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Abstract: The ultimate mechanical properties, as characterized here by the ideal strengths of
Mg2SiO4 forsterite, have been calculated using first-principles calculations and generalized gradient
approximation under tensile and shear loading. The ideal tensile strengths (ITS) and ideal shear
strengths (ISS) are computed by applying homogeneous strain increments along high-symmetry
directions ([100], [010], and [001]) and low index shear plane ((100), (010), and (001)) of the orthorhombic
lattice. We show that the ultimate mechanical properties of forsterite are highly anisotropic, with ITS
ranging from 12.1 GPa along [010] to 29.3 GPa along [100], and ISS ranging from 5.6 GPa for simple
shear deformation along (100) to 11.5 GPa for shear along (010).
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1. Introduction

Olivine (Mg,Fe)2SiO4 is a mineral of prominent importance since it is a major component of the
diffuse interstellar medium and of protoplanetary disks around young stars [1]. Olivine dust in the
interstellar medium appears to be almost entirely amorphous, whereas the spectra of protoplanetary
disks also show evidence of crystallinity. In the solar system, olivine is found in comets [2], chondritic
and nonchondritic meteorites [3,4], and in the mantle of terrestrial planets. On Earth, olivine is the
main constituent of the upper mantle [5] and its transformation under pressure to wadsleyite and
ringwoodite is the main cause of the observed seismic discontinuities at 410 and 520 km depths. Olivine
glass is very difficult to obtain from the melt and requires extreme cooling rates [6]. The first report of
olivine glass in 1977 by [7] was related to shock experiments of a single crystal of San Carlos olivine.
A few years later, [8] reported evidence of fayalite olivine glass formed after heating in a diamond anvil
cell. In 1990, [9,10] presented evidence of amorphization of fayalite pressurized above 39 GPa and
35 GPa respectively. Occurrence of pressure induced amorphization of Mg-rich olivines was further
documented by [11–13]. Although the role of pressure was generally put forward as the cause for
amorphization, the influence of non-hydrostatic stresses was highlighted by [12,14]. Pressure-induced
amorphization is usually described as a kinetically preferred transformation resulting from frustration in
reaching the high-pressure equilibrium crystalline state. This transformation questions the mechanical
stability of crystalline solids.

Here, we propose a first investigation of the mechanical stability of olivine based on elasticity.
The elastic properties of solids do not just address their response to small strains. In pure hydrostatic
compression, a solid is not prone to failure, and elastic properties deviate significantly from a linear
response. The equation of state which describes the evolution of the volume in response to a hydrostatic
compression is a fundamental parameter for the minerals of the interior of the Earth. For any other
solicitation, the elastic response of solids is difficult to assess to large stresses since the presence of defects
leads to failure and plastic deformation. The recent advances in theoretical methods and computation
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make it possible to calculate the elastic behavior of solids submitted to homogeneous deformation at
large strains, until the point of instability (the ideal strength) is reached [15–18]. Ideal strength is thus
the critical stress above which a defect-free crystal reaches its mechanical instability and undergoes a
spontaneous structural transformation (to another phase possibly amorphous). The method consists
therefore in the computation of the crystal energy and stresses under the application of successive
deformation increments in order to access to the corresponding stress–strain curves. The instability
corresponds to the maximum of stress which also corresponds to an inflection point in the free energy
curve as the Cauchy stress is related to the derivative of the free energy as a function of strain [19].

In this study, we focus on the elastic properties and mechanical stability of pure, iron-free Mg2SiO4

forsterite. The ideal tensile strengths (ITS) and ideal shear strengths (ISS) are computed from a
first-principles method along high-symmetry directions [100], [010], and [001] and for homogenous
shear of (100), (010), and (001) planes (here given with respect to the Pbnm space group of forsterite).

2. Materials and Methods

In this work, the derivation of the anisotropic ideal strength is performed according to the
recent ADAIS (version 1.0.0, Beihang University, China) free open source software written by Zhang
and co-workers [20], which allows for an automatic implementation of homogenous deformation to
standard first-principles VASP calculations [21]. Thus, all simulations correspond to calculations based
on the density functional theory (DFT) using a plane wave basis set and the projector augmented wave
method (PAW) [22]. Exchange–correlation energy is accounted by employing the Perdew-Wang (PW91),
gradient-corrected functional (GGA) [23]. For all the calculations, plane-wave basis set expansion was
limited using a kinetic energy cutoff of 520 eV, known to ensure an adequately atomic force convergence
in forsterite [24]. Regarding the k-point sampling, throughout this study, we use a single grid of 6 × 4 ×
6 according to a Monkhorst and Pack scheme [25] corresponding to 18 k-points per forsterite unit cell.

