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Abstract: Coal mining creates large volumes of waste in the form of discard coal that is stockpiled.
In South Africa, rehabilitation of coal discard dumps remains a challenge due to reliance on topsoil
for establishment of vegetation. Exploitation of fungal bio liquefaction/degradation of coal resulted in
the emergence of Fungcoal as a bioprocess for the rehabilitation of coal discard dumps and opencast
spoils. In this process, a suite of fungi is used to bio liquefy/degrade recalcitrant waste coal to
form a soil-like material which promotes reinvigoration of the microbial component, grass growth,
and re-vegetation. Here, the role of outcrop weathered coal as a mineral/carbon source to ensure
biologically induced humic acid-like substance enrichment of discard and spoil to increase efficacy
of fungi-plant mutualism and stimulate revegetation without the need for topsoil was investigated.
Mineralogical, elemental, and pyrolysis gas chromatography-mass spectroscopic analyses show that
outcrop weathered coal has decreased volatile material and increased humics, ash, and mineral
bound water in comparison to bituminous coal. These changes occur coincidently with decreased
C, N, and H contents, and a substantial increase in O concentration. No apparent stoichiometric
relationship between sulphur and iron oxide content of weathered coal could be discerned suggesting
little residual pyrite in this material and a dominance of oxy-hydroxides of Fe. Organic analysis
showed weathered coal to be enriched in C-16 and C-18 fatty acids and the presence of the indicator,
17α(H),21β(H)-homohopane but not the β,β-stereoisomer, was interpreted to indicate that bacteria
may only have been active prior to transformation of hard coal into weathered coal.

Keywords: coal; discard dumps; rehabilitation; weathered coal; geochemistry; pyrolysis gas
chromatography-mass spectrometry

1. Introduction

Coal mining is the process of extracting coal from the ground. Coal is valued for its energy
content, and, since the 1880s, has been widely used to generate electricity [1]. However, extraction,
processing, marketing, and the sale of coal generate large quantities of low-grade waste that is of
little or no apparent immediate commercial value. Although stockpiled in discard dumps which are
highly engineered disposal sites, storage of this uncharacterized heterogeneous low-value material
has both short- and long-term impacts on the environment. Left unattended, coal discard dumps
are major contributors to atmospheric pollution, contamination of surface and ground water by acid
leachate runoff, erosion and sedimentation of particulates into adjacent rivers and dams, spontaneous
combustion, and landslides [2]. Similarly, once mineral extraction is complete overlying spoils are
returned to the void in both underground and opencast mining. Revegetation of this disturbed land and
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stabilization of discard dumps is in many cases a very necessary, difficult, and costly exercise. A major
challenge faced by the coal mining industry, therefore, is to develop and implement efficient strategies
to mitigate the negative impacts of mining and stockpiled waste on the environment throughout the
lifecycle of operation—from design and production to eventual mine closure [3,4]. The affected areas
in South Africa should be restored to an agreed land capability and land use at time of mine closure to
limit impact on the environment and surrounding communities [5].

Commercially mined South African coals have a very wide range of volatile matter content,
although the coal quality generally falls within a narrow range of bituminous coal (steam coal), when
based on vitrinite reflectance [6–10]. For these coals that are rich in ash and inertinite, and highly
variable in type, grade, and rank, a classification based on elemental carbon and hydrogen (wt% dry,
ash-free) has been proposed [11,12]. Even so, and perhaps as a consequence, a large amount of discard
and slurry is generated by the South African industry. In 2001 the Energy Branch of the Department
of Minerals and Energy commissioned an inventory of discard and duff coal in South Africa [13].
The outcome: annual production rates in excess of 42 million and 11 million tonnes for discard coal
and slurry, respectively; annual discard production increased from 43.6 million to 66.2 million tonnes
between 1985 and 2001; and, it was estimated that total produced and dumped discard registered
1,120,853 million tonnes by 2001 and covered an area of 4011 ha. Typically, this low-grade coal has an
energy value lower than 15 MJ/kg and high ash content (i.e., >50 wt%) and, when either combusted or
stockpiled/abandoned, these coals pollute the environment.

Over the years, it has become increasingly important to gain better insight into the molecular
structure and mineral matter of coal, for both coal beneficiation and to mitigate detrimental effects from
its use and storage. More emphasis has since been placed on the chemical structure using techniques
such as pyrolysis-gas chromatography-mass spectrometry (pyr-GC-MS) [14,15], and nuclear magnetic
resonance (NMR) spectrometric analysis [16–22], among others. Interest in lower-grade coal has also
increased because of its potential as a soil amendment product which has particular relevance to the
work described here.

