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Abstract: The integrated analysis of seismic rock properties, lithogeochemical data, and mineral
compositional data, estimated via scanning electron microscopy-energy dispersive X-ray spectroscopy
(SEM-EDS), provides insight into the effects of hydrothermal alteration on seismic reflectivity in the
footwall of the Lalor volcanogenic massive sulfide (VMS) deposit, Manitoba, Canada. The effects
of hydrothermal alteration on variations in acoustic impedance are secondary in magnitude and
superimposed on the dominant acoustic impedance contrast between felsic and mafic volcanic
protoliths. This secondary effect is due to an increase in P-wave velocity with increasing intensity
of hydrothermal alteration, as measured by the Ishikawa and Carbonate-Chlorite-Pyrite alteration
indices. Mixture modeling of the seismic rock properties and mineral percentages suggests that
the increase in seismic velocity is due to an increase in abundance of cordierite, which is one of
the diagnostic aluminum silicates for hydrothermally-altered volcanic rocks metamorphosed in the
upper almandine amphibolite facies. The synthetic seismic data of a simple VMS model consisting of
mafic-felsic host rock contacts, a sulfide ore lens, and a discordant hydrothermal conduit, consisting
of the amphibolite-facies mineral assemblage (600 ◦C, 6 kbar) encountered at Lalor, show enhanced
seismic reflections at conduit-host rock contacts, in comparison to its greenschist facies equivalent
(350 ◦C, 2.5 kbar). This zone of enhanced seismic reflectivity in the footwall of the massive sulfide
ore zone is also recognized on the Lalor seismic data suggesting that high-grade terrains hosting
VMS deposits possess enhanced potential for the seismic detection of their footwall hydrothermal
alteration zones.

Keywords: seismic rock properties; hydrothermal alteration minerals; volcanogenic massive sulfide
deposits; mixture modeling

1. Introduction

For the past three decades, the seismic reflection method has shown promising results for the
exploration of volcanogenic massive sulfide (VMS) deposits [1–3]. This success is largely attributable
to their ore composition of high-density sulfide minerals, including low-seismic velocity minerals, such
as chalcopyrite, pyrrhotite, sphalerite, and high-velocity pyrite. The sulfide-dominant compositions of
these deposits generally result in high impedance contrasts at contacts with their silicate-dominant
volcanogenic host rocks [1,2]. Although the direct detection of sulfide ore will likely remain the
primary objective of any 3D seismic exploration endeavor, seismic imaging of the more regional-scale
hydrothermal alteration system associated with VMS deposits may provide important geological
insight, widening the scope of seismic exploration from direct detection to indirect targeting in areas
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with favorable but yet undemonstrated potential. Indirect targeting is a viable option in cases where
sulfide ore lenses have limited thickness and lateral extent due to primary ore forming conditions or
subsequent tectonic dismemberment, rendering their seismic detection challenging. Alternatively,
dependent on the design of the survey, tectonic processes may have steepened the ore zone, which
may also hamper their seismic detection.

This paper reports the integrated modeling of seismic rock properties, lithogeochemistry,
and estimates of mineral abundance from scanning electron microscopy-X-ray energy dispersive
spectroscopy (SEM-EDS) to gain more insight into the largely unknown potential of detecting
VMS-related hydrothermal alteration. The objective here is to widen the perspective from the seismic
properties of the sulfide ore minerals to the silicate-dominant mineral assemblages of VMS-proximal
hydrothermal conduits.

First, we analyze the relationships between seismic rock property logs, lithofacies logs, and drill
core lithogeochemistry, providing insight into the effect of protolith composition and the intensity of
hydrothermal alteration on seismic rock property variations. Secondly, we model the seismic properties
of mineral mixtures by estimating their abundances from SEM-EDS images of thin sections cut from
11 drill core samples. When these estimates are combined with the appropriate mineral velocities
and densities, the mixture-modeled P-wave velocity and density can be computed, which can then be
compared with the seismic rock property measurements of these samples. Collectively, the estimated
mineral percentages and modeled seismic rock properties allow the elucidation of which minerals
play a dominant role in producing the observed effects of hydrothermal alteration on the P-wave
velocity and density measurements. Thirdly, we compare the seismic response of synthetic models
of VMS ore systems metamorphosed in the lower greenschist and amphibolite facies to assess the
effects of metamorphic grade on the potential for detecting hydrothermal alteration zones in seismic
data. Finally, on the basis of these results, we revisit previously reported interpretations of the 3D
seismic cube acquired over the Lalor VMS deposit [4,5] to investigate if the response of hydrothermal
alteration can actually be recognized in the seismic data.

2. Geological Setting

The Lalor volcanogenic massive sulfide (VMS) deposit is located near Snow Lake, Manitoba,
Canada, about 700 km north of Winnipeg, and is hosted in the volcanic, volcaniclastic, and intrusive
rocks of the Snow Lake arc assemblage of the Paleoproterozoic Flin Flon greenstone belt (Figure 1).

The Snow Lake arc assemblage comprises a 6 km thick section of three volcanic successions,
displaying a geodynamic evolution from a primitive arc (Anderson sequence to the south) to a mature arc
(Chisel sequence) to an arc-rift (Snow Creek sequence to the northeast) setting [6]. The 1.89 Ga volcanic
sequences were intruded by 1.88–1.84 Ga successor-arc felsic and mafic plutons, deformed by isoclinal
folds and thrusts, and subsequently interleaved with their 1.86–1.84 Ga successor arc sedimentary cover
by continued fold-thrust style tectonics [7,8], during which the peak upper almandine-amphibolite
facies metamorphic conditions were reached at approximately 1.82–1.81 Ga [6].

VMS deposits in the Snow Lake arc sequence mainly occur within the Anderson and Chisel
sequences. In contrast to the Cu-rich VMS-deposit hosted in the Anderson sequence, most VMS
deposits in the Chisel sequence are Zn-rich and are dominantly hosted in mafic and intermediate to
felsic volcanic and volcaniclastic rocks. The Chisel sequence has been subdivided into the lower and
upper subsequences [9], forming the footwall and hanging wall, respectively, of a structural contact
10–200 m above the massive sulfide ore lenses of the Zn-rich VMS deposits (Chisel, Chisel North,
Ghost, Lost, and Lalor, Figure 1). This contact has been tentatively interpreted as a thrust fault on the
basis of the contrasting lithogeochemical trace element signatures of its hanging wall and footwall
sequences, and an abrupt change in dip, which is associated with opposing facing directions [6].