As mentioned in the introduction, once a Mg2SiO4 unit cell has been fully relaxed, tensile or shear
tests are performed by applying incremental homogeneous strain, i.e., atomic layers of the crystal
are uniformly displaced along the tensile or shear direction (Figure 1). At each deformation state, a
relaxation of both the cell shape and the atomic positions is performed until all the components of
the stress tensor are brought to zero, except for one corresponding to the applied stress condition.
In practice, we verify that structural relaxation allows for residual stresses of the order of a few MPa at
the most.
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Figure 1. Illustration of the various loading conditions applied in this study (a) tensile deformation 78 
along [001] where εzz = ε, (b) simple shear [001](100) where εxz = ε/2 and  εzx = 0 , or (c) pure shear 79 
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Figure 1. Illustration of the various loading conditions applied in this study (a) tensile deformation
along [001] where εzz = ε, (b) simple shear [001](100) where εxz = ε/2 and εzx = 0 , or (c) pure shear
deformation in (001), where εxy = εyx = ε/2. The colored image represents a deformed state compared
with the undeformed, reference structure in grey. Mg is in orange, Si in blue, O in red.
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3. Results

3.1. Ground State Properties

Before calculating the ultimate mechanical properties of Mg2SiO4, we optimized the equilibrium
structure. A unit cell has been built and relaxed for the Pbnm configuration, giving rise to the
equilibrium lattice parameters a, b, and c. The results are displayed in Table 1, where they are compared
with available data (both theoretical and experimental). It is shown that the calculations predict the
correct Mg2SiO4 ground state structure.

Table 1. Crystallographic data for forsterite at 0 K and 0 GPa compared with calculated data.

a (Å) b (Å) c (Å) V (Å3)

This study 4.79 10.27 6.03 296.63
Calculated GGA [24] 4.79 10.28 6.02 296.43
Calculated GGA [26] 4.79 10.28 6.04 297.68
Calculated GGA [27] 4.71 10.15 5.96 284.92
Calculated LDA [28] 4.64 9.99 6.07 281.67

Experimental [29] 4.75 10.19 5.98 289.58

3.2. Ideal Strength in Tension and in Shear

From the optimized unit cell containing 28 atoms, the ideal strengths are determined from an
incremental application of strain of 0.005. Three tensile directions have been tested and for the shear
deformation, we investigated both simple and pure shear modes.

3.2.1. Tensile Tests

The evolutions of the total energy as a function of strain are reported in Figure 2a for tensile
experiments performed along [100], [010] and [001]. As expected, one observes first, for the three
tensile tests, a parabolic evolution corresponding to elastic energy storing which corresponds to the
initial linear portion of the stress–strain curves (Figure 2b). The elastic anisotropy of the structure is
readily visible from the slope of the stress–strain curves. Pulling along the [100] axis leads to the largest
Young’s modulus (Table 2). The same conclusion arises from the computation of the Poisson ratios.
Indeed, since during tensile tests, transverse directions are fully relaxed, we are able to determine the
corresponding Poisson ratios (summarized in Table 3) according to the variation of the transverse
lattice parameters. Except for the [100] tensile experiment, the computed Poisson ratio are close to 0.25,
i.e., in agreement with what can be deduced from Voigt–Reuss averaging. Thus, the [100] direction
exhibits a peculiar behavior in tension which may be related to the distorted hexagonal closed packing
of the oxygen sublattice as pointed out by [30].

For the three tests, we observe an inflection point on the energy curve which corresponds, by
convention, to the maximum (or ideal) tensile strength (ITS). With the corresponding stress–strain
curves shown in Figure 2b, one may notice the remarkable agreement between the Cauchy stress
derivation (solid line) obtained by derivation of the energy and the stress state (according to the
Hellmann–Feynman theorem) of the strained volume (symbols). Whatever the investigated pulling
directions, the instability in tension is reached for rather comparable strains (11–16%). However, the
magnitudes of the ideal stresses are strongly dependent on the crystallographic direction showing,
again, the anisotropy of the forsterite crystal structure. Pulled along the [100] axis, forsterite can
indeed sustain the highest stress, i.e., 29.3 GPa and 13% of strain, whereas the instability is reached
for a stress equal to 12.1 GPa, at a critical strain of 11% along [010] and for 15.9 GPa at 16% along the
[001] axis. The behavior just after the stability limit is also contrasted. For [100] tensile loading, stress
drops rapidly above the critical strain. For loading along [001], stress decreases progressively after the
maximum. The case of [010] loading attracts attention since after the critical strain, one observes a
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first softening stage followed by a strain stiffening which allows the structure to sustain the stress and
reach further strains.
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Table 2. Ideal stresses (and associated engineering strains) determined in this study under tensile, pure
and simple shear loading. For tensile and simple shear tests, we report also the Young’s modulus and
Poisson ratio. The normalized stresses are the ideal stresses divided by the elastic modulus (Young’s
modulus in tension and shear modulus in shear).

