of Pure and Applied Chemistry (IUPAC) classification (Figure 6).
This type of physisorption isotherm is characteristic of mesoporous (2–50 nm) adsorbents [43]. It has
been reported that the mesoporous structure is favorable for the ion exchange process since it provides
more access sites for sorbate cations to approach the inner micropores within the zeolite structure [31].
The specific surface area and porous properties of the synthesized zeolites, presented in Table 3, show
the surface area values (BET, DR, and BJH) of the synthesized hydroxy-sodalite to range between 13
and 17 m2

·g−1, whereas the synthesized hydroxy-sodalite/cancrinite composite samples reach values
between 16 and 20 m2

·g−1. In contrast, the average pore size of all synthesized zeolites is seen to be
similar and ranges from 19 to 21 nm.
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Table 3. Surface area and pore-size properties of hydrothermal alkali-activation products.

Sample SBET
a

(m2
·g−1)

SDR
b

(m2
·g−1)

SBJH
c

(m2
·g−1)

Vmicro
b

(m3
·g−1)

Dmicro
b

(nm)
Vmeso

c

(m3
·g−1)

Dmeso
c

(nm)

China Clay + NaOH 14.5 17.1 13.1 0.06 2.1 0.07 19.3
China Clay + calcite +

NaOH 16.0 18.5 15.4 0.07 2.0 0.07 20.5

Calcite-bearing
kaolin + NaOH 16.9 20.2 20.3 0.07 1.8 0.09 21.1

a Surface area calculated using the BET equation. b Micropore surface area, micropore volume, and average pore
diameter calculated by the DR method. c Surface area, mesopore volume, and average pore diameter calculated by
the BJH method.

3.2. Metal Uptake Behavior of the Synthesized Zeolites

Although sorption isotherms were not determined in this study, the effect of the synthesized
composite adsorbent dosage on the removal of heavy metals in single solution systems is shown
quantitatively in Figure 7. As expected, the removal efficiencies of heavy metals increased with the
higher dosage of both types of synthesized zeolite, which followed the order of Pb2+ > Cu2+ > Zn2+ >

Ni2+. The better performance of heavy metal removal exhibited by the synthesized zeolite composite
for Pb2+ over Cu2+, Zn2+, Ni2+ may be attributed to the smaller hydrated radius of Pb2+ (4.01 Å for Pb,
4.19 Å for Cu, 4.30 Å for Zn, and 4.04 Å for Ni) [47,48]. According to Golomeova et al. [48] cations
with smaller ionic or hydration radius adsorbed faster and in larger quantities compared to larger
cations, since the smaller cations have more chance to pass through the micropores and channels of the
zeolite structure.
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3.2. Metal Uptake Behavior of the Synthesized Zeolites 

Although sorption isotherms were not determined in this study, the effect of the synthesized 
composite adsorbent dosage on the removal of heavy metals in single solution systems is shown 
quantitatively in Figure 7. As expected, the removal efficiencies of heavy metals increased with the 
higher dosage of both types of synthesized zeolite, which followed the order of Pb2+ > Cu2+ > Zn2+ > 
Ni2+. The better performance of heavy metal removal exhibited by the synthesized zeolite composite 
for Pb2+ over Cu2+, Zn2+, Ni2+ may be attributed to the smaller hydrated radius of Pb2+ (4.01 Å for Pb, 
4.19 Å for Cu, 4.30 Å for Zn, and 4.04 Å for Ni) [47,48]. According to Golomeova et al. [48] cations 
with smaller ionic or hydration radius adsorbed faster and in larger quantities compared to larger 
cations, since the smaller cations have more chance to pass through the micropores and channels of 
the zeolite structure. 

As the zeolite dosage was increased from 1 to 6 g L−1, the removal efficiency correspondingly 
increased from 59% to 99% for Pb2+, 20% to 90% for Cu2+, 16% to 62% for Zn2+, and 7% to 54% for Ni2+. 
When the zeolite dosage exceeded 12 g·L−1, Pb2+ and Cu2+ ions were completely removed, together 
with >90% of the Zn2+ and >78% of the Ni2+. The hydroxy-sodalite/cancrinite zeolite composite 
synthesized from the calcite-bearing kaolin achieved higher removal efficiencies for Cu2+ (5%), Zn2+ 
(10%), and Ni2+ (10%) when compared to the highest dosage of hydroxy-sodalite synthesized from 
China clay. The significantly improved removal efficiency of the hydroxy-sodalite/cancrinite 
composite can be explained by its larger specific surface area, which has a higher adsorption capacity 
than the single hydroxy-sodalite adsorbent system. These results are comparable to that obtained 
from zeolites synthesized from fly ash with removal efficiencies of 100% for Pb2+, 95% for Cu2+, and 
65% for Ni2+ when using a zeolite dosage of 6 g·L−1 [49]. In contrast, fly ash showed significantly lower 
removal efficiency values of 50% for Pb2+, 25% for Cu2+, and 22% for Ni2+ when using an equivalent 
dosage [49]. 
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Figure 7. Effect of adsorbent dosage on the removal efficiency of heavy metal ions (100 ppm); (a) Pb2+,
(b) Cu2+, (c) Zn2+, and (d) Ni2+. (N) Hydroxy-sodalite zeolite synthesized from China clay, and (�)
hydroxy-sodalite/cancrinite zeolite composite synthesized from calcite-bearing kaolin.
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As the zeolite dosage was increased from 1 to 6 g L−1, the removal efficiency correspondingly
increased from 59% to 99% for Pb2+, 20% to 90% for Cu2+, 16% to 62% for Zn2+, and 7% to 54% for Ni2+.
When the zeolite dosage exceeded 12 g·L−1, Pb2+ and Cu2+ ions were completely removed, together
with >90% of the Zn2+ and >78% of the Ni2+. The hydroxy-sodalite/cancrinite zeolite composite
synthesized from the calcite-bearing kaolin achieved higher removal efficiencies for Cu2+ (5%), Zn2+