A large subconcordant hydrothermal alteration system, developed in the footwall of the Zn-rich
VMS deposit, is closely associated in space and time to the magmatic evolution of the Richards
subvolcanic intrusion [10,11] (Figure 1). Disconformable alteration zones that can be traced to the
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Chisel, Chisel North, and Lalor deposits are rooted within it [10,11]. The footwall hydrothermal
alteration in the Lower Chisel subsequence evolved in two stages. The first stage produced a
semi-conformable zone of albitization, silicification, and epidotization, 1–2 km below the deposits
that are spatially associated with synvolcanic dykes and intrusions. The second stage produced
sub-concordant zones of intense hydrothermal alteration in the immediate footwall of the massive
sulfide deposits marking their feeder conduits [10,11]. These hydrothermally-altered rocks were, after
metamorphism in the amphibolite facies, transformed into schist and gneiss with aluminum-silicate
porphyroblasts of garnet, staurolite, cordierite, kyanite and anthophyllite [10–12]. Alteration in close
proximity to the sulfide ore zones at Lalor also includes pervasive zones of finely disseminated
sulfides (pyrite, pyrrhotite, sphalerite, chalcopyrite, and galena) associated with carbonate, tremolite,
talc, and chlorite-rich rocks [10,12]. Four chemical associations can be distinguished in the zone of
intense hydrothermal alteration in the footwall of the Lalor VMS deposit on the basis of metamorphic
mineral assemblages (Table 1). These mineral assemblages reflect lithogeochemical variations of
different volcanic protoliths, as well as metasomatism during hydrothermal alteration and subsequent
metamorphic crystallization [12].
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Figure 1. Geological map of the Chisel basin with a SW–NE-oriented cross section of the Lalor
volcanogenic massive sulfide (VMS) deposit generalized after [9]. The rectangle on the map shows the
outline of the 3D seismic survey. The inset shows the tectonic map of the Canadian Shield, including
the Trans-Hudson orogen (THO). The black square indicates the location of the study area.



Minerals 2019, 9, 384 4 of 23

Table 1. Chemical associations differentiated in the footwall hydrothermal alteration zone of the Lalor
VMS deposit after [12].

Chemical Association Minerals

K sericite, pyrite, biotite, kyanite
K–Fe, Mg quartz, biotite, kyanite

Fe, Mg anthophyllite, cordierite, garnet, biotite, staurolite
Ca, Mg carbonate, chlorite ± Ca–Mg amphiboles

Less intense alteration Variable

The Lalor deposit consists of 12 mineralized zones, starting at a vertical depth of 570 m and
extending down to approximately 1160 m. The mineralization zones trend to the northwest and have
dips between 10◦ and 30◦ to the NNE. They are generally thin (average thickness is less than 12 m) and
vary in size and grade. The deposit comprises six zinc-rich and six gold-rich zones [13]. The zinc-rich
zones are the largest and shallowest zones of the deposit, and generally comprise near-massive to
massive sulfide mineralization. Sulfides in the zinc-rich zones dominantly consist of pyrite crystals
and sphalerite that is interstitial to the pyrite. The deposit also includes six gold-rich zones below
the Zn-rich zones in the footwall rocks. The gold zones (including 8.8 Mt at 4.6 g/t Au: [13,14]) are
disseminated with some stringers of sulfide mineralization. These zones contain a low amount of iron
sulfide, typically less than 4–5%. The deepest gold zones are also associated with higher copper grades
(average grade of 4.64% Cu), suggesting that these may represent feeder zones of the VMS ore system.

The ore lenses of the Lalor deposit, together with the host rocks, were affected by a polyphase
deformation history of isoclinal folding and thrust faulting. The main foliation is a S2 penetrative
mineral shape to gneissic fabric, with local evidence of the transposition of F1 isoclinal folds [8,15].
The F2 folds are also isoclinal, verging towards the south and involving the upper massive sulfide ore
lenses. The F2 folds were refolded by open N–NE upright F3 folds, locally resulting in Type 1 [16]
fold interference patterns [15]. The limbs of these fold structures are locally attenuated by shear zones,
often displaying the boudinage of competent rock units and quartz-carbonate veins (see [17] for the
nomenclature used for labelling fold structures and associated foliations in rocks affected by multiple
phases of deformation).

3. Integrated Analyses of Seismic Wireline Logs and Drill Core Lithogeochemistry

The wireline log data acquired in ten boreholes located close to or intersecting the deposit were
used in previous interpretations to show that massive sulfide mineralization and felsic-mafic host rock
contacts generate the dominant high-amplitude seismic reflections at Lalor [4,5] (see also Section 6).
Herein, we reanalyze the wireline logs to investigate the additional effects of hydrothermal alteration
on acoustic impedance contrast. Since the majority of seismic surveys in hard rock exploration,
including the Lalor seismic cube, focus on P-wave reflectivity, shear wave velocities were excluded
from the analysis.

The results obtained from the wireline logs were in general supported with P-wave velocity and
density measurements on core samples, although some differences were observed between the two
types of measurements. The γ-γ density logs showed a strong correlation (r = 0.85, n = 23) with
co-located density measurements of drill core samples [18]. The sonic wireline logs, however, were not
collocated with the core samples that were subjected to seismic velocity measurements. Nevertheless, a
comparison of drill core P-wave velocity measurements with interpolated P-wave velocity values of a
3D grid model obtained by kriging the wireline log data yielded a root mean square error of 0.29 km/s
(n = 27) [5]. All drill core samples subjected to the SEM-EDS analysis were previously subjected to
seismic rock property measurements (Table 2), which allowed the modeling of seismic rock properties
from the mineral volume fractions (see Section 4). For the procedures used in measuring these density
and P-wave velocity measurements, refer to [5].

To investigate the additional effects of hydrothermal alteration on the acoustic impedance contrast,
the samples of the ten wireline logs were co-registered with whole rock geochemical analyses from
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drill core samples and their corresponding lithofacies using a threshold distance of 30 cm (Figure 2).
These geochemistry and wireline log records were stored in a Microsoft Access®database compiled
from the industry drill hole data. The co-registration was accomplished by matching records of
the geochemistry drill core samples with records of the wireline logs on the distance along their
corresponding drill paths (see Appendix A for the query syntax of this matching operation).