Many studies of low-grade coals focus on lignite and laboratory-oxidized (usually nitric acid)
coals to determine identity of weathering products and potential beneficiation strategies [16,17]. The
fate of organic material in weathered coal and other organic-rich rocks has also been studied largely to
improve modelling of the carbon cycle [18,19]. In contrast, few (if any) in situ studies of weathered
coal have been undertaken. Even so, we recently showed that outcrop weathered coal was an ideal
co-substrate in a bioprocess that utilizes the mutualistic interaction between coal degrading and
mycorrhizal fungi and bespoke grasses in the vegetation of discard dumps [20]. Indeed, other forms
of weathered coal including coal from discard dumps and a highly oxidized coal obtained from an
aged waste dump were unable to support fungal-plant bioremediation and revegetation [20]. Thus,
the geochemical study of outcrop-weathered coal described here was undertaken to provide insight
into the role of this material as a mineral/carbon source to ensure biologically induced humic acid
(HA)-like substance enrichment of discard and spoil to facilitate breakdown of the carbonaceous
material [21–23], plant-fungal mutualism [24,25], and revegetation without the need for topsoil [20,26].
Furthermore, a good understanding of the geochemistry of this outcrop weathered coal may improve
our understanding of the geological processes involved in coal weathering in situ.

2. Materials and Methods

2.1. Sample Collection and Preparation

Weathered coal samples were sourced from Landau Colliery (Kromdraai Opencast, latitude
25◦46′ S; longitude 29◦4′ E) in the Emalahleni coalfield of South Africa. Samples were collected
along a vertical transect of outcrop (No 2 Seam, Kromdraai Section) at 10 cm intervals, spanning 1 m
of weathered coal and showing visible decline in the degree of weathering with depth (Figure 1).
An additional outcrop weathered coal sample (WC-03/12) and a composite sample of fragmented hard
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coal (HC-05/12) were obtained from the Kromdraai opencast operation (Landau Colliery). The outcrop
hard coal sample, together with a hard coal sample from the Navigation Plant at Landau Colliery
(HC-NP) were used as end member, non-weathered reference samples. Prior to processing for
mineralogical and geochemical analyses, visible roots and other undecomposed biological debris were
manually removed from all field samples. Subsequently, the samples were freeze-dried and milled to a
grain size of ≤0.2 mm.

Figure 1. Vertical transect on outcrop weathered coal at Kromdraai Opencast, Landau Colliery (A) and,
indication of sampling points at 10 cm intervals from the top (B).

2.2. Analytical Techniques and Procedures

Bulk mineralogical, inorganic, and organic geochemical analyses were performed on pulverized
samples of weathered and hard coal. All raw analytical data used and displayed in this paper are
archived in the Supplementary data file. Mineralogical determinations were obtained via standard
X-ray diffraction (XRD) methodology using a Bruker instrument at the Department of Chemistry,
Rhodes University. Total carbon, oxygen, nitrogen, and sulphur data were obtained at the MINTEK
geochemical laboratories (ASD-MET-C16/26) in combination with in-house elemental analyses at
Rhodes University (PE 2400 CHNS/O, PerkinElmer, Waltham, MA, USA). Determination of inorganic
elemental compositions required heating of aliquots of all samples at 900 ◦C for at least 6 h, in order
to determine the total loss on ignition (LOI). Major and minor elemental oxide analyses were then
performed on fused glass discs and for trace elements on pressed powder pellets using a Phillips
PW1480 X-ray fluorescence (XRF) spectrometer in the Geology Department at Rhodes University.

