
minerals

Article

Exploratory Analysis of Provenance Data Using R and
the Provenance Package

Pieter Vermeesch

University College London, Gower Street, London WC1E 6BT, UK; p.vermeesch@ucl.ac.uk

Received: 17 January 2019; Accepted: 15 March 2019; Published: 22 March 2019;
Corrected: 8 March 2023

����������
�������

Abstract: The provenance of siliclastic sediment may be traced using a wide variety of chemical,
mineralogical and isotopic proxies. These define three distinct data types: (1) compositional data
such as chemical concentrations; (2) point-counting data such as heavy mineral compositions; and
(3) distributional data such as zircon U-Pb age spectra. Each of these three data types requires separate
statistical treatment. Central to any such treatment is the ability to quantify the ‘dissimilarity’ between
two samples. For compositional data, this is best done using a logratio distance. Point-counting
data may be compared using the chi-square distance, which deals better with missing components
(zero values) than the logratio distance does. Finally, distributional data can be compared using the
Kolmogorov–Smirnov and related statistics. For small datasets using a single provenance proxy,
data interpretation can sometimes be done by visual inspection of ternary diagrams or age spectra.
However, this no longer works for larger and more complex datasets. This paper reviews a number
of multivariate ordination techniques to aid the interpretation of such studies. Multidimensional
Scaling (MDS) is a generally applicable method that displays the salient dissimilarities and differences
between multiple samples as a configuration of points in which similar samples plot close together
and dissimilar samples plot far apart. For compositional data, classical MDS analysis of logratio data
is shown to be equivalent to Principal Component Analysis (PCA). The resulting MDS configurations
can be augmented with compositional information as biplots. For point-counting data, classical MDS
analysis of chi-square distances is shown to be equivalent to Correspondence Analysis (CA). This
technique also produces biplots. Thus, MDS provides a common platform to visualise and interpret
all types of provenance data. Generalising the method to three-way dissimilarity tables provides
an opportunity to combine several datasets together and thereby facilitate the interpretation of ‘Big
Data’. This paper presents a set of tutorials using the statistical programming language R. It illustrates
the theoretical underpinnings of compositional data analysis, PCA, MDS and other concepts using
toy examples, before applying these methods to real datasets with the provenance package.

Keywords: sediment; provenance; statistics; zircon; heavy minerals; point counting; petrography

1. Introduction

At its most basic level, sedimentary provenance analysis identifies the mineralogical, chemical or
isotopic composition of individual grains, or assemblages of multiple grains in siliclastic sediment.
These properties can then be used to group samples of similar affinity, and thereby trace the flow of
sediment through a sediment routing system, e.g., [1–5]. Different levels of statistical complexity arise
when multiple samples are compared to each other, or when multiple provenance proxies are applied
to multiple samples.

Using a number of short tutorials, this paper will introduce several simple but effective exploratory
data analysis techniques that can help to make geological sense of ‘Big Data’ in a sedimentary
provenance context. The term ‘exploratory’ means that these techniques allow the user to explore
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the data independent of any prior knowledge about the geological setting [6–9]. It groups a number
of graphical methods to visualise the data and reveal patterns of similarity and differences between
samples and variables. This paper will not introduce methods such as discriminant analysis that
formally assign samples to pre-defined provenance areas or petrotectonic settings [10,11].

These notes do by no means claim to give a comprehensive overview of exploratory data analysis.
The selection of methods presented herein is heavily biased towards techniques that are implemented
in a software package for (sedimentary) geology that was created by Vermeesch et al. [12].

provenance is available free of charge at the Comprehensive R Archive Network (CRAN, https:
//cran.r-project.org/package=provenance), on GitHub (http://github.com/pvermees/provenance),
or via http://provenance.london-geochron.com. The package is written in the statistical programming
language R, which is available for Windows, Mac OS-X and Linux/Unix. The easiest way to install
the latest stable version of the package is to first install R from http://r-project.org and then type the
following code at the command prompt (i.e., the ‘>’):

> install.packages("provenance")

Once installed, the package can be loaded by typing:

> library(provenance)

There are two ways to use provenance. The first of these is through a query-based user interface.
To access this interface, type:

> provenance()

The main advantage of the query-based user interface is that it does not require any knowledge
of R. Its main disadvantage is the relative lack of flexibility and the difficulty to automate complex
and/or repetitive tasks. The second way to use provenance is via the R language itself. This is the
quicker and more flexible option, whose only downside is a steeper learning curve compared to the
query-based interface. This tutorial will help the reader to climb this learning curve whilst explaining
the theoretical underpinnings of the methods that are implemented in the package.

This text assumes that the reader has a basic understanding of the R programming language,
although a short tutorial is provided in the Appendix A for readers who lack such prior knowledge.
The paper also assumes that the reader has some basic statistical knowledge. More specifically, (s)he is
expected to be familiar with the normal distribution, and understand the meaning of the arithmetic
mean, standard deviation and confidence intervals. The normal distribution underpins much of
‘conventional’ statistics, but we will see that it rarely applies to provenance data. This, in fact, is the
main take-home message of this paper.

There exist three fundamental types of provenance data:

1. Chemical data such as major and trace element concentrations are known as compositional
data. Sections 2 and 3 show that the statistical analysis of this class of data is fraught with
difficulties. Fortunately, these are easily overcome by means of ‘Aitchison’s logratio transformation’.
This transformation is a prerequisite to further statistical treatment, including Principal Component
Analysis and compositional biplots of multi-sample datasets (Sections 2 and 3).

2. Categorical data such as bulk petrography and heavy mineral compositions are known
as point-counting data. These are closely related to, but are fundamentally different from,
compositional data. Compositional data consist of strictly positive real numbers that are subject
to a constant-sum constraint and whose analytical precision can generally be ignored. In contrast,
point-counting data contain integer values that may be greater than or equal to zero, and whose
multinomial uncertainty is significant compared to the underlying compositional dispersion.

https://cran.r-project.org/package=provenance
https://cran.r-project.org/package=provenance
http://github.com/pvermees/provenance
http://provenance.london-geochron.com
http://r-project.org
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Section 4 shows that both of these differences can be captured by a combination of logistic normal
and multinomial statistics.

3. Detrital age spectra form a third class of data that will be referred to as distributional data.
Sections 5 and 7 introduce kernel density estimation, the Kolmogorov–Smirnov statistic, and
multidimensional scaling as ways to visualise, compare, and interpret distributional data.

Finally, Section 11 will consider the case where multiple compositional, point-counting and/or
distributional datasets are combined. Procrustes analysis and 3-way multidimensional scaling are
statistical techniques that aim to extract geologically meaningful trends from such ‘Big Data’ [13].

2. Ratio Data

Summary: This tutorial investigates the ratios of two sets of random numbers. It shows that the arithmetic
mean and confidence intervals of these synthetic data yield nonsensical results. These problems are solved by a
logarithmic transformation. This simple example has important implications because ratio data are common in
sedimentary provenance analysis, and are closely related to compositional data, which are introduced in Section 3.