In any assessment of the effects of hydrothermal alteration on seismic reflectivity, it is important
to separate the effects of hydrothermal alteration (and subsequent metamorphism) on the acoustic
impedance contrast from those caused by variations in protolith composition. Therefore, our subdivision
into lithofacies (e.g., a rock body having a unique definable compositional, textural, or structural
character of genetic significance [19]) was based on the immobile element ratio of Zr/Ti, which allowed
grouping the drill core samples into lithofacies with felsic, intermediate, and intermediate-mafic
protolith compositions [20]. Each of these three lithofacies were further subdivided into least-altered and
altered groups, using the above-described diagnostic metamorphic mineral assemblages of aluminum
silicates, yielding a total of six classes. The advantage of this lithofacies classification is that it can be
universally applied, regardless of the intensity of hydrothermal alteration and metamorphic overprint.
This is particularly relevant for the gneisses and schists of the footwall hydrothermal alteration zone,
where hydrothermal alteration and metamorphic crystallization destroyed the diagnostic observables
of their volcanic protoliths.

The P-wave velocity (Vp) versus density (ρ) plot of the altered and least-altered lithofacies is
shown in Figure 3. The overlay of the ellipses shown in Figure 3b were determined from the principal
component analysis of the P-wave velocity and density wireline log data of each of the lithofacies.
The ellipses represent the mean and scaled eigenvectors of the covariance matrix, such that the major
and minor axes of the ellipses represent one standard deviation (i.e., 68%) of the Vp-ρ distributions.
The locations and dimensions of the ellipses of mafic and felsic lithofacies in Vp-ρ space show that
protolith composition dominantly controls the acoustic impedance contrast for both the least-altered and
altered lithofacies. This is consistent with high-amplitude reflections observed at the contacts between
least-altered felsic and mafic lithofacies [5] (Section 6). The second-order effects of hydrothermal
alteration can be inferred by comparing the dimensions of the ellipses between the least-altered
and altered lithofacies. Note that all the ellipses of the altered lithofacies are significantly larger in
comparison to their least-altered equivalents. In addition, the altered lithofacies with intermediate to
mafic protolith composition are oriented on a steeply sloping but slightly negative trend.
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and lithofacies log data.
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Figure 3. P-wave velocity (Vp) and density wireline log data of the main lithofacies units intersected
in ten drill holes. (a) Vp-ρ plot of wireline log measurements; (b) as (a), with the overlay of ellipses
defined by the principal component analysis of Vp and ρ for each lithofacies unit, with the minor and
major axes representing one standard deviation from the mean. The mafic-intermediate lithofacies
were defined by Zr/Ti < 0.017, the intermediate lithofacies by 0.017 <= Zr/Ti < 0.030, and the felsic
lithofacies by Zr/Ti >= 0.03. Ore, including disseminated, vein-type, near solid, and massive types of
sulfide mineralization was based on drill log descriptions from Hudbay Minerals [4]. Lines of constant
acoustic impedances (Z) in kg/m−2s−1

× 10−6 are also shown on this figure.

In addition to the Vp-ρ lithofacies plot, the relationships between seismic rock property logs and
alteration indices, computed from the co-registered whole rock geochemical analyses, were analyzed.
These alteration indices included the Ishikawa index (AI) and chlorite–carbonate–pyrite (CCPI) index.
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Both are commonly used as proxies for the intensity of hydrothermal alteration in VMS ore systems [21].
The Ishikawa index is defined as:

AI =
([K2O] + [MgO]) × 100%

([K2O] + [MgO] + [Na2O] + [CaO])
(1)

This index measures the breakdown of plagioclase feldspar and volcanic glass and their
replacement by sericite (Equation (2)), and the subsequent replacement of sericite by chlorite
(Equation (3)) [21]:

3NaAlSi3O8 (albite) + K+ + 2H+ = KAl3Si3O10(OH)2 (sericite) + 6SiO2 (quartz) + 3Na+ (2)

2KAl3Si3O10(OH)2 (sericite) + 3H4SiO4 + 9Fe2+ + 6Mg2+ + 18H2O =

3Mg2Fe3Al2Si3O10(OH)8(chlorite) + 2K+ + 28H+ (3)

Because the AI index cannot differentiate between sericite and chlorite, a second alteration index,
known as the chlorite-carbonate-pyrite index (CCPI) is usually computed:

CCPI =
([MgO] + [FeO]) × 100%

([MgO] + [FeO] + [Na2O] + [K2O])
(4)

The CCPI increases with the formation of chlorite, Mg-Fe carbonate and pyrite. In combination,
these indices measure the depletion of Na, Ca, gains of Fe, Mg, K and, indirectly, the relative enrichment
of Al [21]. Because the Lalor VMS deposit was metamorphosed in the amphibolite facies, aluminum
silicates of the K-Mg and Fe-Mg assemblages, such as cordierite, garnet, staurolite and biotite (Table 1)
replaced the chlorite-rich greenschist facies alteration assemblages [20]. This prograde metamorphic
replacement of chlorite has also been documented in footwall alteration zones of other VMS deposits
in the Snow Lake region [22,23].

Figure 4 shows Vp-ρ plots of the AI and CCPI alteration indices computed from the drill core
geochemical analyses of intermediate to mafic protoliths. Note the trends of higher AI and CCPI values
with increasing velocity in these plots, which are consistent with the orientation of ellipses for altered
lithofacies of intermediate to mafic composition (Figure 3). Both plots support the interpretation
that the increasing velocity, decreasing density trend is associated with an increasing intensity of
hydrothermal alteration.
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Figure 4. P-wave velocity (Vp) and density of rocks with mafic-intermediate volcanic protoliths
from the footwall of the Lalor VMS deposit. Points are colored according to the Ishikawa (AI) and
chlorite-carbonate-pyrite-index (CCPI) alteration indices. The isolines indicate acoustic impedance (Z)
in kg/m−2s−1

× 10−6.
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4. Mixture Modeling of Seismic Rock Properties Using SEM-EDS Analyses

Searching for the minerals responsible for the negative low density-high P-wave velocity trend,
eleven polished thin sections of 4.5 × 2.5 cm were cut from drill core samples of the footwall of the
Lalor VMS deposit for scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS).
In the last two decades, SEM-EDS has gained popularity for identifying minerals and the quantification
of their abundances [24]. The technique is based on mapping mineral grains by focusing an electron
beam on a polished thin section and identifying the mineral species and chemical composition of each
grain on the basis of peaks in the emitted X-ray energy spectra, each of them being unique to the
atomic structure of the elements of which the mineral is composed. The reader is referred to [24] for
an introductory review on the methodology and its applications, and to [25] for a discussion on the
accuracy and caveats of SEM-EDS analysis.

The thin sections were cut normal to the foliation. Because no lineation was observed in the
samples, it was assumed that the preferred mineral orientation, defining the foliation, interacted in an
isotropic manner with these sections. This would justify equating the estimated mineral percentages
from the thin sections with volumetric percentages, invoking the Delesse principle [26] and an unbiased
randomized sampling design.