Extraction of humic substances (HS) were performed on outcrop weathered coal and hard coal
(sample no. 5, 7, 8, 9, 10, 11, and 12) on the basis of humin content. Following method optimization,
weight percentage composition of HA, fulvic acids (FA), and humin in the samples was determined in
duplicate. Samples were initially extracted three times by sonication in 5 mL of MeOH:DCM (1:1 v/v)
and twice by sonication in 5 mL DCM and, after centrifugation to derive the DCM-soluble material, the
freeze-dried pellet suspended in 40 mL 0.1 M NaOH. The suspension was agitated for 24 h at 150 rpm
(28 ◦C) and centrifuged at 3220× g at 10 ◦C for 30 min. The pellet was washed (2×) with 30 mL 0.1 M
NaOH, and the supernatants pooled. The final pellet (humin) was freeze-dried and weighed. The pH
of the supernatant was adjusted using concentrated HCl to <2 and allowed to stand for at least 1 h to
precipitate HA after which it was centrifuged at 3220× g at 10 ◦C for 30 min. The process was repeated
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until the soluble HA component was less than 0.1 mg. The FA-containing supernatant was analyzed
spectrophotometrically at 280 nm while the HA-containing pellet was freeze-dried and weighed.

For determination of volatiles, mineral-bound water, and ash content, the humin fraction was
dried at 100 ◦C overnight to a constant weight and then heated at 400 ◦C for at least 4 h using a muffle
furnace. The samples were then heated at 900 ◦C for 6 h to determine the mineral-bound water and
the ash fraction. All data are expressed as weight percentage of the whole sample and recovery after
fractionation was ≥97%.

Structural changes in the HA component were investigated by analysis of the MeOH:DCM-soluble
compounds by GC-MS and by flash pyr-GC-MS analysis. The latter has been shown to provide
valuable information for structure elucidation of HA [14,27–29]. Methods used for the derivatization
and pyrolysis of the freeze-dried HA extract follow Martin et al [30]. and Lehtonen et al [31,32]. A 25%
aqueous solution of tetramethylammonium hydroxide at a 2:1 ratio was added to 0.5–1 mg of the
extracted HA in a quartz tube supported at both ends with fussed silica wool (Restek, Cat. no. 24324).
Poly(tert-butylstyrene) (1 µL, 0.05 mg/mL in hexane) was introduced to serve as an internal standard.
Samples were then dried at 100 ◦C for 10 min. The sample was pyrolyzed at 700 ◦C for 15 s in a CDS
5000 Pyroprobe series with CDS 1500 valve interface (CDS Analytica, Inc, Oxford, PA, USA) that was
kept at 250 ◦C and purged continuously with helium gas at 1.5 mL/min. The 6890 N gas chromatograph
system (Agilent Technologies, Santa Clara, CA, USA) was programmed to ramp from 60 to 200 ◦C at
6 ◦C/min and then at 10 ◦C/min to 300 ◦C, where it was held for 2 min. The system was set in split
mode 2:1 with a 3 min solvent delay time. The capillary column (Agilent 19091s-433) specification
was as follows: 30 m (length) by 250 µm (internal diameter) with a film thickness of 0.25 µm. Four
sample replicates were used and detected with the MS 5975 inert Mass Selective Detector using the
parameters 70 eV, 1.7 kV SEV, 1.1 s scan rate. The identification of the pyrolysis products was based on
NIST library search and some of the selected spectra confirmed using standards. The results were
evaluated qualitatively and semi-quantitatively as described by Fabbri et al [33].

3. Results

3.1. Bulk Characterization of Kromdraai Weathered Coal

Results from samples of weathered coal from Seam 2 show clear small-scale variation in the
content of organic and inorganic material (Figures 2 and 3). The organic fraction i.e., total carbon, HA,
and humin (volatile material), decreases in a broad trend from the base of the transect (i.e., 1 m below
surface) towards the top of the weathered coal profile (Figure 2). A localized increase at 40–30 cm from
the top of the profile probably reflects enrichment with fine biological litter that was not successfully
removed prior to sample processing. Even so, the pattern of carbon distribution within the profile
is consistent with the idea that soil organic carbon levels are higher at depth than at or near surface,
i.e., generally 1.5–2 times higher at depths >1 m compared to the top 1 m. The volatile fraction, or
refractory organic fraction of coal, was highest in the lowermost samples at contents as high as 9.8 wt%,
while from 70 cm upwards the same content declined to values lower than 1 wt%.