Many statistical operations assume normality. This includes averaging, the construction of
confidence intervals, regression, etc. Although Gaussian distributions are common, it would be
unwise to assume normality for all datasets. This paper makes the point that, more often than not,
the normality assumption is invalid in the context of sedimentary provenance analysis. Ignoring this
non-normality can lead to counter-intuitive and plainly wrong results.

To illustrate this point, we will now consider the simple case of ratio data, which are quite common
in the Earth Sciences. Take, for example, the ratio of apatite to tourmaline in heavy mineral analysis,
which has been used to indicate the duration of transport and storage prior to deposition [14]. In this
part of the tutorial, we will investigate the statistics of ratio data using a synthetic example.

1. Create two vectors A and B, each containing 100 random numbers between 0 and 1:

ns <- 100
A <- runif(ns)
B <- runif(ns)

Intuitively, given that A/B = 1/(B/A) and B/A = 1/(A/B), we would expect the same to be
true for their means (A/B) and (B/A). However, when we define two new variables for the
(inverse) of the (reciprocal) mean ratios:

AB.mean <- mean(A/B)
inv.BA.mean <- 1/mean(B/A)

then we find that AB.mean 6=inv.BA.mean. So (A/B) 6= 1/(B/A) and (B/A) 6= 1/(A/B)! This is
a counterintuitive and clearly wrong result.

2. Calculate the standard deviation of A/B and multiply this by two to obtain a ‘2-sigma’ confidence
interval for the data:

AB.sd <- sd(A/B)
LL <- AB.mean - 2*AB.sd
UL <- AB.mean + 2*AB.sd

then we find that LL < 0, which is nonsensical since A and B are both strictly positive numbers
and their ratio is therefore not allowed to take negative values either. Herein lies the root of the
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problem. The sampling distribution of A/B is positively skewed, whereas the normal distribution
is symmetric with tails ranging from −∞ to +∞. Geologists frequently encounter strictly positive
numbers. Time, for example, is a strictly positive quantity, expressed by geochronologists as ‘years
before present’, where ‘present’ is equivalent to zero.

3. The problems caused by applying normal theory to strictly positive data can often be solved by
simply taking logarithms [15]. The transformed data are then free to take on any value, including
negative values, and this often allows normal theory to be applied with no problems. For example,
when we calculate the (geometric) mean after taking the logarithm of the ratio data:

logAB <- log(A/B)
logBA <- log(B/A)
AB.gmean <- exp(mean(logAB))
inv.BA.gmean <- 1/exp(mean(logBA))

then we find that AB.gmean = inv.BA.gmean, which is a far more sensible result.
4. Calculating the 2-sigma interval for the log-transformed data:

LL <- exp( mean(logAB) - 2*sd(logAB) )
UL <- exp( mean(logAB) + 2*sd(logAB) )

also produces strictly positive values, as expected.

3. Compositional Data

Summary: Compositional data such as chemical concentrations suffer from the same problems as the ratio data
of Section 2. The tutorial uses a geochemical dataset of Al2O3 – (CaO+Na2O) – K2O data to demonstrate that
the ‘conventional’ arithmetic mean and confidence intervals are inappropriate for data that can be constrained to
a constant sum. A logratio transformation solves these problems.

Like the ratios of the previous Section, the chemical compositions of rocks and minerals are also
expressed as strictly positive numbers. They, however, do not span the entire range of positive values,
but are restricted to a narrow subset of that space, ranging from 0 to 1 (if fractions are used) or from
0 to 100% (using percentage notation). The compositions are further restricted by a constant sum
constraint:

n

∑
i=1

Ci = 1

for an n-component system. Consider, for example, a three-component system {x, y, z}, where
x + y + z = 1. Such compositions can be plotted on ternary diagrams, which are very popular
in geology. Well-known examples are the Q-F-L diagram of sedimentary petrography [16], the
A-CN-K diagram in weathering studies [17], and the A-F-M, Q-A-P and Q-P-F diagrams of igneous
petrology [18]. The very fact that it is possible to plot a ternary diagram on a two-dimensional sheet of
paper already tells us that it really displays only two and not three dimensions worth of information.
Treating the ternary data space as a regular Euclidean space with Gaussian statistics leads to incorrect
results, as illustrated by the following example.

1. Read a compositional dataset containing the Al2O3 – (CaO+Na2O) – K2O composition of a number
of synthetic samples:

ACNK <- read.csv("ACNK.csv",row.names=1,header=TRUE,check.names=FALSE)
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where row.names=1 indicates that the sample names are contained in the first column; and the
header=TRUE and check.names=FALSE arguments indicate that the first column of the input table
contains the column headers, one of which contains a special character (‘+’).

2. Calculate the arithmetic mean composition and 95% confidence limits for each column of the
dataset:

mu <- colMeans(ACNK)
sig <- apply(ACNK,MARGIN=2,FUN="sd")

and construct the 2-sigma confidence confidence bounds:

LL <- mu - 2*sig
UL <- mu + 2*sig

3. In order to plot the compositional data on a ternary diagram, we will need to first load the
provenance package into memory:

library(provenance)

Now plot the Al2O3, (CaO + Na2O) and K2O compositions on a ternary diagram alongside the
arithmetic mean composition:

plot(ternary(ACNK),pch=20,labels=NA)
points(ternary(mu),pch=22,bg="blue")

where ternary(x) creates a ternary data ‘object’ from a variable x, and pch = 20 and pch = 22
produce filled circles and squares, respectively. Notice how the arithmetic mean plots outside the
data cloud, and therefore fails to represent the compositional dataset (Figure 1).

4. Add a 2-sigma confidence polygon to this figure using the ternary.polygon() function that is
provided in the auxiliary helper.R script (see Online Supplement):

source("helper.R")
ternary.polygon(LL,UL,col="blue")

Note that the polygon partly plots outside the ternary diagram, into physically impossible
negative data space. This nonsensical result is diagnostic of the dangers of applying ‘normal’
statistics to compositional data. It is similar to the negative limits for the ratio data in Section 2.

A comprehensive solution to the compositional data conundrum was only found in the 1980s,
by Scottish statistician John Aitchison [19]. It is closely related to the solution of the ratio averaging
problem discussed in the previous section. The trick is to map the n-dimensional composition to an
(n-1)-dimensional Euclidean space by means of a logratio transformation. For example, in the ternary
case, we can map the compositional variables x, y and z to two transformed variables v and w:

v = ln
( x

z

)
, w = ln

(y
z

)
(1)

After performing the statistical analysis of interest (e.g., calculating the mean or constructing a
95% confidence region) on the transformed data, the results can then be mapped back to compositional
space with the inverse logratio transformation. For the ternary case:

x =
ev

ev + ew + 1
, y =

ew

ev + ew + 1
, z =

1
ev + ew + 1

(2)
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This transformation is implemented in the provenance package. Let us use this feature to revisit
the K-CN-A dataset, and add the geometric mean and 95% confidence region to the ternary diagram
for comparison with the arithmetic mean and confidence polygon obtained before.