Tensile Tests [100] [010] [001]

ITS (GPa) 29.3 12.1 15.9
Corresponding strain (%) 13.0 11.5 16
Young’s modulus (GPa) 274.4 153.2 170.9

Normalized stress 0.10 0.08 0.09

Pure shear tests (100) (010) (001)

ISS (GPa) 5.6 11.8 8.7
Corresponding strain (%) 18.5 26.5 18.5

Simple shear tests [010](001) [001](010) [100](001) [001](100) [010](100) [100](010)

ISS (GPa) 6.2 5.3 13.4 11.2 9.0 8.5
Corresponding strain (%) 20 18 29.5 26 20 18

Shear modulus (GPa) 58.7
(i.e., C44)

58.7
(i.e., C44)

73.7
(i.e., C55)

73.7
(i.e., C55)

73.0
(i.e., C66)

73.0
(i.e., C66)

Normalized stress 0.10 0.09 0.18 0.15 0.12 0.11

Table 3. Poisson ratio determined in this study under tensile tests for strains below 5%.

Tensile Tests [100] [010] [001]

υ[100] - 0.13 0.14
υ[010] 0.23 - 0.29
υ[001] 0.20 0.24 -

3.2.2. Shear Tests

Nine ideal shear deformation tests have been performed within this study. Six experiments
correspond to simple shear and three to pure shear. The evolutions of the energy as a function of the
engineering strain are shown Figure 3, and the corresponding stress–strain curves are shown Figure 4.
The initial slopes of the stress–strain curves give the shear moduli Cii (with i = 4, 5, or 6 in Voigt
notations). In Figure 4, the results are presented in three groups, each corresponding to a pure shear
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deformation test associated with the two related simple shear experiments. The three groups naturally
emerge from Figure 3. A first set, involving [100](001), [001](100) simple shear deformation and pure
shear in (010), corresponds to the highest energy curves. On the opposite side, applying [010](001) or
[001](010) simple shear deformation or pure shear in (100) corresponds to the smallest energy increase.
In between, the last set of experiments corresponds to simple shear [100](010) and [010](100), and pure
shear in (001).
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Figure 4. Stress as a function of the engineering strain calculated using a unit cell of forsterite under
shear deformation for (a) simple shear along [100](001) and [001](100) and pure shear in (010), (b) simple
shear along [010](001) and [001](010) and pure shear in (100), and (c) simple shear along [100](010) and
[010](100) and pure shear in (001). Arrows in (b) mark the occurrence of Mg–O bonds breaking as
described in the discussion section.

The correspondence between the different configurations tested within each group appears clearly
on the stress–strain curves (Figure 4). Within each group, all curves superimpose within the elastic
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regime. According to the slopes of the stress–strain curves, we find C44 = 58.7 GPa, C55 = 73.7 GPa
and C66 = 73 GPa in agreement with the elastic properties of olivine found experimentally [31,32] or
numerically [26]. Moreover, in each group, the pure shear stress–strain curve lies in between the simple
shear stress–strain curves until the instability is reached. At the ISS, the stress differences between
simple or pure shear tests are within a few GPa. Critical strains and ISS are summarized in Table 1.

The largest ISS (Figure 4a) corresponds to the first group of experiments reported above, with
[100](001) and [001](100) simple shears and pure shear in (010) with ISS between 11.2 and 13.4 GPa.
For the other shear deformation experiments, the instability of the structure occurs at lower stress and
lower strain. The softest group (shown Figure 4b), corresponds to [010](001) and [001](010) simple
shear deformations, and pure shear in (100) with ISS between 5.3 and 6.2 GPa. It is worth noting that
this shear mode exhibits a more complex behavior with the instability preceded by an inflection in the
stress–strain curves, followed by significant strain stiffening.

4. Discussion and Conclusions

The main objective of this work is to investigate the mechanical response of forsterite to applied
strains until it becomes mechanically unstable. Before reaching this point, the crystal is strained in the
linear elastic regime and all energy–strain curves first exhibit a parabolic regime. This allows us to
determine elastic moduli which, with the calculated lattice parameters, validate our calculations.