Measured carbon content ranges between 11 and 52 wt% of the bulk sample mass, and is shown
to co-vary linearly with the organic fraction (R2 = 0.95) (Figures 3 and 4b). Carbon in the HA fraction
exhibits little variance across the selection of samples analyzed (5, 7, 8, 9, and 10) and, at 54–64 wt% of
the bulk sample, most of the carbon is hosted in the organic fraction (Figures 3 and 4b). Total nitrogen
decreases progressively from 0.94 wt% at 100 cm to 0.29 wt% at 50 cm, with all nitrogen apparently
bound to the HA fraction of the same sample set. In a similar fashion to total carbon, nitrogen content
increases from 0.6 wt% at 30–40 cm, with lower concentrations registered again in the top 20 cm
(0.3 wt%; Figure 3). The change in nitrogen content along the weathered coal outcrop transect correlates
closely with the organic fraction at R2 = 0.93 (Figure 4b), which confirms that most of the nitrogen
in the weathered coal is organic-bound. Oxygen concentration increases slightly from mean values
of 26.5 wt% in the bottom 50 cm to 30.9 wt% in the top 50 cm, despite the fact that weathering of
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coal should increase oxygen content of HA [34]. Based on the five HA samples analyzed for total
oxygen, an average of 92 wt% oxygen was determined to be inorganic-bound, with a higher amount of
organic-bound oxygen recorded towards the bottom of the profile.

Figure 2. Fractional composition of samples obtained along a vertical transect of weathered outcrop
and of hard coal from Kromdraai Opencast, Landau Colliery. WC-03/12 is a weathered coal sample
obtained in March 2012; HC-05/12 a hard coal sample from May 2012, HC-NP is a composite hard coal
sample from Navigation Plant, Landau Colliery.

Figure 3. Carbon, oxygen, nitrogen and hydrogen concentration in samples from a vertical transect of
weathered coal outcrop expressed as weight percentage of the total sample (red bars). Additionally,
also shown are the C, O, N, and H contents of the humic acid (wt% of HA fraction; blue bars) as weight
% of the total sample (green bars). WC-03/12 is a weathered coal sample obtained in March 2012;
HC-05/12 a hard coal sample from May 2012, HC-NP is a composite hard coal sample from Navigation
Plant, Landau Colliery.
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Figure 4. Relationship between concentration of carbon (A) nitrogen (B), and organic matter content
(humic acid + fulvic acid + volatile material) of weathered coal. Red open squares are samples from
weathered coal profile showing linear correlation of R2 = 0.95 and 0.93, respectively. Blue diamond
shapes include hard and weathered coal samples, showing a correlation with, respectively, R2 = 0.89
and 0.79.

The sulphur content of outcrop weathered coal samples is very low (<0.07 wt%), except for
the sample at 90 cm where the bulk sulphur concentration is 0.29 wt% (Figure 5). Sulphur in this
sample is about 70% inorganically bound. Similarly, iron oxide was detected in minor amounts at each
sampling interval along the weathered coal transect (Fe2O3 < 1.86%) but, at the 90 cm sampling point
the concentration increases to 11.4 wt% (Figure 5). Even at this specific level, no clear stoichiometric
relationship exists between sulphur and iron content, pointing to low preservation of residual pyrite
relative to the oxy-hydroxides of Fe which are expected to have been produced through pyrite
breakdown. This is supported by the hard coal reference sample HC-05/12, in which elevated sulphur
content (11.6 wt%) corresponds with high iron (23.7 wt%), indicating the primary prevalence of pyrite
(Figure 5).

Figure 5. Sulphur and iron concentration in samples from a vertical transect of weathered coal outcrop
expressed as weight percentage of the total sample (red bars). Sulphur in the humic acid fraction is
expressed as wt% of both the humic acid fraction (blue bars) and total sample (green bars).
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3.2. Inorganic (Ash) Geochemistry

The inorganic (ash) fraction of the two hard coal samples was determined at 12.4 and 13.8 wt% of
the bulk, which is consistent with the range (8–35 wt%) of mineral matter reported for coal from the
Emalahleni Coalfields [35]. By contrast, ash content rises to as high as 70 wt% in the weathered coal
profile (Figure 2). Two elemental oxides, namely Al2O3 and SiO2, together make up between 16 and 66
wt% of the bulk mass of the weathered coal samples. The strong positive correlation between these two
species of oxide in weathered coal samples (R2 of 0.92; Figure 6a) at an average ratio of 0.87, is strongly
indicative of the dominance of kaolinite as the main inorganic mineral phase in the examined coals.
This is confirmed by our XRD results (not shown here) and is also in full agreement with compositional
information from most South African coals [35]. Conversely, the clearly antithetic relationship between
SiO2 content and the LOI value as an effective expression of bulk organic matter content (R2 of 0.95;
Figure 6b), marks the closure effect between the two main constituents of weathered coal, namely
organic carbon and kaolinite.