5. Compute the logratio mean composition and add it to the existing ternary diagram as a red
square:

mug <- exp(colMeans(log(ACNK)))
points(ternary(mug),pch=22,bg="red")

This red square falls right inside the data cloud, an altogether more satisfying result than the
arithmetic mean shown in blue (Figure 1).

6. To add a compositional confidence contour, we must re-read ACNK.csv into memory using the
read.compositional() function. This will tell the provenance package to treat the resulting
variable as compositional data in subsequent operations:

ACNK2 <- read.compositional("ACNK.csv",check.names=FALSE)

Adding the 95% confidence contour using provenance’s ternary.ellipse() function:

ternary.ellipse(ACNK,alpha=0.05)

creates a 95% confidence ellipse in logratio space, and maps this back to the ternary diagram.
This results in a ‘boomerang’-shaped contour that tightly hugs the compositional data whilst
staying inside the boundaries of the ternary diagram (Figure 1).

Al2O3

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

CaO+Na2O K2O

Figure 1. Graphical output of Section 3. Black circles mark 20 synthetic Al2O3, (CaO + Na2O) and K2O
compositions, drawn from a logistic normal distribution. The blue square marks the arithmetic mean,
which falls outside the data cloud. The blue polygon marks a 2-σ confidence polygon, which plots
outside the ternary diagram, in physically impossible negative space. The red square represents the
logratio mean, which firmly plots inside the data cloud. The red confidence envelope marks a 95%
confidence region calculated using Aitchison’s logratio approach. This confidence envelope neatly fits
inside the ternary diagram and tightly hugs the data.
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This Section (and Section 8) only touched the bare essentials of compositional data analysis.
Further information about this active field of research can be found in Pawlowsky-Glahn et al. [20].
For additional R-recipes for compositional data analysis using the compositions package, the reader
is referred to Van den Boogaart and Tolosana-Delgado [21,22].

4. Point-Counting Data

Summary: Point-counting data such as heavy mineral counts are underlain by compositional distributions.
However, they are not amenable to the logratio transformations introduced in Section 3 because they commonly
contain zero values. Averages and confidence intervals for this type of data require hybrid statistical models
combining compositional and multinomial aspects.

The mineralogical composition of silicilastic sediment can be determined by tallying the
occurrence of various minerals in a representative sample of (200–400, say) grains [23,24].
Such point-counting data are closely related to the compositional data that were discussed in the
previous section. However, there are some crucial differences between these two data classes [25].

Point-counting data are associated with significant (counting) uncertainties, which are ignored
by classical compositional data analysis. As a consequence, point-counting data often contain zero
values, which are incompatible with the log-ratio transformation defined in Equation (1). Although
‘rounding zeros’ also occur in compositional data, where they can be removed by ‘imputation’ methods
[26,27], these methods are ill-suited for point-counting datasets in which zeros are the rule rather than
the exception.

1. Download the auxiliary data file HM.csv from the Online Supplement. This file contains a heavy
mineral dataset from the Namib Sand Sea [13]. It consists of 16 rows (one for each sample) and
15 columns (one for each mineral). Read these data into memory and tell provenance to treat it as
point-counting data in all future operations:

HM <- read.counts("HM.csv")

Galbraith [28]’s radial plot is an effective way to visually assess the degree to which the random
counting uncertainties account for the observed scatter of binary point-counting data. Applying
this to the epidote/garnet-ratio of the heavy mineral data (Figure 2):

radialplot(HM,num="ep",den="gt")

Each circle on the resulting scatter plot represents a single sample in the HM dataset.
Its epidote/garnet-ratio can be obtained by projecting the circle onto the circular scale. Thus, low
and high ratios are found at negative and positive angles to the origin, respectively. The horizontal
distance of each point from the origin is proportional to the total number of counts in each sample
and, hence, to its precision. An (asymmetric) 95% confidence interval for the ep/gt-ratio of each
sample can be obtained by projecting both ends of a 2-sigma confidence bar onto the circular scale.

Suppose that the data are underlain by a single true population and random counting uncertainties
are the sole source of scatter. Let θ be the true but unknown proportion of the binary subpopulation
that consists of the first mineral (epidote, say). Then (1− θ) is the fraction of grains that belong to the
second mineral (garnet). Further suppose that we have counted a representative sample of N grains
from this population. Then the probability that this sample contains n grains of the first mineral and
m = N − n grains of the second mineral follows a binomial distribution:

p(n) =
(

n + m
n

)
θn(1− θ)m (3)
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If multiple samples in a dataset are indeed underlain by the same fraction θ, then approximately
95% of the samples should fit within a horizontal band of two standard errors drawn on either side
of the origin. In this case, θ can be estimated by pooling all the counts together and computing the
proportion of the first mineral as a fraction of the total number of grains counted [25].

However, the ep/gt-ratios in HM scatter significantly beyond the 2-sigma band (Figure 2i). The data
are therefore said to be overdispersed with respect to the counting uncertainties. This indicates the
presence of true geological dispersion in the compositions that underly the point-counting data.
The dispersion can be estimated by a random effects model with two parameters:

β ≡ ln
(

θ

1− θ

)
≈ N (µ, σ2) (4)

where β is a new variable that follows a normal distribution with mean µ and standard deviation σ,
both of which have geological significance.

The ‘central ratio’ is given by exp[µ̂] where µ̂ is the maximum likelihood estimate for µ.
This estimates the geometric mean (ep/gt-) ratio of the true underlying composition. The ‘dispersion’
(σ̂) estimates the geological scatter [25,29]. In the case of our heavy mineral dataset, the epidote-garnet
subcomposition is 75% dispersed. This means that the coefficient of variation (geometric standard
deviation divided by geometric mean) of the true epidote/garnet-ratios is approximately 0.75.

2. The continuous mixtures from the previous section can be generalised from two to three or more
dimensions. The following code snippet uses it to construct a 95% confidence contour for the
ternary subcomposition of garnet, epidote and zircon (Figure 2ii). Note that this dataset contains
four zero values, which would have rendered the logratio approach of Figure 1 unusable.

tern <- ternary(HM,x="gt",y="ep",z="zr")
plot(tern,pch=1,labels=NA)
ternary.ellipse(tern,alpha=0.05)

3. For datasets comprising more than three variables, the central composition can be simply obtained
as follows:

> central(HM)

This produces a matrix with the proportions of each component; its standard error; the dispersion
of the binary subcomposition formed by the component and the amalgamation of all remaining
components; and the outcome of a chi-square test for homogeneity.
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Figure 2. (i) Radial plot of the epidote/garnet-ratios of 16 samples of Namibian desert sand. These data
are overdispersed with respect to the point-counting uncertainties, indicating 74% of geological scatter
in the underlying compositional data. (ii) Ternary diagram of garnet, epidote and zircon, with a 95%
confidence envelope for the underlying population, using a ternary generalisation of the random
effects model. Note that four of the samples contain zero zircon counts. However, this does not pose a
problem for the random effects model, unlike the logratio-procedure used for Figure 1.

