Supergene Uranyl Mineralization of the Rabejac Deposit, Lodève, France

Fabrice Dal Bo ^{1,*}, Frédéric Hatert ¹ and Simon Philippo ²

- ¹ Laboratoire de Minéralogie, B18, Université de Liège, 4000 Liège, Belgium; fhatert@uliege.be
- ² Section Minéralogie, Musée d'Histoire Naturelle, Rue Münster 25, 2160 Luxembourg, Luxembourg; simon.philippo@mnhn.lu
- * Correspondence: fabrice.dalbo@gmail.com

Table S1. Experimental details for the single-crystal X-ray diffraction study of becquerelite and billietite.

Sample	VC2134	U006
Mineral	Becquerelite	Billietite
Ideal structural formula	Ca(UO ₂) ₆ O ₄ (OH) ₆ (H ₂ O) ₈	Ba(UO2)6O4(OH)6(H2O)8
<i>a</i> (Å)	13.8625(5)	30.1894(5)
b	14.9459(5)	12.08285(14)
С	12.3768(4)	7.15099(10)
V (ų)	2564.31(15)	2608.49(7)
Space group	Pna21	Pna21
Z	4	4
Calculated density (g·cm ⁻³)	5.193	5.265
Absorption coefficient (mm ⁻¹)	38.450	38.710
F(000)	3392	3480
Radiation (Å)	ΜοΚα, 0.71073	ΜοΚα, 0.71073
Crystal size (mm)	$0.15 \times 0.13 \times 0.05$	$0.26 \times 0.23 \times 0.09$
Temperature (K)	293(2)	293(2)
θ range (°)	2.93 to 28.77	3.15 to 28.78
	$-16 \le h \le 17$	$-40 \le h \le 40$
Reflection range	$-16 \le k \le 19$	$-16 \le k \le 16$
	$-15 \le l \le 16$	$-9 \le l \le 9$
Total no. of reflections	8291	115043
Unique reflections	4538	6623
Observed reflections, $ F_0 \ge 4\sigma F$	3824	5610
Refined parameters	185	184
$R_{1,} F_0 \ge 4\sigma F$	0.0565	0.0724
R_{1} , all data	0.0703	0.0886
wR_2 (F^2), all data	0.1574	0.1393
GOF obs/all	1.060/1.060	1.251/1.250
$\Delta \sigma$ min, $\Delta \sigma$ max (e/Å ³)	3.07, -3.78	5.90, -5.78