Figure 6. Binary relationship between (A) bulk Al2O3 and SiO2 contents and, (B) SiO2 contents and
corresponding loss on ignition (LOI) values, for weathered (light blue markers) and hard coal (dark blue
markers) samples. Correlation trajectories and coefficients shown for the weathered sample set only.

Apart from the fluctuating bulk Fe-oxide contents across the weathered coal profile, which reflect
the breakdown of correspondingly variable pre-existing pyrite abundances, the other constituent in
weathered coal samples that reaches average concentration above 1 wt% is titanium dioxide (TiO2).
Previous comprehensive observations of the mineralogy of coals in South Africa [35] report minor
concentrations of the mineral rutile in roof and floor lithologies. Since the TiO2 abundances here are
very low and thus undetectable through the XRD technique, the presence of a TiO2 polymorph such as
rutile or anatase could not be verified for the Kromdraai profile samples and requires microanalytical
techniques not employed here. Further constraints in this regard, however, will be provided below in
our assessment of trace element abundances.

All other major element oxide components in the weathered coal samples are present in very
low concentrations and thus will not be discussed further, except for bulk calcium oxide (CaO). CaO
values are very low (<0.5 wt%), indicating that if primary carbonate minerals (such as dolomite) were
present in the coals, they must have broken down almost wholesale during chemical weathering.
Increased acidity produced by oxidation of pyrite-bound and organic-bound sulphur alike, would have
promoted such carbonate solubility. We note the strong covariance (R2 = 0.85) between calcium oxide
and the organic fraction of weathered coal as approximated by the LOI values (Figure 7). By contrast,
no statistical relationship exists between CaO and P2O5 or MgO values that would, respectively,
signify the occurrence of minor apatite or dolomite. A significant proportion of dehydrated gypsum as
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basanite (CaSO4·
1
2 H2O) has been reported from all South African reference coals after low temperature

combustion, and this has been ascribed to the reaction of organic sulphur with organically associated
calcium [35]. Since our samples have not undergone low-temperature combustion, we consider that
reaction of sulphate ions with minor organic-bound Ca during weathering would have led to the
formation of some secondary gypsum in our samples.

Figure 7. Binary relationship between bulk calcium oxide (CaO) and corresponding LOI values, for
weathered (light blue markers) and hard coal (dark blue markers) samples. Correlation trajectories and
coefficients shown for the weathered sample set only.

With regard to selected minor and trace element abundances, the spidergram of Figure 8 illustrates
the variability in both weathered and hard coal samples when normalized against average upper
continental crust (UCC). The diagram permits the extraction of three key conclusions concerning these
elements and their relative behavior during weathering: (1) abundances for hard coal samples display
enrichments in most trace elements relative to UCC, with notable exceptions those of Ti, Rb, Sr, and Mn.
(2) Compared to hard coal, weathered coal samples from the Kromdraai transect record enrichments in
High Field Strength Elements (HFSE) such as Ti, Nb, and Zr; the transition metal Cr; and, to a lesser
degree, the lanthanides and actinides analyzed for (La, Ce, Nd, Th, Y). These elements are therefore
regarded as having been immobile and thus passively enriched during chemical weathering. (3) The
elements Sr, Ba, Co, Mn, and Zn conversely show the most significant relative depletion compared to
hard coal, suggesting their strong mobility during weathering.

The depletions in trace alkali earths and selected transition metals can be attributed to the general
instability of their most common mineral hosts in the chemical weathering environment, such as
detrital feldspars, clays, and carbonate minerals. They therefore conform to the depletion in the
weathered coal of major element oxides such as CaO, MgO, Na2O, and K2O, with which they share
similar solubility behavior. Mobility of alkalis and alkali earths is augmented particularly under
conditions of low pH induced by organic matter and pyrite oxidation and resultant increased acidity
during weathering. The weathered coal samples therefore invariably become impoverished in all
above species compared to hard coal. By contrast, the HFSE, Cr, selected lanthanides and actinides, are
associated with detrital minerals that are known to be more resilient to chemical weathering, such
as TiO2 polymorphs (e.g., rutile), zircon and chromite. The occurrence of particularly a TiO2 mineral
species is supported by the strong and established positive correlation between TiO2 and the element
Nb (Figure 9a) as typically known to characterize the mineral rutile. Noteworthy here is also the good
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positive relationship of Figure 9b between Ni and LOI as an expression of the bulk organic fraction of
the samples, which suggests that this metal is probably also stable and conservatively retained in the
weathering environment albeit in association with a secondary organo-metallic complex.