5. Distributional Data

Summary: This Section investigates a 16-sample, 1547-grain dataset of detrital zircon U-Pb ages from Namibia.
It uses Kernel Density Estimation and Cumulative Age Distributions to visualise this dataset, and introduces
the Kolmogorov–Smirnov statistic as a means of quantifying the dissimilarity between samples.

Compositional data such as the chemical concentrations of Sections 3 and 8 are characterised by the
relative proportions of a number of discrete categories. A second class of provenance proxies is based on
the sampling distribution of continuous variables such as zircon U-Pb ages [30,31]. These distributional
data do not fit in the statistical framework of the (logistic) normal distribution.

1. Download auxiliary data file DZ.csv from the Online Supplement. This file contains a detrital
zircon U-Pb dataset from Namibia. It consists of 16 columns—one for each sample—each
containing the single grain U-Pb ages of their respective sample. Let us load this file into memory
using provenance’s read.distributional() function:

DZ <- read.distributional("DZ.csv")

DZ now contains an object of class distributional containing the zircon U-Pb ages of 16
Namibian sand samples. To view the names of these samples:

> names(DZ)

2. One way to visualise the U-Pb age distributions is as Kernel Density Estimates. A KDE is
defined as:

KDEx(t) =
1
n

n

∑
i=1
K(t|xi, bw) (5)

where K is the ‘kernel’ and bw is the ‘bandwidth’ [32,33]. The kernel can be any unimodal and
symmetric shape (such as a box or a triangle), but is most often taken to be Gaussian (where xi is
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the mean and bw the standard deviation). The bandwidth can either be set manually, or selected
automatically based on the number of data points and the distance between them. provenance
implements the automatic bandwidth selection algorithm of Botev et al. [34] but a plethora of
alternatives are available in the statistics literature. To plot all the samples as KDEs:

kdes <- KDEs(DZ)
plot(kdes,ncol=2)

where ncol specifies the number of columns over which the KDEs are divided.
3. Alternatively, the Cumulative Age Distribution (CAD) is a second way to show the data [35].

A CAD is a step function that sets out the rank order of the dates against their numerical value:

CAD(t) =
n

∑
i=1

1(t < ti)/n (6)

where 1(∗) = 1 if ∗ is true and 1(∗) = 0 if ∗ is false. The main advantages of CADs over KDEs
are that (i) they do not require any smoothing (i.e., there is no ‘bandwidth’ to choose), and (ii)
they can superimpose multiple samples on the same plot. Plotting samples N1, N2 and N4 of the
Namib dataset:

plot(DZ,snames=c("N1","N2","N4"))

we can see that (1) the CADs of samples N1 and N2 plot close together with steepest sections at
500 Ma and 1000 Ma, reflecting the prominence of those age components; (2) sample N4 is quite
different from N1 and N2.

4. We can quantify this difference using the Kolmogorov–Smirnov (KS) statistic [36–38], which
represents the maximum vertical difference between two CADs:

> N124 <- subset(DZ,select=c("N1","N2","N4"))
> diss(N124)

This shows that the KS-statistic between N1 and N2 is KS(N1,N2) = 0.18, whereas KS(N1,N4) = 0.44,
and KS(N2,N4) = 0.35 (Figure 3). The KS statistic is a non-negative value that takes on values
between zero (perfect overlap between two distributions) and one (no overlap between two
distributions). It is symmetric because the KS statistic between any sample x and another sample y
equals that between y and x. For example, KS(N1,N2) = 0.18 = KS(N2,N1). Finally, the KS-statistic
obeys the triangle equality, which means that the dissimilarity between any two samples is
always smaller than or equal to the sum of the dissimilarities between those two samples and
a third. For example, KS(N1,N2) = 0.18 < KS(N1,N4) + KS(N2,N4) = 0.44 + 0.35 = 0.79. These
three characteristics qualify the KS statistics as a metric, which makes it particularly suitable for
Multidimensional Scaling (MDS) analysis (see Section 7). The KS statistic is just one of many
dissimilarity measures for distributional data. However, not all these alternatives to the KS
statistic fulfil the triangle inequality [38].
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Figure 3. Cumulative Age Distributions (CADs) of Namib desert sand samples N1, N2 and N4 with
indication of the Kolmogorov–Smirnov distances between them.

6. Principal Component Analysis (PCA)

Summary: Principal Component Analysis is an exploratory data analysis method that takes a high dimensional
dataset as input and produces a lower (typically two-) dimensional ‘projection’ as output. PCA is closely
related to Multidimensional Scaling (MDS), compositional PCA, and Correspondence Analysis (CA), which
are introduced in Sections 7–9. This tutorial introduces PCA using the simplest working example of three
two-dimensional points. Nearly identical examples will be used in Sections 7–9.

1. Consider the following bivariate (a and b) dataset of three (1, 2 and 3) samples:

X =


a b

1 −1 7
2 3 2
3 4 3

 (7)

Generating and plotting X in R:

X <- matrix(c(-1,3,4,7,2,3),nrow=3,ncol=2)
colnames(X) <- c("a","b")
plot(X)

yields a diagram in which two of the three data points plot close together while the third one
plots further away.

2. Imagine that you live in a one-dimensional world and cannot see the spatial distribution of the
three points represented by X. Principal Component Analysis (PCA) is a statistical technique
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invented by Pearson [39] to represent multi- (e.g., two-) dimensional data in a lower- (e.g., one-)
dimensional space whilst preserving the maximum amount of information (i.e., variance). This
can be achieved by decomposing X into four matrices (C, S, V and D):

X = 13,1 C + S V D

=

 1
1
1

 [ 2 4
]
+

 −1.15 0
0.58 −1
0.58 1

 [ 3.67 0
0 0.71

] [
0.71 −0.71
0.71 0.71

]
(8)

where C is the centre (arithmetic mean) of the two data columns; S are the normalised scores; the
diagonals of V correspond to the standard deviations of the two principal components; and D
is a rotation matrix (the principal directions). S, V and D can be recombined to define two more
matrices:

P = S V =

 −4.24 0
2.12 −0.71
2.12 0.71

 , (9)

and L = V D =

[
2.6 −2.6
0.5 0.5

]
(10)

where P is a matrix of transformed coordinates (the principal components or scores) and L contains
the scaled eigenvectors or loadings. Figure 4i shows X as numbers on a scatterplot, C as a yellow
square, and 12,1C ± L as a cross. Thus, the first principal direction (running from the upper
left to the lower right) has been stretched by a factor of (3.67/0.71) = 5.2 with respect to the
second principal component, which runs perpendicular to it. The two principal components are
shown separately as Figure 4ii, and their relative contribution to the total variance of the data as
Figure 4iv. Figure 4 can be reproduced with the following R-code:

source("helper.R")
PCA2D(X)