		x	y	2	Z	$oldsymbol{U}_{ ext{iso}}$
Ca1	(0.5430(4)	0.4655(4)	0.233	34(5)	0.0269(12)
U1	0	0.58967(8)		0.251	46(8)	0.0178(3)
U2	0	.65169(8)	0.21110(8)	0.244	44(8)	0.0173(3)
U3	0	.62664(5)	0.22199(6)	0.5592	25(14)	0.0173(2)
U4	0	.87177(6)	0.25240(6)	1.0628	89(14)	0.0186(2)
U5	0	.90591(8)	0.24896(7)	1.370	90(8)	0.0176(3)
U6	0	.65734(8)	0.20897(9)	0.872	.63(8)	0.0190(3)
O1	0	.6040(11)	0.1051(11)	0.56	52(3)	0.030(4)
O2	0	.6654(12)	0.0897(13)	0.86	3(2)	0.021(4)
O3	0	.8197(10)	0.3631(10)	1.05	52(2)	0.022(4)
O4	0	.8204(12)	0.2180(12)	0.896	57(15)	0.018(4)
O5	0	.5532(12)	0.6232(13)	0.267	'1(16)	0.021(4)
06 (OH	H) 0	.9933(15)	0.3052(16)	0.929	0(19)	0.026(5)
07 (OH	I) ().9490(9)	0.2204(9)	1.55	6(2)	0.018(3)
08 (OH	H) 0	.7574(13)	0.1892(14)	0.688	3(17)	0.016(4)
O9	0	.5629(13)	0.2239(13)	0.723	6(17)	0.016(4)
O10	0	.6568(10)	0.3393(10)	0.55	50(2)	0.020(4)
O11	0	.6463(15)	0.3277(17)	0.89	2(2)	0.032(5)
O12	0	.9266(11)	0.1424(12)	1.076	5(17)	0.026(4)
O13	0	.6276(17)	0.8551(16)	0.228(2)		0.036(6)
O14	0	.5661(14)	0.2253(15)	0.39	3(2)	0.027(5)
O15 (H ₂	O)	1.025(2)	0.517(2)	0.69	8(2)	0.068(9)
O16	0	.8063(12)	0.2441(11)	1.229	4(15)	0.013(4)
O17	0	.8674(14)	0.3589(15)	1.404	8(19)	0.025(5)
O18 (OI	H) 0	.9864(14)	0.3068(15)	1.191	5(18)	0.021(5)
O19	0	.9430(14)	0.1368(14)	1.339	5(16)	0.025(5)
O20 (H ₂	O) 0	.7257(17)	0.4963(16)	0.19	8(2)	0.036(6)
O21 (OI	H) 0	.7562(14)	0.1956(15)	1.4361(18)		0.020(5)
O22 (H ₂	Ó) 0	.6110(16)	0.4897(17)	0.416(2)		0.042(7)
O23 (H ₂	O) 0	.5535(10)	0.5230(11)	0.058(2)		0.031(4)
O24 (H ₂	O) 0	.3774(13)	0.5250(15)	0.22	2(2)	0.032(5)
O25 (OI	H) ().6946(9)	0.1826(9)	1.06	51(2)	0.016(3)
O26	0	.6672(14)	0.0935(15)	0.26	3(3)	0.036(6)
O27 (H ₂	O) 0	.9554(16)	0.4775(19)	0.90	2(2)	0.046(6)
O28 (H2	O) 0	.7997(13)	0.4988(13)	0.052	71(3)	0.044(6)
O29 (H ₂	O) 0	.7157(15)	0.5060(15)	0.93	3(2)	0.034(6)
O 30	0	.6295(16)	0.3295(15)	0.214	1(19)	0.029(5)
	U_{11}	U ₂₂	U 33	U 23	U 13	U 12
Ca1	0.032(3)	0.026(3)	0.023(3)	0.006(2)	0.006(2)	0.004(3)
U1	0.0167(6)	0.0271(6)	0.0096(6)	0.0010(5)	-0.0015(5)	0.0020(5)
U2	0.0162(6)	0.0248(6)	0.0110(7)	-0.0015(6)	0.0013(5)	0.0002(4)
U3	0.0183(4)	0.0262(5)	0.0074(4)	0.0000(7)	-0.0003(6)	-0.0001(3)
U4	0.0177(4)	0.0299(5)	0.0083(4)	-0.0010(6)	0.0000(6)	-0.0006(3)
U5	0.0159(6)	0.0282(7)	0.0088(6)	-0.0007(4)	0.0003(4)	-0.0005(5)
U6	0.0178(6)	0.0295(7)	0.0098(6)	0.000(6)	-0.0013(4)	-0.0013(5)

Table S2. Atom fractional coordinates, isotropic and anisotropic atom displacement parameters (Å²) for becquerelite.

Table S3. Selected I	bond distances	for becquerelite.
----------------------	----------------	-------------------

Bond	d, Å	Bond	d, Å	Bond	d, Å
U1–O5	1.855(19)	U2-O26	1.79(2)	U3-01	1.775(17)
U1–O13	1.800(20)	U2-O30	1.83(2)	U3-O10	1.805(15)
U1–O4	2.217(18)	U2-014	2.20(2)	U3-014	2.609(13)
U1-OH6	2.650(20)	U2016	2.207(16)	U3-0H7	2.609(13)
U1–OH7	2.500(30)	U2-OH18	2.40(2)	U3-OH8	2.460(20)
U1–OH8	2.394(19)	U2-OH21	2.79(2)	U3-09	2.220(20)
U1–O9	2.203(18)	U2-OH25	2.38(3)	U3-OH21	2.390(20)
<u1–our></u1–our>	1.83	<u2–our></u2–our>	1.81	<u3–our></u3–our>	1.79
<u1-<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u1-<i>	2.39	<u2-<i>_eq></u2-<i>	2.40	<u3-<i>_</u3-<i>	2.38
U4–O3	1.810(15)	U5-017	1.78(20)	U602	1.791(19)
U4–O12	1.819(17)	U5-019	1.800(20)	U6-011	1.800(30)
U4–O4	2.237(19)	U5-OH7	2.400(30)	U6-O4	2.283(17)
U4–OH6	2.490(20)	U5-014	2.270(20)	U6-OH6	2.390(20)
U4–O16	2.256(18)	U5-016	2.231(17)	U6-OH8	2.690(20)
U4–OH18	2.390(20)	U5-OH18	2.603(20)	U6-09	2.270(20)
U4–OH25	2.669(13)	U5-OH21	2.370(10)	U6-OH25	2.420(30)
<u4–our></u4–our>	1.81	<u5-our></u5-our>	1.79	<u6-our></u6-our>	1.80
<u4-<i>_eq></u4-<i>	2.41	<u5-<i>_\$</u5-<i>	2.38	<u6-<i>_\$</u6-<i>	2.39
Ca1–O5	2.40(2)				
Ca1–O12	3.00(2)				
Ca1–O19	2.45(2)				
Ca1–H2O20	2.61(2)				
Ca1–H2O22	2.47(3)				
Ca1–H2O23	2.33(3)				
Ca1–H2O24	2.47(2)				
Ca1–O30	2.37(2)				
<ca1–ф></ca1–ф>	2.51				