(10%), and Ni2+ (10%) when compared to the highest dosage of hydroxy-sodalite synthesized from
China clay. The significantly improved removal efficiency of the hydroxy-sodalite/cancrinite composite
can be explained by its larger specific surface area, which has a higher adsorption capacity than
the single hydroxy-sodalite adsorbent system. These results are comparable to that obtained from
zeolites synthesized from fly ash with removal efficiencies of 100% for Pb2+, 95% for Cu2+, and 65%
for Ni2+ when using a zeolite dosage of 6 g·L−1 [49]. In contrast, fly ash showed significantly lower
removal efficiency values of 50% for Pb2+, 25% for Cu2+, and 22% for Ni2+ when using an equivalent
dosage [49].

4. Implications for Water Purification

The hydroxy-sodalite/cancrinite zeolite composite synthesized from calcite-bearing kaolin showed
increased heavy metal adsorption compared to the hydroxy-sodalite synthesized from pure kaolinite.
Overall, the studied composite achieved a 16–24% improvement in the concentration of heavy metals
adsorbed when tested under comparable conditions. The novelty of this work lies in the synthesis
of hydroxy-sodalite/cancrinite composite from regionally available Jordanian calcite-bearing kaolin
by a cost and energy-efficient production process. As the precursor material used in this study
represents a cheap raw commodity that is not used in any industrial applications, the synthesized
zeolite composite has the potential to lower the water treatment cost and increase the efficiency of
metal removal from aqueous media. The production cost of hydroxy-sodalite/cancrinite composite
from calcite-bearing kaolin is estimated to be as low as 2 US$/kg (Table 4), which is 90 times cheaper
than the cost of commercial activated carbon (271 US$/kg) [50], 15 times cheaper than the activated
carbon produced from waste cherry kernels (42 US$/kg) [50], and 12 times cheaper than Na-A and
Na-X zeolite produced from coal fly ash (25 US$/kg) [25]. Further development of adsorbent beds
composed of hydroxy-sodalite/cancrinite composites will require adsorption isotherms studies of
single and multi-heavy metals solution systems as well as investigations on the role of the adsorbent’s
particle size.

Table 4. Estimated production costs for 1 kg of hydroxy-sodalite/cancrinite composite.

Materials Rate in US$/kg Quantity in kg Total Cost in US$

Calcite-bearing kaolin 1 0.13 0.8 0.10

Kaolin grinding and
packing cost 1 0.30 - 0.30

Sodium hydroxide
solution (50% wt/wt) 2 1.0 0.4 0.40

Transportation 0.30 - 0.30

Cost of electric power
consumed 0.55 - 0.55

Labor cost 0.35 - 0.35

Total cost/kg of composite 2.0
1: Sales price offered by local kaolin mine in Batn El-Ghoul deposit. 2: Sales price offered by National Chlorine and
Soda Industries Company.
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5. Conclusions

This study highlights the suitability of a synthetic hydroxy-sodalite/cancrinite zeolite composite
obtained from the hydrothermal alkali-activation of regionally available Jordanian calcite-bearing
kaolin. The complete dissolution of the calcite-bearing kaolin is accompanied by the formation of a
zeolite composite consisting of pseudo-hexagonal hydroxy-sodalite crystals and hexagonal needles of
cancrinite. During alkali activation, the kaolinite and quartz act as solid precursor phases that provide
the dissolved Al and Si required for zeolite formation, whereas the calcite provides the necessary
Ca2+ required to form cancrinite. Once the supply of Ca2+ is depleted, hydroxy-sodalite forms in a
second stage of the reaction. The synthesized zeolite composite exhibits a mesoporous structure with
an average pore size of 21 nm, a specific surface area of 20 m2

·g−1, and excellent adsorption capacity.
The synthesized zeolite composite acts as a potential adsorbent for the removal of heavy metals from
aqueous media. Based on batch experiments, the material effectively removed 99% Pb2+, 90% Cu2+,
62% Zn2+, and 54% Ni2+ from a simulated wastewater solution when using a zeolite dosage of 6 g·L−1,
which is a significantly better performance than documented for fly ash based products tested under
equivalent conditions. The use of low-grade calcite-bearing kaolin to synthesize zeolite composites
could significantly reduce the production costs of such adsorbents and estimates indicate a price as
low as 2 US$ per kg is applicable. Such low regions w-cost adsorbents are particularly relevant to the
removal of heavy metals from wastewater in arid here sustainable precursor clays are available in
regional proximity.
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