The ITS, defined as the first maximum of the stress–strain curve, are 29.3, 12.1, and 15.9 GPa along
the [100], [010], and [001] directions respectively. With a 2.4 ratio between the extreme values, the ITS
illustrate the anisotropy of orthorhombic forsterite which follows quite well the elastic behavior since,
normalized by the Young’s modulus, all ITS values are of the order of 0.1 (Table 2). It is striking however,
that loading along different directions leads to contrasted behaviors at the instability. To understand
the origin of the differences of the stress–strain curves, we follow the evolution of the bond lengths as a
function of strain. The tensile direction which corresponds to the higher stiffness is [100]. The stress
drops abruptly after the maximum. Figure 5a shows how the Mg–O bond lengths evolve for the two
magnesium sites in forsterite, called Mg1 and Mg2. It appears that the stress maximum corresponds
to a divergence of the Mg2–O bond. The authors of [33] show that the strength of metallic bond in
oxides correlate with their lengths. Above 2.5 Å, the Pauli strength decreases drastically, and the bond
loses its strength. This is what occurs at the inflection point of the energy curve when forsterite is
strained along [100]. Loading forsterite in tension along [010] and [100] leads to different behaviors.
The case of tension along [010] is interesting since after the maximum, the stress first decreases before
stabilizing and progressively stiffening up to an engineering strain of 0.4. Again, the origin of this
behavior is found in the bond distances as shown in Figure 5b. After a first increase from 2.2 to ca.
2.35 Å, the Mg2–O bond length decreases to recover its original value in the strain interval 0.2–0.3
before increasing again. On both Figure 5a,b, one can see that the SiO4 tetrahedra are not affected
by the loading since the Si–O distances remain almost constant. This is a general observation for all
solicitations investigated here which illustrates the stiffness of the ionocovalent Si–O bond.

It must be noted that care is needed when discussing the behavior beyond the instability since
the system may evolve with structural modifications which may be constrained by the choice of the
system size [34], especially when bonds are broken, leading to structural reconstruction [35] like in the
[100] tensile test.

In shear we observe, as in tension, that the ISS follow quite well the elastic anisotropy with
normalized values (Table 2) in between 0.1 and 0.18. The authors of [18] have compiled the ISS of
several simple metals and ceramics. Most metals exhibit normalized ISS above 0.005 and below 0.15
when oxides (MgO, CaO) are slightly above 0.15. Normalized ISS of covalent materials (C, SiC, Si3N4)
are around 0.2. Our results on forsterite are consistent with this general pattern since the resistance of
the structure depends on the Mg–O bonds mostly.

For all tests, we observe that the pure shear is bracketed by the two related simple shears. The shear
tests presented in Figure 4b present several interesting features. They correspond to the weakest shear
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directions with ISS of the order of 6 GPa. Also the stress–strain curves exhibit a change of slope (at
ca. 10%, marked by the left arrow on Figure 4b) before the instability (marked by the right arrow)
followed by a significant stiffening after the instability. To analyze these features, we compute the
Mg–O bond lengths. Results corresponding to the [010](001) shear test are presented on Figure 6.
At the first change of slope (just before 10% strain), one observes (Figure 6b) that one Mg2 shows a bond
divergence (with O9). A second similar feature (bond breakage between Mg2 and O1) is responsible for
the instability. However, in parallel, several Mg–O bonds show their distances decrease significantly
(below 2Å) which result in the significant stiffening observed. Such features, with new bond formation
or reorganization under large strain, has also been reported in various crystalline solids (for instance in
cementite Fe3C) leading to a strong strain-stiffening effect [36] as observed here in forsterite.
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The oxygen numbering refers to the labeled atoms shown in (c) and (d) within the unit cell of forsterite.



Minerals 2019, 9, 787 8 of 10

Olivine is not stable at high pressure. At mantle temperatures, (Mg0.9, Fe0.1)2SiO4 olivine
transforms into wadsleyite at ca. 13 GPa and then to ringwoodite at ca. 18 GPa. At room temperature,
these reconstructive phase transformations are kinetically hindered and the olivine structure can be
further compressed until it collapses to an amorphous phase above ca. 40 GPa [9,14]. The onset of
pressure induced amorphization varies depending on the composition, the type of loading (static,
dynamic), but also, although this is less constrained, on non-hydrostaticity as pointed out by [12]
and [37]. Here, we characterize the limit of mechanical stability of forsterite without confining pressure
and under tensile and shear loading. We show that the onset of instability can be as low as 5–6 GPa for
some shear conditions (Table 2). Such deviatoric stress conditions can be reached in nanoindentation,
which can significantly facilitate high pressure phase transitions and lower the pressure threshold.
Evidence for amorphization has been reported under contact loading in silicon [38] and in boron
carbide [39]. Nanoindentation has been performed recently on olivine by [40,41], however, no
microstructural investigation was conducted to show a possible amorphization. Such characterizations
should provide a test for our theoretical predictions.
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