3. Although the two-dimensional example is useful for illustrative purposes, the true value of PCA
obviously lies in higher dimensional situations. As a second example, let us consider one of
R’s built-in datasets. USArrests contains statistics (in arrests per 100,000 residents) for assault,
murder, and rape in each of the 50 US states in 1973. Also given is the percentage of the population
living in urban areas. Thus, USArrests is a four-column table that cannot readily be visualised
on a two-dimensional surface. Applying PCA yields four principal components, the first two of
which represent 62% and 25% of the total variance, respectively. Because the four columns of the
input data are expressed in different units (arrests per 100,000 or percentage), it is necessary to
scale the data to have unit variance before the analysis takes place:

pc <- prcomp(USArrests, scale=TRUE)
biplot(pc)

The resulting biplot shows that the loading vectors for Murder, Assault and Rape are all pointing
in approximately the same direction (dominating the first principal component), perpendicular to
UrbanPop (which dominates the second principal component). This tells us that crime and degree
of urbanisation are not correlated in the United States.
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Figure 4. (i)—Three samples (1, 2 and 3) of bivariate (a and b) data (X in Equation (7)). The yellow
square marks the arithmetic mean (C in Equation (8)), the cross marks the two principal directions (D
in Equation (8)) stretched by the diagonal elements (i.e., the standard deviations) of V (Equation (8));
(ii)—The projection of the data points on these two directions yields two principal components (P in
Equation (9)), representing a one-dimensional representation of the two-dimensional data; (iii)—A
biplot of both principal components along with the loadings of the two variables shown as arrows;
(iv)—The squared diagonal values of V (Equation (8)) indicate the relative amounts of variance encoded
by the two principal components.

7. Multidimensional Scaling

Summary: Multidimensional Scaling (MDS) is a less restrictive superset of PCA. This tutorial uses a
geographical example to demonstrate how MDS re-creates a map of Europe from a table of pairwise distances
between European cities. Applying the same algorithm to the synthetic toy-example of Section 6 yields exactly
the same output as PCA.

1. Multidimensional Scaling (MDS [40–43]) is a dimension-reducing technique that aims to extract
two- (or higher) dimensional ‘maps’ from tables of pairwise distances between objects. This
method is most easily illustrated with a geographical example. Consider, for example, the
eurodist dataset that is built into R, and which gives the road distances (in km) between 21 cities
in Europe (see ?eurodist for further details):

> eurodist

2. The MDS configuration can be obtained by R’s built-in cmdscale() function
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conf <- cmdscale(eurodist)

Set up an empty plot with a 1:1 aspect ratio, and then label the MDS configuration with the city
names:

plot(conf,type="n",asp=1)
text(conf,labels=labels(eurodist))

Note that the map may be turned ‘upside down’. This reflects the rotation invariance of MDS
configurations.

3. R’s cmdscale() function implements so-called ‘classical’ MDS, which aims to fit the actual
distances [42,43]. If these distances are Euclidean, then it can be shown that MDS is equivalent
to PCA [44–46]. To demonstrate this equivalence, let us apply MDS to the data in Equation (7).
First, run the first two lines of code from part 1 in Section 6. Calculating the Euclidean distances
between the three samples produces a dissimilarity matrix d. For example, the distance between
points 1 and 2 is

√
(−1− 3)2 + (7− 2)2 = 6.4. This value is stored in d[1,2]. In R:

d <- dist(X)

which produces:

d =


1 2 3

1 0 6.4 6.4
2 6.4 0 1.4
3 6.4 1.4 0

 (11)

4. Next, calculate the MDS configuration:

conf2 <- cmdscale(d)

Finally, plot the MDS configuration as a scatterplot of text labels:

plot(conf2,type="n")
text(conf2,labels=1:3)

which is identical to the PCA configuration of Figure 4iii apart from an arbitrary rotation or
reflection.

5. An alternative implementation of MDS loosens the Euclidean distance assumption by fitting
the relative distances between objects [40,41]. Let us apply this to the dataset of European city
distances using the isoMDS function of the ‘Modern Applied Statistics with S’ (MASS) package [47]:

library(MASS)

To compute and plot the non-metric MDS configuration:

conf3 <- isoMDS(eurodist)$points
plot(conf3,type="n",asp=1)
text(conf3,labels=labels(eurodist))
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where conf3 is a list with two items: stress, which expresses the goodness-of-fit of the MDS
configuration; and points, which contains the configuration. The ‘$’ operator is used to access
any of these items.

Non-metric MDS is a less-restrictive superset of classical MDS and, hence, PCA, which opens this
methodology up to non-Euclidean dissimilarity measures, such as the KS-distance introduced in
Section 5 [48].

8. PCA of Compositional Data

Summary: PCA can be applied to compositional data after logratio transformation. This tutorial first applies
such compositional PCA to a three sample, three variable dataset that is mathematically equivalent to the three
sample two variable toy example of Section 6. Then, it applies the same method to a real dataset of major element
compositions from Namibia. This is first done using basic R and then again (and more succinctly) using the
provenance package.

Consider the following trivariate (a, b and c) dataset of three (1, 2 and 3) compositions that are
constrained to a constant sum (ai + bi + ci = 100% for 1 ≤ i ≤ 3, Figure 5):

X =

a b c
1
2
3

0.034 99.88 0.091
69.45 25.55 5.01
72.44 26.65 0.92

 (12)

It would be wrong to apply conventional PCA to this dataset, because this would ignore the
constant sum constraint. As was discussed in Section 6, PCA begins by ‘centering’ the data via the
arithmetic mean. Section 3 showed that this yields incorrect results for compositional data. Although
the additive logratio transformation (alr) of Equation (1) solves the closure problem, it is not suitable for
PCA because it is not isometric. For example, the alr-distance between samples 2 and 3 is 1.74 if b is
used as a common denominator, but 2.46 if c is used as a common denominator.

The fact that distances are not unequivocally defined in alr-space spells trouble for PCA. Recall
the equivalence of PCA and classical MDS, which was discussed in Section 7. MDS is based on
dissimilarity matrices, so if distances are not well defined then neither are the MDS configuration and,
hence, the principal components. This issue can be solved by the centred logratio transformation (clr):

ui = ln
[

xi
gi

]
, vi = ln

[
yi
gi

]
, and wi = ln

[
zi
gi

]
(13)

where gi is the geometric mean of the ith sample:

gi = exp
[

ln[xi]+ ln[yi]+ ln[zi]

3

]
Applying the clr-transformation to the data of Equation (12) yields a new trivariate dataset:

Xc =

ln(a/g) ln(b/g) ln(c/g)
1
2
3

−3 5 −2
1.21 0.21 −1.42
1.79 0.79 −2.58

 (14)

where g stands for the geometric mean of each row. Note that each of the rows of Xc adds up to zero.
Thanks to the symmetry of the clr-coordinates, the distances between the rows (which are also known
as Aitchison distances) are well defined. Subjecting Equation (14) to the same matrix decomposition as
Equation (8) yields:
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Xc =

1
1
1

 [0 2 −2
]
+

−1.15 0 0
0.58 −1 0
0.58 1 0


3.67 0 0

0 0.71 0
0 0 0


 0.71 −0.71 0

0.71 0.71 −0.82
−0.58 −0.58 −0.58

 (15)

so that

P =

−4.24 0 0
2.12 −0.71 0
2.12 0.71 0

 and L =

2.59 −2.59 0
0.29 0.29 −0.58

0 0 0

 (16)

Note that, even though this yields three principal components instead two, the variance of the
third component in matrix V is zero. Therefore, all the information is contained in the first two
components. Furthermore, note that the first two principal components of the compositional dataset
are identical to those of the PCA example shown in Section 6 (Equation (9)). This is, of course,
intentional.