Figure 8. Upper continental crust (UCC)—normalized spidergrams for the minor and trace element
composition of weathered (thin light blue) and hard (dense dark blue) coal samples.

Figure 9. Binary relationships between (A) bulk TiO2 and Nb, and (B) bulk Ni and LOI values, for
weathered (light blue markers) and hard coal (dark blue markers) samples. Correlation trajectories and
coefficients shown for the weathered sample set only.

3.3. Pyrolysis GC-MS

A typical pyrolysis GC-MS analysis of hard coal and weathered coal is illustrated in Figure 10.
Pyrolysis of hard coal produced a total ion chromatogram very different from that of weathered
coal with relatively intense phenols, naphthalenes, and other polynuclear aromatic hydrocarbons
(compare Figure 10a,b with MS results for hard coal pretreated with strong acid and extracted with
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tetrahydrofuran) [36]. Only alkanes, alkenes, dibenzofuran, and phenol were common in pyrolysates
from both the hard and weathered coal samples. Total ion chromatograms from weathered coal samples
showed a predominance of C-16 and C-18 fatty acids and pyrolysis released mostly compounds with
these functional groups, and some aromatic compounds (Figure 10b). Variations within the weathered
coal samples were evident, such as a hopene series present only in sample 6, and esters of palmitic
(C16:0) and stearic (C18:0) acids in five of the samples (1, 4, 5, 7, and 9). The presence in sample 6 of
17α(H),21β(H)-homohopanes might indicate a high degree of geochemical maturity of this weathered
coal [37,38]. However, since these indicator compounds typically originate from bacterial membrane
lipids and were predominantly in the R,S- or α,β- stereochemical configuration, any bacterial activity
most likely occurred prior to transformation of hard coal to weathered coal.

Figure 10. Pyrolysis gas chromatography-mass spectrometry analysis of bituminous hard coal (A) and
representative outcrop weathered coal (B) samples from Kromdraai, Landau Colliery.

Ratios of the various products of pyrolysis showed some variability in weathered coal, but without
any definitive trend. For example, the n-alkane:alkene ratio varied from 0.4 to 3 in weathered coal,
while this ratio in hard coal was only slightly above 3 (Figure 11). The ratio phenol:naphthalene was
approximately 2 in all of the weathered coal samples except sample 10, where this ratio was 7. In hard
coal samples, the phenol:naphthalene ratio was much smaller at 0.1 (Figure 11) even though phenols
in hard coal were far more prominent than in weathered coal (compare Figure 10a to Figure 10b).
A decrease in the n-alkane:alkene ratio in weathered coal may reflect input alkenes derived from more
recent sources like soil/plants/bacteria whereas the relatively high phenol:naphthalene ratio may have
arisen due to leaching of the more water soluble phenols. Other pyrolysate components including
nitrogenous compounds (e.g., 3-hexenedinitrile) and benzaldehyde were absent (or below the detection
limit) in hard coal, and benzaldehyde was also absent in weathered coal sample 10 (Figure 11).
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Figure 11. Pyrolysate ratios in samples of weathered coal outcrop along the profile and in the hard coal
sample, HC-05/12.

3.4. On the In Situ Formation of Humic-Like Substances

In an effort to obtain confirmatory evidence for in situ formation of HA-like substances in coal
discard treated with Fungcoal [26,29,30], substrate from commercial scale trials at Kleinkopje, Greenside
and Kromdraai was collected 18 months after trial initiation and the samples analyzed geochemically.
Similarly, substrate from small-scale trials treated with Fungcoal and initiated in 2006, were collected
and analyzed geochemically (Figure 12).