The thin sections were analyzed using the TESCAN MIRA3 Oxford SEM-EDS system [27].
This system includes the X-MAX 80 Silicon Drift Detector (Oxford Instruments, Oxford, UK), with
AZtec Energy microanalysis software (Version 3.3, Oxford Instruments, High Wycombe, UK) [27].
The specialized module “Feature” of AZtec, which is particularly suited to large samples and routine
analysis, was used to classify minerals from the EDS data. The individual mineral grains were
identified using grey level thresholding of the backscattered electron images. The morphology and
chemistry was then recorded for each grain, and each spectrum was immediately quantified and
classified according to a user generated classification scheme. As many fields are recorded at high
magnification as necessary to make up a large area and then montaged. The adjoining mineral grains
were then reconstructed across the whole area [27]. With morphology and chemistry analyzed, the
results enable a full calculation of the bulk mineralogy of the entire section, including the percentage of
unclassified features (Figure 5, Table 3).

Given that the SEM-EDS analyses of the thin sections is limited to estimating mineral fractions,
the modeling of seismic rock properties is bound by two limiting assumptions:

1. The seismic rock properties are completely defined by the seismic properties of the constituting
mineral phases (i.e., the effects of porosity on seismic rock properties, including porosity due to
microcracks, are negligible).

2. There is no preferential orientation of the mineral phases (i.e., the fabric of the rocks are
homogeneous and quasi-isotropic).

Table 2. Seismic rock properties of drill core samples subjected to SEM-EDS analyses.

Sample Lithology Density Vp200 MPa Vs200 MPa

GSC-Lalor-MD-023 Ath–Crd–Grt gneiss 2.85 7.32 3.61
GSC-Lalor-MD-038 Rhyolite 2.72 6.33 3.77
GSC-Lalor-MD-039 Rhyolite 2.71 6.81
GSC-Lalor-MD-041 Bt–St–Grt schist 2.94 6.86 3.63
GSC-Lalor-MD-099 Ath–Crd–Grt gneiss 3.00 6.94 3.83
GSC-Lalor-MD-110 Ath–Crd gneiss 2.86 7.57 4.01
GSC-Lalor-MD-156 Basalt 3.00 6.71 4.01
GSC-Lalor-MD-160 Qtz–Bt–Crd gneiss 2.77 6.77 4.03
GSC-Lalor-MD-165 Bt–Grt–Ath gneiss 2.88 6.24 3.69
GSC-Lalor-MD-188 Felsic tuff 2.86 6.18 3.77
GSC-Lalor-MD-218 Ath–Crd gneiss 2.86 7.20 4.08

Mean 2.86 6.81 3.84
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Table 3. SEM-EDS analyses listing identified and classified minerals in percent.

Sample Lithology Am An Ap Bt Cal Dol Ccp Chl Crd Ep Gr Grt Hbl Ilm Py Qtz Rt Sil St Udef Total

GSC-Lalor-MD-023 Ath-Crd-Grt gneiss 8.9 7.2 0.2 10.7 0.1 0.0 0.1 1.1 36.3 0.0 0.1 7.6 0.0 0.4 1.0 24.3 0.0 0.0 0.0 2.3 100.3

GSC-Lalor-MD-038 Rhyolite 2.9 10.1 0.0 0.0 0.0 0.0 0.0 12.6 1.8 0.0 0.0 0.0 0.0 0.1 0.0 68.2 0.0 0.0 0.0 4.3 100.0

GSC-Lalor-MD-039 Rhyolite 0.0 1.6 0.0 7.7 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.6 81.6 0.0 1.3 2.2 5.0 100.1

GSC-Lalor-MD-041 Bt-St-Grt schist 53.2 0.0 0.2 4.8 0.0 0.0 0.0 2.0 21.7 0.0 0.0 0.0 0.0 0.4 3.1 11.7 0.0 0.0 1.0 1.9 100.0

GSC-Lalor-MD-099 Ath-Crd-Grt gneiss 17.9 8.9 0.5 2.0 0.0 0.0 0.0 1.8 19.9 0.0 0.0 13.7 0.1 0.8 2.4 29.9 0.0 0.0 0.2 1.9 100.0

GSC-Lalor-MD-110 Ath-Crd gneiss 46.7 0.0 0.3 6.3 0.0 0.0 0.0 11.2 27.4 0.0 0.0 0.0 0.1 0.8 1.4 3.7 0.5 0.0 0.5 1.1 100.1

GSC-Lalor-MD-156 Basalt 0.0 34.8 0.0 3.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 36.6 0.2 0.0 27.7 0.0 0.0 0.0 0.5 103.0

GSC-Lalor-MD-160 Qtz-Bt-Crd gneiss 7.5 0.0 0.4 29.6 0.0 0.0 0.0 1.8 20.4 0.0 0.0 0.0 0.0 1.7 0.0 37.4 0.0 0.0 0.0 1.0 100.0

GSC-Lalor-MD-165 Bt-Grt-Ath gneiss 14.9 0.0 0.2 1.3 0.0 0.0 0.0 2.7 32.7 0.0 0.0 0.0 0.0 0.6 0.0 45.8 0.0 0.0 0.0 1.8 100.0

GSC-Lalor-MD-188 Felsic tuff 5.5 38.7 0.1 18.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.1 0.0 32.9 0.0 0.0 0.0 1.4 100.0

GSC-Lalor-MD-218 Ath-Crd gneiss 24.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 26.2 0.0 0.0 0.0 0.0 0.6 0.1 48.3 0.0 0.0 0.0 0.6 100.0

Mean 16.5 9.2 0.2 7.7 0.0 0.0 0.0 3.0 16.9 0.0 0.0 2.2 3.4 0.5 0.8 37.4 0.0 0.1 0.4 2.0 100.3
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Under these assumptions, the effects of mineral composition on seismic rock properties can be
modeled by combining the bulk mineral fractions fi (Table 3) with their corresponding mineral P-wave
velocities (Vpi) and densities (ρi) (Table 4) to obtain mixture-modeled bulk seismic rock properties.
The mixture-modeled density is defined as:

ρmodel =
n∑

i=1

fiρi (5)

where fi is the ith mineral fraction from the sum-normalized SEM-EDS analyses of n mineral components
and ρi is the density of the ith mineral component.