	Ca1	U1	U2	U3	U 4	U5	U6	Σ	Species
O1				1.702				1.70	0
O2							1.650	1.65	0
O3					1.591			1.59	0
O4		0.726			0.699		0.640	2.06	0
O5	0.310	1.459						1.77	0
O6		0.315			0.429		0.520	1.26	OH
O7		0.421		0.341		0.510		1.27	OH
O8		0.516		0.455			0.292	1.26	OH
O9		0.746		0.722			0.656	2.12	0
O10				1.606				1.61	0
O11							1.622	1.62	0
O12	0.062				1.564			1.63	0
O13		1.622						1.62	0
O14			0.750	0.722		0.656		2.13	0
O15								0.00	H ₂ O
O16			0.740		0.674	0.707		2.12	0
O17						1.686		1.69	0
O18			0.510		0.520	0.328		1.36	OH
O19	0.271					1.622		1.89	0
O20	0.176							0.18	H ₂ O
O21			0.241	0.520		0.541		1.30	OH
O22	0.257							0.26	H ₂ O
O23	0.375							0.37	H ₂ O
O24	0.257							0.26	H ₂ O
O25			0.531		0.304		0.491	1.33	OH
O26			1.653					1.65	0
O27								0.00	H ₂ O
O28								0.00	H ₂ O
O29								0.00	H ₂ O
O30	0.336		1.531					1.87	0
Σ	2.04	5.81	5.96	6.07	5.78	6.05	5.87		

Table S4. The bond-valence analysis (vu) for becquerelite.

The crystal structure of becquerelite contains six symmetrically independent U⁶⁺ cations, which are forming typical nearly linear (UO₂)²⁺ uranyl ions. Each uranyl ion is additionally coordinated by five additional ligands, two O²⁻ anions and three OH⁻ groups, located at the equatorial vertices of the uranyl ions to form $Ur\phi_5$ pentagonal bipyramids. The <U–Our> and <U– ϕ_{erp} > mean bond lengths vary between 1.79 and 1.83 Å, and between 2.38 and 2.40 Å, respectively (Table S3). These values closely match the typical bond lengths observed for [7]-coordinated U⁶⁺ [1,2]. The structure contains also one symmetrically independent Ca cation that is coordinated by eight ligands ϕ : four O²⁻ anions belonging to the uranyl ions (Our), and four H₂O water molecules, thus forming a CaO₄(H₂O)₄ polyhedron. The mean <Ca1– ϕ > bond length is 2.51 Å. In addition, four isolated water molecules (O15, O27–O29) are located in the interlayer space, increasing the connectivity of adjacent sheets through H-bonds. The structural formula of becquerelite is given by Ca[(UO₂)₃O₂(OH)₃]₂(H₂O)₈.

The structure of becquerelite is based upon infinite sheets parallel to (010), which are constituted by corner- and edge-sharing uranyl pentagonal bipyramids (Figure S1). The sheets show the α -U₃O₈ (protasite) anion topology [3]. The protasite anion topology is quite common among the uranyl oxide hydrate minerals, and is observable in the structure of billietite Ba[(UO₂)₃O₂(OH)₃]₂(H₂O)₈ [4], protasite Ba(UO₂)₃O₃(OH)₂(H₂O)₃ [5], compreignacite K₂[(UO₂)₃O₂(OH)₃]₂(H₂O)₇ [6], masuyite Pb(UO₂)₃O₃(OH)₂(H₂O)₃ [7], agrinierite K₂Ca[(UO₂)₃O₃(OH)₂]₂(H₂O)₅ [8], and richetite M_xPb_{8.57}[(UO₂)₁₈O₁₈(OH)₁₂]₂(H₂O)₄₁ [9,10].