1. The following script applies compositional PCA to a dataset of major element compositions from
Namibia (see Online Supplement) using base R:

# load the major element composition of Namib sand:
Major <- read.csv(file="Major.csv",

header=TRUE,row.names=1)
# apply the centred logratio transformation:
cMajor <- log(Major) -

rowMeans(log(Major)) %*% matrix(1,1,ncol(Major))
# perform PCA of the logratio transformed data:
pc <- prcomp(cMajor)
# plot the results of the PCA analysis:
biplot(pc)

2. Alternatively, we can also do this more easily in provenance:

library(provenance)
# tell R that Major.csv contains compositional data:
Major.comp <- read.compositional("Major.csv")
# perform the principal component analysis:
pc.comp <- PCA(Major.comp)
# create the biplot:
plot(pc.comp)

where the read.compositional function reads the .csv file into an object of class compositional,
thus ensuring that logratio statistics are used in all provenance functions (such as PCA) that accept
compositional data as input. Also note that the provenance package overloads the plot function
to generate a compositional biplot when applied to the output of the PCA function.
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Figure 5. (i)—the compositional dataset of Equation (14) shown on a ternary diagram; (ii)—principal
component biplot of the same data after centred logratio (clr) transformation.

9. Correspondence Analysis

Summary: Point-counting data can be analysed by MDS using the Chi-square distance. Correspondence
Analysis (CA) yields identical results whilst producing biplots akin to those obtained by PCA. This tutorial first
uses a simple three sample, three variable toy example that is (almost) identical to those used in Sections 6–8,
before applying CA to a real dataset of heavy mineral counts from Namibia.

Consider the following three sets of trivariate point-counting data:

X =


a b c

1 0 100 0
2 38 13 1
3 108 38 0

 (17)

This dataset intentionally looks similar on a ternary diagram to the compositional dataset of
Section 3. The only difference is the presence of zeros, which preclude the use of logratio statistics.
This problem can be solved by replacing the zero values with small numbers, but this only works
when their number is small [26,27]. Correspondence Analysis (CA) is an alternative approach that
does not require such ‘imputation’.

CA is a dimension reduction technique that is similar in many ways to PCA [25,49]. CA, like PCA,
is a special case of MDS. Whereas ordinary PCA uses the Euclidean distance, and compositional data
can be compared using the Aitchison distance, point-counting data can be compared by means of a
chi-square distance:

dij =

√√√√ K

∑
k=1

X··
X·k

(
Xik
Xi·
−

Xjk

Xj·

)2

(18)

where X·k = ∑m
i=1 Xik, Xi· = ∑K

k=1 Xik and X·· = ∑m
i=1 ∑K

k=1 Xik. Applying this formula to the data of
Equation (17) produces the following dissimilarity matrix:


1 2 3

1 0 1.5 1.5
2 1.5 0 0.33
3 1.5 0.33 0

 (19)
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Note that, although these values are different than those in Equation (11), the ratios between
them are (approximately) the same. Specifically, d1,2/d1,3 = 1.5/1.5 = 1 for Equation (19) and
d1,2/d1,3 = 6.4/6.4 = 1 for Equation (11); or d1,2/d2,3 = 1.5/0.33 = 4.5 for Equation 19) and d1,2/d2,3 =

6.4/1.4 = 4.5 for Equation (11). Therefore, when we subject our point-counting data to an MDS analysis
using the chi-square distance, the resulting configuration appears nearly identical to the example of
Section 7.

The following script applies CA to the heavy mineral composition of Namib desert sand. It loads a
table called HM.csv that contains point counts for 16 samples and 15 minerals. To reduce the dominance
of the least abundant components, the code extracts the most abundant minerals (epidote, garnet,
amphibole and clinopyroxene) from the datasets and amalgamates the ultra-stable minerals (zircon,
tourmaline and ru- tile), which have similar petrological significance.

library(provenance)
# tell R that HM.csv contains point-counting data:
dat <- read.counts("HM.csv")
# select and amalgamate the components of interest:
HM <- amalgamate(dat,ztr=c("zr","tm","rt"),ep="ep",

gt="gt",amp="amp",cpx="cpx")
# perform the correspondence analysis:
config <- CA(HM)
# plot the results as a biplot:
plot(config)

10. MDS Analysis of Distributional Data

Summary: This brief tutorial applies MDS to the detrital zircon U-Pb dataset from Namibia, using the
Kolmogorov–Smirnov statistic as a dissimilarity measure.

Part 5 in Section 7 introduced non-metric MDS as a less-restrictive superset of classical MDS and,
hence, PCA. This opens this methodology up to non-Euclidean dissimilarity measures, such as the
KS-distance introduced in part 4 in Section 5 [38,48].

library(provenance)
# read the detrital zircon dataset:
DZ <- read.distributional("DZ.csv")
# calculate and plot the (non-metric)
# MDS configuration using the KS distance:
DZ.X <- MDS(DZ)
plot(DZ.X)

In this case, the overloaded plot function produces not one but two graphics windows. The first
of these shows the MDS configuration, whereas the second shows the Shepard plot [40,41]. This is
a scatterplot that sets out the Euclidean distances between the samples measured on the MDS
configuration against the disparities, which are defined as:

δ[i, j] = f (KS[i, j]) (20)

where KS[i, j] is the KS-distance between the ith and jth sample and f is a monotonic transformation,
which is shown as a step-function. The Shepard plot allows the user to visually assess the
goodness-of-fit of the MDS configuration. This can be further quantified using the ‘stress’ parameter:
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S = ∑
i

∑
j
(d[i, j]− δ[i, j])2

/
∑

i
∑

j
(d[i, j])2 (21)

The lower the stress, the better the fit. For moderately sized datasets, stress values should be less
than 10% [40]. For larger datasets, a higher dimensional solution may be necessary, using the optional
parameter k of provenance’s MDS function [50].

11. ‘Big’ Data

Summary: The tutorial jointly analyses 16 Namibian samples using five different provenance proxies, including
all three data classes introduced in Sections 3–5. It introduces Procrustes Analysis and 3-way MDS as two
alternative ways to extract geologically meaningful information from these multivariate ‘big’ dataset.