Considering the lack of data for characterizing anisotropy, the best that can be done in modeling
the P-wave velocity of the mineral mixture is to compute an average based on the theoretical lower and
upper bounds of the mineral elastic moduli [28] (see [29] for a review of more advanced analysis, which
includes statistics of mineral orientations to model the effects of anisotropy). Hence, the modeled
P-wave velocity was computed from the mean bulk (K) and shear (µ) moduli, known as the Hill
averages of the Voigt and Reuss bounds [28]:

Vpmodel =

√
K + 4

3µ

ρmodel
(6)

with:

K =
KVoigt + KReuss

2
=

∑n
i=1( fiKimin) +

∑n
i=1

(
fi

Kimin

)
2

(7)

and:

µ =
µVoigt + µReuss

2
=

∑n
i=1( fiµimin) +

∑n
i=1

(
fi
µimin

)
2

(8)

A comparison between the measured and mixture-modeled seismic rock properties shows,
with the exception of two outliers, a good fit for density (Figure 6a) and a reasonable fit for the
P-wave velocity modeled as a linear mixture or the average of the Voigt and Reuss bounds (Table 5,
Figure 6b,c). A Vp-ρ plot of the measured rock and mineral seismic properties, suggests, in combination
with the estimated fractions that the most abundant minerals positioned beyond the extremes of the
measured Vp-ρdistribution, along the approximately perpendicular biotite-cordierite and quartz-garnet
bivariate mixture lines, dominantly control the seismic rock property variations (Figure 7). Although
the SEM-EDS sample set is limited in size, the relatively large average abundance of low-density
high-velocity cordierite (Figure 8a), and its positive correlation with P-wave velocity (Figure 8b), is
consistent with the low-density trends of intensely-altered intermediate to mafic lithofacies (Figure 3),
as well as increasing alteration index values towards higher velocities (Figure 4). Cordierite, among
other aluminum silicates (such as garnet, kyanite, sillimanite, and staurolite), in volcanic protoliths is
diagnostic for hydrothermally-altered rocks that have been metamorphosed in the middle to higher
amphibolite facies [20,23]. Cordierite has a unique low density, high P-wave velocity signature in
comparison to other silicate minerals, which explains the steep negative low density-high velocity
trend (Figures 3, 4 and 7). In general, the SEM-EDS results confirm that the seismic rock property
variations in the host rocks of the Lalor VMS deposit are controlled by large variations in the abundance
of silicates, whereas the sulfides have negligible effects (Tables 2 and 3).
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Figure 6. Scatter plots comparing the measured and modeled seismic rock properties. (a) Density; (b)
P-wave velocity modeled by the average of the Voigt and Reuss bounds. Open circles indicate outliers
not considered in the regression analysis.
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Table 4. Seismic mineral properties.

Mineral Abbr. ρ (g/cm3) Vp (km/s) Vp
Anisotropy Vs (km/s) K (GPa) m (GPa)

Albite Ab 2.63 [28] 6.30 [30] 30.9% [30] 3.70 [30] 68.38 86.25
Anorthite An 2.73 [31] 7.25 [30] 31.8% [30] 4.30 [30] 93.02 134.05

Amphibole Am 2.95 [31] 6.95 [30] 23.8% [30] 3.85 [30] 98.77 103.02
Biotite Bt 3.09 [31] 5.26 [30] 2.87 [30] 60.04 43.33

Chlorite Chl 3.05 [31] 6.01 [32] 3.00 [32] 82.72 54.09
Cordierite Crd 2.65 [31] 8.71 [33] 14.2% [33] 4.51 [33] 147.14 177.16

Epidote Ep 3.40 [28] 7.43 [28] 19.9% [30] 4.25 [30] 126.28 134.20
Garnet Grt 4.20 [31] 8.55 [30] 0.9% [30] 4.75 [30] 212.27 192.91
Pyrite Py 5.04 [34] 8.12 [34] 4.95 [34] 208.82 198.96
Quartz Qtz 2.65 [32] 6.05 [32] 23.6% [30] 4.09 [32] 52.67 101.21
Sericite Ser 2.81 [32] 6.30 [30] 44.2% [30] 3.75 [30] 72.01 88.59

Sillimanite Sil 3.24 [31] 9.70 [30] 22.7% [30] 5.35 [30] 212.11 277.64
Staurolite St 3.71 [31] 7.85 [30] 34.5% [30] 4.65 [30] 148.40 169.74

Table 5. Measured and modeled seismic rock properties.

Sample ρmeas. ρmod Vp200MPa Vpmod-lm VpVoigt VpReus VpVRavg KVoigt KReus µVoigt µReus