Figure 12. Humic, fulvic, volatile (humin), and ash content and composition of coal discard after
treatment with Fungcoal. Discard material was treated with Fungcoal on a large scale without
co-substrate (KK, Klippan Kleinkopje); with a waste coal co-substrate (GS); with a weathered coal
co-substrate (KD); or on a small-scale (OS, Kleinkopje roofcoal dump). Samples were collected at 18
(large-scale) and 72 (small-scale) months after trial initiation, analyzed geochemically, and the HA-like
substance content compared to HA extracts of garden compost and vermipost.
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Substrate from large-scale commercial trials at Kleinkopje (Klippan Dump; Fungcoal,
no co-substrate) and Greenside (Fungcoal + waste coal co-substrate) contained no HA-like substances
extractable with NaOH. The ash fraction, at approximately 40 wt%, was large compared to hard coal,
which was expected. Substrate from Kromdraai (KD) opencast spoil (Fungcoal + weathered coal
co-substrate) contained 1–3 wt% HA, while substrate from the small-scale trial site on the Kleinkopje
Roofcoal dump (OS; initiated in September 2006) contained 0.3–5 wt% (Figure 12). It is suspected
that this HA-like substance was most likely derived from the weathered coal co-substrate used to
support Fungcoal application, since treatment without added weathered coal (KD-Plot C) showed
negligible HA-like substance enrichment. The HA extracted from the weathered coal sample from plot
B (KD-WC) confirmed this co-substrate as a source of HA. Interestingly, the HA-like substance content
of substrate treated with Fungcoal + weathered coal co-substrate from both large- and small-scale trials
was similar to that of the compost references which contained 5–7 wt% HA-like matter, and 0.8–0.9
wt% fulvic acid and an ash fraction of 36–62 wt% (Figure 12).

4. Discussion and Conclusions

Results presented in this manuscript represent to our knowledge the first characterization of
a naturally occurring weathered coal seam in South Africa. In brief, weathered coal (No 2 Seam,
Kromdraai Section, Landau Colliery) has decreased volatile material and increased humics, ash, and
mineral bound water in comparison to hard (bituminous) coal. These changes occur coincident with
decreased elemental C, N, and H contents, and a substantial increase in elemental O concentration. No
apparent stoichiometric relationship between sulphur and iron oxide content of weathered coal could
be discerned suggesting little residual pyrite in this material and a dominance of oxy-hydroxides of
Fe. Trace element composition was mirrored in hard coal indicating that enrichment proceeded in
concert with weathering. The organic fraction of hard coal differed markedly from that of weathered
coal and contained substantial phenols, naphthalenes, and other polynuclear aromatic hydrocarbons.
Weathered coal by comparison, was enriched with C-16 and C-18 fatty acids and hopanoids of the
17α(H),21β(H)-homohopanes type. Furthermore, analysis revealed that HA-like material is indeed
generated from the coal fraction. The process appears to entail enrichment of coal with inorganic
elements in which kaolinite becomes the dominant clay mineral in weathered coal. Enrichment of
the parent coal with trace elements is also evident and appears to occur more readily as the degree of
weathering progresses.

The above characterization notwithstanding, use of weathered coal as a co-substrate in bioprocess
technologies such as Fungcoal for land rehabilitation requires further study [25]. In particular,
information on the distribution and abundance of reacting mineral species within this material is
needed. Additionally, its suitability as a carbon source to support mycorrhizal fungi that underpin
fungal-plant mutualism [25,26] needs further elaboration. Such studies should focus on deriving data
to predict the extent of acidification (where there is presence of pyrite) and neutralization (presence
of carbonates and aluminosilicates) potential [35], determine the critical threshold levels of heavy
metals [39,40], and address soil structure, microbe populations, and nutrient cycling in order to
transform the land from its disturbed condition to a self-sustaining ecosystem. Studies on the mobility
and bioavailability of heavy metals from weathering of stockpiled coal and coal spoil show that readily
diffusable and easily leached metals are retained in the weathered material by complexation with
organic compounds and/or by adsorption to an amorphous iron oxyhydroxide colloid [41]. Thus,
until the complexation mechanisms that occur during weathering are better understood, infiltration of
heavy metals remains a risk [41]. Similarly, a deeper understanding of the fate of the organic material
in weathered coal is needed in order to optimize the amount of this material needed for successful
large-scale rehabilitation of discard dumps and opencast spoil particularly where other low-grade coals
are readily available. The fate of organic carbon in naturally weathered coal seams appears to differ
considerably from that of coal that has been exposed to conditions that cause weathering [16,17]. Thus,
and since Kromdraai weathered coal is a finite resource and limiting in the roll out of rehabilitation
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strategies like Fungcoal, access to other weathered coal seams is necessary both as a source of humic
material for use in land rehabilitation and to meet the growing demand for humics in the preparation
and use of biofertilizers [25,42].

Supplementary Materials: The supplementary data file is available online at http://www.mdpi.com/2075-163X/9/
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