It is increasingly common for provenance studies to combine compositional, point-counting or
distributional datasets together [4,13]. Linking together bulk sediment data, heavy mineral data and
single mineral data requires not only a sensible statistical approach, but also a full appraisal of the
impact of mineral fertility and heavy mineral concentration in eroded bedrock and derived clast
sediment [51–53]. Assuming that such an appraisal has been made, this Section introduces some
exploratory data analysis tools that can reveal meaningful structure in complex datasets.

1. The full Namib Sand Sea study that we have used as a test case for this tutorial comprises five
datasets (see Online Supplement):

(a) Major element concentrations (Major.csv, compositional data)
(b) Trace element concentrations (Trace.csv, compositional data)
(c) Bulk petrography (PT.csv, point-counting data)
(d) Heavy mineral compositions (HM.csv, point-counting data)
(e) Detrital zircon U-Pb data (DZ.csv, distributional data)

All these datasets can be visualised together in a single summary plot:

library(provenance)
# major elements:
Major <- read.compositional("Major.csv")
# trace elements:
Trace <- read.compositional("Trace.csv")
# petrography:
QFL <- read.counts("PT.csv",colmap=cm.colors)
# heavy minerals:
HM <- read.counts("HM.csv",colmap=cm.colors)
# zircon U-Pb dates:
DZ <- read.distributional("DZ.csv")
# generate the plot:
summaryplot(Major,Trace,QFL,HM,KDEs(DZ),ncol=2)

where Major, Trace, QFL and HM are shown as pie charts (the latter two with a different colour
map than the former), and DZ as KDEs. Adding DZ instead of KDEs(DZ) would plot the U-Pb age
distributions as histograms.

2. The entire Namib dataset comprises 16,125 measurements spanning five dimensions worth of
compositional, distributional and point-counting information. This complex dataset, which
may be rightfully described by the internet-era term of ‘Big Data’, is extremely difficult to
interpret by mere visual inspection of the pie charts and KDEs. Applying MDS/PCA to each
of the five individual datasets helps but presents the analyst with a multi-plot comparison



Minerals 2019, 9, 193 20 of 29

problem. provenance implements two methods to address this issue [13]. The first of these
is called ‘Procrustes Analysis’ [54]. Given a number of MDS configurations, this technique
uses a combination of transformations (translation, rotation, scaling and reflection) to extract a
‘consensus view’ for all the data considered together:

proc <- procrustes(Major,Trace,QFL,HM,DZ)
plot(proc)

3. Alternatively, ‘3-way MDS’ is an extension of ‘ordinary’ (2-way) MDS that accepts 3-dimensional
dissimilarity matrices as input. provenance includes the most common implementation of this
class of algorithms, which is known as ‘INdividual Difference SCALing’ or INDSCAL [55,56]:

scal <- indscal(Major,Trace,QFL,HM,DZ)
plot(scal)

This code produces two pieces of graphical output (Figure 6). The ‘group configuration’ represents
the consensus view of all provenance proxies considered together. This looks very similar to the
Procrustes configuration created by the previous code snippet. The second piece of graphical
information displays not the samples but the provenance proxies. It shows the weights that each
of the proxies attach to the horizontal and vertical axis of the group configuration.

For example, the heavy mineral compositions of the Namib desert sands can be (approximately)
described by stretching the group configuration vertically by a factor of 1.9, whilst shrinking
it horizontally by a factor of 0.4. In contrast, the configurations of the major and trace element
compositions for the same samples are obtained by shrinking the group configuration vertically by
a factor 0.8, and stretching it horizontally by a factor of 1.3. Thus, by combining these weights with
the group configuration yields five ‘private spaces’ that aim to fit each of the individual datasets.

INDSCAL group configurations are not rotation-invariant, in contrast with the 2-way MDS
configurations of Section 7. This gives geological meaning to the horizontal and vertical axes of
the plot. For example, samples N1 and N10 plot along a vertical line on the group configuration,
indicating that they have different heavy mineral compositions, but similar major and trace
element compositions. On the other hand, samples N4 and N8 plot along a horizontal line,
indicating that they have similar major and trace element compositions but contrasting heavy
mineral compositions.

Closer inspection of the weights reveals that the datasets obtained from fractions of specific
densities (HM, PT and DZ) attach stronger weights to the vertical axis, whereas those that are
determined on bulk sediment (Major and Trace) dominate the horizontal direction. Provenance
proxies that use bulk sediment are more sensitive to winnowing effects than those that are based
on density separates. This leads to the interpretation that the horizontal axis separates samples
that have been affected by different degrees of hydraulic sorting, whereas the vertical direction
separates samples that have different provenance.



Minerals 2019, 9, 193 21 of 29

X

Y

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

T8
T13

N13

N14

Group Configuration

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.8

1.0

1.2

1.4

1.6

1.8

X

Y

Major
Trace

PT

HM

DZ

Source Weights

Figure 6. Output of the 3-way MDS analysis of Namib desert sand. Left: the group configurations show
the salient similarities and differences between samples as a ‘map’ in which similar samples plot close
together and dissimilar samples plot far apart. Right: the weights for each of the five data sources show
that provenance proxies that are performed on the bulk sediment (e.g., the major and trace element
compositions) attach a stronger weight to the X- than the Y-axis. In contrast, proxies that are determined
on specific density fractions (e.g., zircons, heavy minerals, or quartz—feldspar—lithics), attach stronger
weight to the Y-axis. One geological interpretation of these dimensions is that samples that horizontally
separated from each other on the group configuration (e.g., N4 and N8) have experienced hydraulic
sorting, whereas samples that are vertically separated (e.g., N1 and N10) have a different provenance.

12. Summary, Conclusions and Outlook

The statistical toolbox implemented by the provenance package is neither comprehensive nor at
the cutting edge of exploratory data analysis. PCA, MDS, CA, and KDEs are tried and tested methods
that have been around for many decades. Nothing new is presented here and that is intentional. This
paper makes the point that even the most basic statistical parameters like the arithmetic mean and
standard deviation cannot be blindly applied to geological data [24,57,58]. Great care must be taken
when applying established techniques to sedimentary provenance data such as chemical compositions,
point-counts or U-Pb age distributions. Given the difficulty of using even the simplest of methods
correctly, geologists may want to think twice before exploring more complicated methods, or inventing
entirely new ones.

The set of tutorials presented in this paper did not cover all aspects of statistical provenance
analysis. Doing so would fill a book rather than a paper. Some additional topics for such a book could
include (1) supervised and unsupervised learning algorithms such as cluster analysis and discriminant
analysis, which can group samples into formal groups [10,11,59,60]; (2) the physical and chemical
processes that affect the composition of sediment from ‘source to sink’ [5,61–63]; and (3) quality checks
and corrections that must be made to ensure that the data reveal meaningful provenance trends rather
than sampling effects [51,52,64–66].