GSC-Lalor-MD-023 2.85 2.86 7.32 7.35 7.48 6.67 7.12 93.02 69.26 50.33 45.95

GSC-Lalor-MD-038 2.72 2.72 6.33 6.25 6.27 6.06 6.16 49.73 44.41 42.91 41.61

GSC-Lalor-MD-039 2.71 2.72 6.81 6.10 6.15 5.97 6.06 43.49 40.17 44.47 42.61

GSC-Lalor-MD-041 2.94 2.98 6.86 7.20 7.27 6.83 7.06 91.66 78.62 49.52 45.38

GSC-Lalor-MD-099 3 2.96 6.94 7.27 7.44 6.70 7.07 92.11 66.78 53.68 49.48

GSC-Lalor-MD-110 2.86 2.87 7.57 7.20 7.23 6.94 7.08 91.91 83.65 43.55 41.15

GSC-Lalor-MD-156 3 2.92 6.71 6.80 6.84 6.60 6.72 72.15 62.88 48.18 48.05

GSC-Lalor-MD-160 2.77 2.82 6.77 6.44 6.51 6.02 6.26 65.60 52.78 40.21 36.88

GSC-Lalor-MD-165 2.88 2.71 6.24 7.07 7.16 6.60 6.88 76.74 57.25 46.71 45.70

GSC-Lalor-MD-188 2.86 2.82 6.18 6.49 6.55 6.21 6.38 61.87 54.10 44.42 41.01

GSC-Lalor-MD-218 2.86 2.72 7.2 6.98 7.06 6.57 6.82 73.47 55.90 46.73 46.36



Minerals 2019, 9, 384 15 of 23

5. 2D Seismic Synthetics

The impact of high-velocity aluminum silicates on reflectivity was further assessed by modeling
the seismic response of a simple VMS deposit consisting of a bimodal volcanic host rock background of
basalt and rhyolite, a massive sulfide ore lens, and a subconcordant hydrothermal conduit (Figure 9).
Two scenarios were tested: (1) A model in which the grade of the metamorphic overprint corresponds
to peak metamorphic conditions inferred for the Lalor VMS deposit (600 ◦C, 6 kbar, [20]); and (2) a
low-grade greenschist facies (350 ◦C, 2.5 kbar), equivalent of the first model, representative of the
majority of VMS deposits discovered in the Canadian Shield. The seismic properties of the first model
were computed from the mineral fractions of seven samples from the zone of intense hydrothermal
alteration using the mixing laws described above. The normative minerals computed from the major
oxide analyses of the same samples using CONSONORM_LG (CONSOREM (Consortium de recherche
en exploration minérale—Mineral Exploration Research Consortium, de l’Université, Chicoutimi, QC,
Canada) [35] (Table 6) were used to compute the seismic properties of the conduit consisting of the
lower greenschist facies mineral assemblage of the second scenario. Normative mineral computations
essentially provide an estimate of the idealized mineral composition of a rock, based on assumptions
about the order of mineral formation (as defined, for example, by the order of crystallization of mineral
phases from a melt) and known equilibrium phase relationships [36]. Normative mineral computations
developed for metamorphic rocks (such as the CONSONORM_LG algorithm applied in this study)
also honor metamorphic petrologic constraints, which limit mineral phases to those that can coexist
in solid state under given pressure-temperature conditions [35]. The estimated normative mineral
composition may differ from the visually observed mineral composition of the rock sample, dependent
on the extent to which the assumptions that define the rules of the normative mineral computation
are violated. The normative mineral computation starts by converting the weight fractions of the
major oxides to mole fractions by dividing each oxide by its molecular weight. The computation then
proceeds in a number of steps of prescribed order, in which the mole fractions are distributed among a
preselected set of normative minerals until they eventually exhaust to zero. This involves a total of
12 computational steps for the CONSONORM_LG algorithm, subsequently allotting the mole fractions
to sulfides, carbonates, Fe-Ti oxides, Al–Ca–Fe–K–Mg–Na silicates, quartz, and volatiles [35]. In the
final step, the mole fractions of the normative minerals are multiplied by the appropriate formula
weights and divided by the mineral densities to compute their volume fractions [36]. The normative
minerals thus obtained for the hydrothermal conduit of the greenschist facies synthetic model were
generalized into fewer classes and then renormalized to unity (Table 7). This involved the omission
of all the fractions below 1%, the summation of Mg- and Fe-chlorite, as well as the summation of
paragonite and sericite. Because neither the P-wave velocity measurements of pyrophyllite, nor the
appropriate measurements of the elastic moduli required for computing it could be found in the
literature, pyrophyllite was omitted from the analysis.

The properties of the least-altered host rocks (basalt and rhyolite) and ore for the greenschist
facies modeling scenario were determined from wireline logs for the first scenario and were adjusted
to reflect the appropriate pressure-temperature conditions for the second scenario using the average
Vp and ρ of the least-altered basalt and rhyolite from the wireline logs acquired in the Flin Flon VMS
camp [37]. The seismic properties of all modeled units, for both scenarios, are summarized in Table 8.

A total of 40 shot points equally distributed 20 m below the surface were modeled with an acoustic
(P-wave velocity and density) finite-difference method based on a second-order approximation of
the time derivatives, and a fourth-order approximation of the spatial derivatives was solved on a
staggered grid. The seismic wavefield was sampled at 341 receivers also placed near the surface of the
model every 10 m. The seismic source is a Ricker wavelet, with a center frequency of 70 Hz, which
corresponds to the center frequency of the Lalor migrated volume [4]. Synthetic shot gathers were
then migrated in depth using a reverse-time algorithm. Both modeling and reverse-time migration
were conducted with Devito [38].
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The strongest reflections are in both the greenschist and amphibolite facies scenarios, associated
with the ore zone (Figure 9, Table 9). For the amphibolite scenario, the reflection beneath the ore zone
includes constructive interference from the conduit-basalt contact. Note the enhanced reflectivity of
the basalt-rhyolite contacts in the amphibolite facies scenario, due to the significant increase of P-wave
velocity in basalt (a 40% increase in reflectivity in comparison with the greenschist scenario, Table 9).
The most significant difference in acoustic impedance contrast between the two scenarios is observed
at the contacts between the conduit and felsic host rocks. For the amphibolite facies scenario, the
reflectivity of the conduit-rhyolite contacts increases by 75% (Table 9) with respect to the reflectivity of
these contacts in the greenschist facies scenario, becoming as large as the impedance contrast across the
basalt-rhyolite contacts (Table 8). In contrast, in the greenschist facies scenario, the conduit is weakly
reflective when juxtaposed against rhyolite (Table 8). Seismic reflections at conduit-basalt contacts are
probably not detectable in both scenarios, considering the 6% rule-of-thumb threshold for a strong
amplitude-normal seismic reflection [2].
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Figure 9. Models used for seismic synthetics. (a) Model of a VMS deposit with a subconcordant
hydrothermal conduit; (b) P-wave velocity model for greenschist facies conditions; (c) P-wave velocity
model for amphibolite facies conditions; (d) processed seismic forward modeling profile for greenschist
facies conditions; (e) processed seismic forward modeling profile for amphibolite conditions. See text
for details on the modeling procedure.

Table 6. Major oxide analyses from the footwall hydrothermal alteration zone.

Sample SiO2 Al2O3 Fe2O3 FeO CaO K2O Na2O MgO MnO TiO2 P2O5 CO2 S LOI Total

GSC-Lalor-MD023 49.91 18.45 0.36 10.4 4.41 2.8 0.53 8.54 0.317 0.563 0.21 1.45 0.22 3.07 100.7

GSC-Lalor-MD041 61.73 13.82 2.26 10.1 0.69 1.44 0.18 7.31 0.375 0.495 0.14 0.2 1.17 1.3 101

GSC-Lalor-MD099 61.95 13.31 0.94 11.2 2.89 0.44 0.29 5.58 0.182 0.599 0.21 0.11 1.34 0.83 99.68

GSC-Lalor-MD110 42.14 21.29 0.05 12.6 0.57 0.8 0.15 14.88 0.241 0.532 0.22 0.06 1.33 3.71 98.59

GSC-Lalor-MD160 67.3 12.48 0.17 7 0.44 1.21 0.08 8.78 0.166 0.618 0.24 0.03 0.005 0.94 100.2

GSC-Lalor-MD165 65.85 14.19 1.54 7 0.49 1.49 0.32 6.43 0.31 0.599 0.18 0.07 0.02 0.84 100

GSC-Lalor-MD218 57.85 12.58 0.57 13.7 1.27 0.03 0.07 10.23 0.264 1.081 0.77 0.05 0.08 0.37 100.3
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Table 7. Greenschist facies normative minerals for modeling the hydrothermal conduit.