Figure. S1. Representation of the sheet of uranyl polyhedra (α -U₃O₈) occurring in the structure of becquerelite. Yellow: UO₇ polyhedra, red: O²⁻ atoms, black: (OH)⁻ groups.

However, the distribution of anions (O^{2-} and OH^{-}) within the sheets based upon this anion topology is not identical in all these minerals. Actually the topology of the becquerelite sheet is only identical to that found in billietite and compreignacite. The distribution of O^{2-} and OH^{-} within the sheets is important because it modifies the charge of the sheets and their connectivity to the interlayer constituents through H bonding [11]. Adjacent infinite sheets of uranyl polyhedra are connected via the Ca cations which are bonded to four Ou_r atoms, with three of which from the same sheet (Figure S2).

Figure. S2. Structure of becquerelite projected along [100] and showing the connectivity between the sheets and the Ca ϕ_8 polyhedra. Yellow: UO₇ polyhedra, bleu: Ca ϕ_8 polyhedra, red: O^{2–} atoms and H₂O groups, black: (OH)[–] groups.

The structural data obtained on natural becquerelite from Rabejac are completely consistent with the data published on synthetic becquerelite [12]. The mean bond lengths for the Ca and U sites are exactly the same in natural and synthetic becquerelite samples. These distances are also in good agreement with the distances reported by Pagoaga et al. (1987) [5] for natural becquerelite from Shaba

region. Consequently this study confirms also the presence of six OH⁻ groups and eight water molecules *pfu* in the crystal structure of becquerelite.

	x		у		z	Uiso
Ba1	0.62538	(6)	0.86308	(16)	0.6424(4)	0.0230(4)
U1	0.49428	(4)	0.56022	(10)	0.32715(17)	0.0134(3)
U2	0.50484	(4)	0.06005	(10)	0.8319(2)	0.0151(3)
U3	0.51187	(4)	0.24981	.(8)	0.3694(2)	0.0149(3)
U4	0.74654	(4)	0.44433	8(9)	0.84694(18)	0.0116(2)
U5	0.75678	(4)	0.56264	(9)	0.34421(18)	0.0135(3)
U6	0.76376	(4)	0.75268	8(9)	0.7791(2)	0.0140(3)
O1	0.5500(9)	0.597(2)	0.381(4)	0.034(6)
O2	0.4383(8)	0.526(2)	0277(4)	0.030(6)
O3	0.4484(6)	0.1006(15)	0.887(3)	0.012(4)
O4	0.5628(6)	0.0228(16)	0.787(3)	0.011(4)
O5	0.4538(8)	0.240(2)	0.279(4)	0.031(5)
O6	0.5691(8)	0.2500(19)	0.426(4)	0.027(5)
07	0.6893(7)	0.4871(19)	0.856(4)	0.024(5)
O8	0.8041(9)	0.396(2)	0.837(4)	0.039(6)
O9	0.7000(7)	0.6071(18)	0.334(3)	0.024(5)
O10	0.8147(8)	0.517(2)	0.355(4)	0.028(5)
O11	0.8225(7)		0.7509(17)		0.763(4)	0.019(4)
O12	0.7060(8)		0.757(2)		0.797(3)	0.031(6)
O13 (OH)	0.7300(7)		0.3908(17)		0.520(3)	0.017(4)
O14 (OH)	0.5279(7)	0.3896(17)	0.150(4)	0.022(5)
O15	0.7593(7)	0.5821(19)	0.653(4)	0.029(5)
O16 (H2O)	0.6355(5)	0.6346(13)	0.684(2)	0.002(3)
O17 (H2O)	0.6234(1	.0)	0.7279(18)		0.325(5)	0.036(5)
O18	0.7595(6)	0.9183(16)		0.652(3)	0.019(4)
OH19 (OH)	0.4755(9)	0.7501(19)		0.297(3)	0.028(6)
O20	0.4961(5)	0.4083(12)	0.515(2)	0.000(3)
O21	0.4994(8)	0.098(2)		0.523(3)	0.029(6)
O22 (OH)	0.7720(7)	0.6174(17)		1.024(3)	0.016(4)
O23 (OH)	0.7242(8)	0.2579(18)		0.900(3)	0.022(5)
O24 (OH)	0.5271(6)	0.1028(14)		1.152(3)	0.010(4)
O25 (H2O)	0.3749(1	2)	0.742(2)	0.354(6)	0.051(7)
O26 (H2O)	0.3831(1	2)	0.135(3)	0.512(5)	0.060(9)
O27 (H2O)	0.6151(1	.0)	0.430(2)	0.147(6)	0.045(7)
O28 (H2O)	0.3829(1	.0)	-0.078	(2)	0.625(6)	0.047(7)
O29 (H2O)	0.6362(9)	0.418(2)	0.527(4)	0.030(6)
O30 (H2O)	0.8653(11)		0.583(3)	1.020(4)	0.045(7)
	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ba1	0.0270(9)	0.0211(8)	0.0209(8)	-0.0030(8)	-0.0036(9)	0.0007(7)
U1	0.0246(5)	0.0102(5)	0.0055(6)	0.0012(4)	0.0009(5)	-0.0002(4)
U2	0.0244(5)	0.0087(5)	0.0122(6)	-0.0005(4)	-0.0009(6)	0.0004(4)
U3	0.0218(6)	0.0093(5)	0.0135(6)	0.0002(4)	-0.0004(5)	0.0001(4)
U4	0.0208(5)	0.0052(4)	0.0087(6)	-0.0038(5)	-0.0042(6)	-0.0017(4)
U5	0.0201(5)	0.0083(5)	0.0122(6)	-0.0054(5)	-0.0060(6)	0.0011(4)
U6	0.0225(6)	0.0056(5)	0.0138(6)	0.0047(4)	-0.0022(5)	-0.0027(4)