The paper introduced three distinct classes of provenance data. Compositional, point-counting
and distributional data each require different statistical treatment. Multi-sample collections of these
data can be visualised by Multidimensional Scaling, using different dissimilarity measures (Table 1).
Distributional data can be compared using the Kolmogorov–Smirnov statistic or related dissimilarity
measures, and plugged straight into an MDS algorithm for further inspection. Compositional
data such as chemical concentrations can be visualised by conventional ‘normal’ statistics after
logratio transformation. The Euclidean distance in logratio space is called the Aitchison distance in
compositional data space. Classical MDS using this distance is equivalent to Principal Component
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Analysis. Finally, point-counting data combine aspects of compositional data analysis with multinomial
sampling statistics. The Chi-square distance is the natural way to quantify the dissimilarity between
multiple point-counting samples. MDS analysis using the Chi-square distance is equivalent to
Correspondence Analysis, which is akin to PCA for categorical data.

However, there are some provenance proxies that do not easily fit into these three categories.
Varietal studies using the chemical composition of single grains of heavy minerals combine aspects of
compositional and distributional data [3,60]. Similarly, paired U-Pb ages and Hf-isotope compositions
in zircon [1] do not easily fit inside the distributional data class described above. Using the tools
provided by the provenance package, such data can be processed by procustes analysis or 3-way MDS
(Section 11). Thus, U-Pb and ε(Hf)-distributions, say, could be entered into the indscal function as
separate entities. However, by doing so, the single-grain link between the two datasets would be lost.
Alternative approaches may be pursued to address this issue, and new dissimilarity measures could
be developed for this hybrid data type. Novel approaches to matrix decomposition may be a way
forward in this direction [8,67,68].

Table 1. A summary of the three types of provenance data introduced in this
paper along with a suitable dissimilarity measure and its corresponding ordination
technique.

Data Type Dissimilarity Measure Ordination Technique

compositional Aitchison Principal Component Analysis
point-counting Chi-square Correspondence Analysis
distributional Kolmogorov–Smirnov Multidimensional Scaling

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/3/193/s1,
(a) Major element concentrations (Major.csv, compositional data). (b) Trace element concentrations (Trace.csv,
compositional data). (c) Bulk petrography (PT.csv, point-counting data). (d) Heavy mineral compositions (HM.csv,
point-counting data). (e) Detrital zircon U-Pb data (DZ.csv, distributional data). (f). ACNK.csv. (g). helper.R.
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Appendix A. An Introduction to R

R is an increasingly popular programming language for scientific data processing. It is similar
in scope and purpose to Matlab but is available free of charge on any operating system at http:
//r-project.org. A number of different graphical user interfaces (GUIs) are available for R, the most
popular of which are RGui, RStudio, RCommander and Tinn-R. For this tutorial, however, the simple
command line console suffices.

1. First, do some arithmetic:

> 1 + 1
> sqrt(2)
> exp(log(10))
> 13%%5

where the ‘>’ symbol marks the command prompt.
2. You can use the arrow to assign a value to a variable. Note that the arrow can point both ways:

http://www.mdpi.com/2075-163X/9/3/193/s1
http://r-project.org
http://r-project.org
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> foo <- 2
> 4 -> bar
> foo <- foo*bar

3. Create a sequence of values:

> myvec <- c(2,4,6,8)
> myvec*2

Query the third value of the vector:

> myvec[3]

Change the third value of the vector:

> myvec[3] <- 100

Change the second and the third value of the vector:

> myvec[c(2,3)] <- c(100,101)

Create a vector of 1, 2, 3, ..., 10:

> seq(from=1,to=10,by=1)

Equivalently:

> seq(1,10,1)
> seq(1,10)
> seq(to=10,by=1,from=1)
> seq(to=10)
> 1:10

Create a 10-element vector of twos:

> rep(2,10)

4. Create a 2 × 4 matrix of ones:

> mymat <- matrix(1,nrow=2,ncol=4)

Change the third value in the first column of mymat to 3:

> mymat[1,3] <- 3

Change the entire second column of mymat to 2:
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> mymat[,2] <- 2

The transpose of mymat:

> t(mymat)

Element-wise multiplication (*) vs. matrix multiplication (%*%):

> mymat * mymat
> mymat %*% t(mymat)

5. Lists are used to store more complex data objects:

> mylist <- list(v=myvec, m=mymat, nine=9)
> mylist$v

6. Plot the first against the second row of mymat:

> plot(mymat[1,],mymat[2,],type="p")

Draw lines between the points shown on the existing plot:

> lines(mymat[1,],mymat[2,])

Create a new plot with red lines but no points:

> plot(mymat[1,],mymat[2,],type="l",col="red")

Use a 1:1 aspect ratio for the X- and Y-axis:

> plot(mymat[1,],mymat[2,],type="l",col="red",asp=1)

7. Save the currently active plot as a vector-editable .pdf file:

> dev.copy2pdf(file="trigonometry.pdf")

8. To learn more about a function, type ‘help’ or ‘?’:

> help(c)
> ?plot

9. It is also possible to define one’s own functions:

> cube <- function(n){
> return(n^3)
> }

Using the newly created function:
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> cube(2)
> result <- cube(3)

10. Create some random (uniform) numbers:

> rand.num <- runif(100)
> hist(rand.num)

11. List all the variables in the current workspace:

> ls()

Remove all the variables in the current workspace:

> rm(list=ls())

To get and set the working directory:

> getwd()
> setwd("/path/to/a/valid/directory")

12. Collect the following commands in a file called ‘myscript.R’. Note that this text does not contain
any ‘>’-symbols because it is not entered at the command prompt but in a separate text editor:

# the "print" function is needed to show intermediate
# results when running commands from an .R file
print(pi)

This code can be run by going back to the command prompt (hence the ‘>’ in the next box) and
typing:

> source("myscript.R")

This should result in the number π being printed to the console. Note that everything that follows
the ‘#’-symbol was ignored by R.

13. Conditional statements. Add the following function to myscript.R:

toss <- function(){
if (runif(1)>0.5){

print("head")
} else {

print("tail")
}

}

Save and run at the command prompt:

> source("myscript.R")
> toss()
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14. Loops. Add the following function to myscript.R:

fibonnaci <- function(n){
if (n < 3) { stop("n must be at least 3") }
# seed the output vector with 0 and 1:
s <- c(0,1)
# loop through all numbers from 3 to n:
for (i in 3:n){

s[i] <- s[i-1] + s[i-2]
}
return(s)

}

Save and run at the command prompt to calculate the first 20 numbers in the Fibonnaci series:

> source("myscript.R")
> fibonnaci(20)

15. Arguably the greatest power of R is the availability of 10,000 packages that provide additional
functionality. For example, the compositions package implements a number of statistical tools
for compositional data analysis [21,22]. To install this package:

> install.packages("compositions")

Use the newly installed package to plot the built-in SkyeAFM dataset, which contains the
Al2O3—FeO—MgO compositions of 23 aphyric lavas from the isle of Skye.

library(compositions) # load the package into memory
dat <- data(SkyeAFM) # load the Skye lava dataset
AFMcomp <- acomp(dat) # enforce the constant sum constraint
plot(AFMcomp) # plot as a ternary diagram

Note that the plot() function has been overloaded for compositional data.
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