Sample Alb Chl Ep Qtz Ser

GSC-Lalor-MD023 0.17 0.44 0.15 0.18 0.05
GSC-Lalor-MD041 0.00 0.40 0.01 0.44 0.15
GSC-Lalor-MD099 0.00 0.37 0.09 0.46 0.08
GSC-Lalor-MD110 0.00 0.80 0.00 0.08 0.11
GSC-Lalor-MD160 0.00 0.39 0.00 0.50 0.11
GSC-Lalor-MD165 0.00 0.34 0.00 0.48 0.18
GSC-Lalor-MD218 0.00 0.58 0.00 0.40 0.01

Mean 0.02 0.47 0.04 0.37 0.10

Table 8. Seismic rock properties used for synthetic modeling.

Amphibolite Facies Greenschist Facies

Unit Mineral % ρ
(g/cm3)

Vp
(km/s)

Ω

(kg·m−2·s−1

× 10−6)
Mineral % ρ

(g/cm3)
Vp

(km/s)

Ω

(kg·m−2·s−1

× 10−6)

Conduit

Crd 28 2.65 8.71 23.1
Grt 3 4.20 8.55 35.9 Ep 4 3.40 7.43 25.3
Am 27 2.95 6.95 20.5 Chl 47 3.05 6.01 18.3
Bt 9 3.15 5.26 16.6 Ser 10 2.81 6.30 17.7
An 3 2.73 7.25 19.8 Alb 2 2.63 6.30 16.6
Qtz 30 2.65 6.05 16.0 Qtz 37 2.65 6.05 16.0
Py 1 5.04 8.12 40.9 Py 1 5.04 8.12 40.9

Mixture
modelled 2.88 6.87 19.8 Mixture

modelled 2.90 6.01 17.4

Basalt 3.00 6.60 19.8 2.90 6.20 18.0

Rhyolite 2.80 6.10 17.1 2.75 5.90 16.2

Ore 4.20 6.50 27.3 4.20 6.50 27.3

Table 9. Seismic reflection coefficients R (R = (Ω2 − Ω1)/(Ω1 + Ω2) × 100%, where Ω1 and Ω2 are the
acoustic impedances of the rock materials in contact with each other) between the ore, conduit, and host
rocks and their differences for the acoustic finite difference models for the greenschist and amphibolite
facies scenarios.

Model Contact (Figure 9a) R Greenschist Facies (%) R Amphibolite Facies (%) Difference (%)

sulfide ore/basalt 21 16 −31
sulfide ore/rhyolite 26 23 −13

basalt/rhyolite 5 7 +40
conduit/basalt 2 0 -

conduit/rhyolite 4 7 +75

6. Seismic Interpretation

In 2013, the Geological Survey of Canada acquired a 3D seismic survey to characterize the
three-dimensional structure of the Lalor deposit and its host rock envelope. The 3D survey covers
an area of approximately 16 km2 (Figure 1) and includes 908 shot points and 2685 receiver stations.
The many shot points located northeast of the deposit provided sufficient ore zone illumination
from the down-dip direction to produce a high-quality image of the deposit and alteration zone.
Details on the acquisition, data processing, and initial interpretation of the 3D seismic data are found
in [4]. The seismic survey allowed the detection of the massive zinc-rich zones and identified strong
reflectivity in the altered footwall rocks at contacts between metamorphosed rocks with felsic and
mafic protoliths [4]. Figure 10 shows inline 1098 from the 3D seismic volume and a coincident section
from a 3D geological model, representing lithofacies derived from the Zr/Ti immobile element ratio.
Arrows A and B point to reflections occurring at contacts between felsic and mafic rocks/protoliths in
the least and most altered footwall rocks. Reflection B has higher amplitudes and is more continuous
than reflection A. Arrow C indicates a series of strong reflections downdip of the alteration zone in
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the geological model and represents a possible continuation of strong footwall alteration at depths.
At even greater depth, the strong reflections indicated with label D could be related to a structural
repeat of the same hydrothermal alteration conduit or a conduit-sulfide mount hosted in an underlying
lithostratigraphic interval. The abrupt termination updip of reflections D, almost directly beneath
the deposit, supports both interpretations. Alternatively, reflections D may result from lithological
variations. Following our interpretation, the areas indicated with arrow C and possibly arrow D, are
rocks characterized by intense hydrothermal alteration, with high economical potential. At Lalor,
examples of such potential are the disseminated gold-rich zones that, contrary to the massive sulfide
zones of this deposit, are not directly detected with seismic or other geophysical methods, because
these relatively narrow zones with low percentages of sulfides do not experience a sufficient change
in seismic rock properties to generate reflections. The disseminated zones are nevertheless found
in metamorphosed and altered footwall rocks, characterized with an enhanced seismic reflectivity,
originating from hydrothermally-altered rocks with a significant abundance of aluminum silicates
with high Vp (cordierite and garnet).
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7. Discussion

Four distinct processes control the variation in seismic rock properties throughout the geological
history of the Lalor VMS deposit, including (1) the protolith composition resulting from the extrusion
and deposition of volcanic and volcaniclastic rocks of different composition on the paleo seafloor,
(2) sulfide mineralization, (3) host rock alteration during the subsequent flow of hydrothermal fluids
through the ocean floor, and (4) metamorphic recrystallization after the emplacement and subsequent
tectonic burial of the VMS deposit within an orogenic belt. All four processes (in addition to weathering
and unloading when the deposit is exhumed to the surface) will affect seismic rock properties, although
the first two appear to be dominant, which explains why they are dominantly reported in the hard
rock seismic exploration literature [1–3]. The additional effects on seismic rock properties of the
latter two processes are much more challenging to assess. Firstly, many more silicate species, many
of which are also found in their unaltered equivalents, occur in association with VMS deposits, in
comparison to the few sulfide species that define the ore zones. Secondly, many of the silicates
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involved have much stronger anisotropies in velocity and will likely react to other species as a
result of subsequent metamorphic recrystallization. Nonetheless, the SEM-EDS analysis, although
applied on a limited number of samples (n = 11), was effective for interpreting the relationships
between the mineral abundance and measured seismic rock properties of hydrothermally-altered
rocks, allowing the corroboration of the empirical relationships inferred from the much larger wireline
seismic property datasets.

SEM-EDS analysis outperforms traditional point counting under the microscope for a number
of reasons: (1) Contrary to point counts, the entire thin section is scanned, leading to more robust
abundance estimates; (2) the visual discrimination of certain minerals can be difficult or unpractical
based on optical microscopic diagnostic criteria, such as the discrimination between cordierite
and quartz, and between different feldspars and amphiboles; (3) SEM-EDS, in addition to mineral
identification, also provides the chemical composition of the classified minerals, which potentially
allows for a more precise assessment of the mineral seismic properties for mineral compositional series,
such as feldspars and amphiboles. Given the long scanning times, exceeding on average 6 hours
and an additional 1.5 h for classification per sample, the method is, however, time-consuming and
therefore costly.

Alternative approaches based on analyzing the relationships between seismic rock property
measurements and geochemical proxies for alteration, as previously attempted in [39], are limited
in scope, because, as shown in the forward modeling study, similar ranges in these proxies could
(depending on the metamorphic grade) show large variations in mineral seismic properties. Therefore,
estimates of mineral abundance are essential to progress the understanding of the seismic response of
hydrothermal alteration. A solution that would bypass laborious mineralogical analysis is to obtain
theoretical mineral abundance estimates though normative mineral computation, but these methods
are fraught with modeling limitations themselves, as they either lead to non-unique solutions or, when
additional constraints (such as pressure and temperature) are involved, yield mineral species that
significantly deviate from those observed in practice. Future studies may explore upscaling approaches
where the results of the SEM-EDS analyses are used to define the endmembers in user-defined
normative mineral computations, such as proposed in [40].

Several factors contribute to the uncertainty of the seismic property mixture models, including
(1) the variability in the mineralogical composition between the mini-core and thin section slabs
cut at different locations from a 20–30 cm piece of drill core; (2) errors in the SEM-EDS analyses,
including violations of the isotropic assumption of random sampling design that justify the use of
areal percentages in estimating volumetric percentages of foliated rocks; (3) errors in the seismic rock
property measurements; (4) violation of the assumptions of homogeneous and isotropic mixtures
used to compute the Voigt and Reuss bounds related to anisotropy in mineral seismic velocities; and
(5) uncertainty in the mineral seismic properties, with respect to the specific chemical composition
of the mineral analyzed in the sample. The good fit obtained for density suggests that the effects of
factors 1 and 2 (and 3 for density) are relatively small, although the two outliers (Figure 6) could be
explained by these factors. Errors in the Vp measurements are also not a dominant factor, as these
measurements are generally considered accurate to 0.5–1% [5]. The fact that a significant number of
P-wave velocity measurements (4 out of 8, excluding outliers in density modeling, see inset Figure 7)
fall outside the theoretical Voigt and Reuss bounds suggests that factors 4 and 5 likely play a dominant
role and violate the assumptions of homogeneous and isotropic mineral components. Indeed, many
of the samples show preferred orientation of mineral constituents, such as amphibole and biotite,
as they are aligned along the gneissosity, pointing to large anisotropies in the rock fabric (Figure 5).
These anisotropic effects on seismic rock properties have not been assessed in our study. They can
be estimated by measuring seismic velocities in three mutually orthogonal directions (see [41] for an
example of the Anabel shear zone of the Flin Flon greenstone belt, about 100 km to the west of the Lalor
VMS deposit). Variations in the concentrations of Fe and Mg in minerals such as cordierite, chlorite,
garnet, and particularly amphibole, significantly impact their corresponding seismic properties. Hence,
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mineral seismic property measurements over a range of chemical compositions, which are currently not
available in the literature, may help in reducing the uncertainty in seismic property models dominated
by variations in silicate minerals.

8. Conclusions

The effects of hydrothermal alteration on the density, P-wave velocity, and seismic response of
the Lalor VMS deposit have been investigated using lithofacies log descriptions, γ-γ density, P-wave
velocity logs, geochemical data, and estimates of mineral abundances from SEM-EDS analyses of drill
core samples. Our findings are summarized as follows:

1. Variations in host rock composition and massive sulfide ore are the main controlling factors of
acoustic impedance contrasts, resulting in high-amplitude reflections in the Lalor 3D seismic data,
regardless if rocks are hydrothermally-altered or not.

2. Metamorphism at amphibolite facies of hydrothermally altered intermediate and mafic
protoliths induces a superposed secondary effect on seismic rock properties, in which P-wave
velocity increases with the intensity of alteration, whereas density remains nearly constant or
slightly decreases.

3. In combination, density and P-wave velocity mark a steep, low-density trend towards
Vp = 8.71 km/s and ρ = 2.65 g/cm3, corresponding to cordierite, which has a unique low
density, high P-wave velocity signature in comparison to other silicate minerals. Cordierite, as
well as other aluminum silicates, such as garnet, kyanite, sillimanite, and staurolite in volcanic
protoliths, are diagnostic for hydrothermally-altered rocks that have been metamorphosed in the
middle to higher amphibolite facies.

4. The low-density, high-velocity trend observed in the wireline log data is corroborated by the
SEM-EDS analysis of the thin sections, which show that cordierite, with its anomalous high bulk
modulus over density ratio, is by far the most abundant high-velocity mineral.

5. Seismic synthetics obtained by acoustic finite-difference modeling experiments for a VMS
model with a amphibolite facies metamorphic overprint, show enhanced seismic reflectivity at
conduit-felsic host rock contacts in comparison to seismic synthetics obtained from the same
model with a greenschist facies metamorphic overprint.

6. The enhanced seismic signature caused by hydrothermal alteration can be recognized in the Lalor
seismic data, demonstrating the potential of seismic surveys in its detection.
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Appendix A

The co-registration of geochemical analyses and the lithofacies classifications of drill core samples
with P-wave velocity and γ-γ density log samples was accomplished by matching their corresponding
Microsoft Access® database records on drill hole collar identifier and sample depth using a threshold
distance criterion of 30 cm. In standard query language (SQL), this query was defined as follows:

SELECT WirelineLogs.HOLEID, WirelineLogs.Depth, GeochemLithofacies.*, WirelineLogs.
Density, WirelineLogs.P_Wave_Velocity

FROM GeochemLithofacies INNER JOIN WirelineLogs ON GeochemLithofacies.HoleID =

WirelineLogs.HOLEID
WHERE(((Sqr(([WirelineLogs]![Depth]-[GeochemLithofacies]![Depth])ˆ2))<0.3));
With the following schemas for the tables WirelineLogs and GeochemLithofacies:

Table A1. Matched database fields of WirelineLogs and GeochemLithofacies tables.

WirelineLogs GeochemLithofacies

HOLEID HOLEID
Depth Depth

Density Zr/Ti
P-Wave_Velocity AI (Ishikawa index)

CCPI (Chlorite-carbonate-pyrite index
Lithofacies class

where * refers to a wildcard character used for the selection of all database fields.
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