Table S5. Atom fractional coordinates, isotropic and anisotropic atom displacement parameters (Å²)for billietite.

Bond	d, Å	Bond	d, Å	Bond	d, Å
U101	1.78(3)	U2-O3	1.815(18)	U3-O5	1.87(3)
U102	1.78(3)	U2-04	1.835(19)	U3-06	1.77(2)
U1-OH14	2.48(3)	U2-OH19	2.38(2)	U3-OH14	2.36(2)
U1-OH14	2.62(2)	U2021	2.26(2)	U3-O20	2.231(15)
U1-OH19	2.37(2)	U2021	2.35(2)	U3-O21	2.17(3)
U1-O20	2.273(15)	U2-OH24	2.44(2)	U3-OH24	2.41(2)
U1-O20	2.286(15)	U2-OH24	2.542(19)	<u3–our></u3–our>	1.82
<u1–our></u1–our>	1.78	<u2–our></u2–our>	1.83	<u3–<i>qeq></u3–<i>	2.29
$< U1-\phi_{eq}>$	2.41	$<$ U2– $\varphi_{eq}>$	2.39		
U4–07	1.80(2)	U509	1.80(2)	U6-011	1.78(2)
U4-08	1.83(3)	U5010	1.83(2)	U6012	1.75(3)
U4-OH13	2.48(2)	U5-OH13	2.56(2)	U6-OH13	2.41(2)
U4-015	2.20(3)	U5-015	2.22(3)	U6015	2.25(2)
U4018	2.21(2)	U5–O18	2.27(2)	U6018	2.20(2)
U4-0H22	2.56(2)	U5-OH22	2.43(2)	U6OH22	2.41(2)
U4-OH23	2.38(2)	U5-OH23	2.46(2)	U6-OH23	2.74(2)
<u4–our></u4–our>	1.82	<u5–our></u5–our>	1.82	<u6our></u6our>	1.77
$<$ U4– $\varphi_{eq}>$	2.37	<u5-<i>_q></u5-<i>	2.39	<u6< td=""><td>2.40</td></u6<>	2.40
Ba1–O3	2.915(19)	Ba1–O12	2.96(3)		
Ba1–O4	2.89(2)	Ba1–H2O16	2.793(16)		
Ba1–O5	2.87(2)	Ba1–H2O17	2.80(3)		
Ba1–O8	3.08(3)	Ba1–H2O26	2.66(4)		
Ba1-O10	3.01(2)	Ba1–H ₂ O30	2.85(3)		
		<ba1–ф></ba1–ф>	2.88		

Table S6. Selected bond distances for billietite.

Table S7. The bond-valence analysis (vu) for billietite.	
---	--

	Ba1	U1	U2	U3	U 4	U5	U6	Σ	Species
O1		1.686						1.69	0
O2		1.686						1.69	0
O3	0.182		1.576					1.76	0
O4	0.195		1.516					1.71	0
O5	0.206			1.445				1.65	0
O6				1.731				1.73	0
O7					1.622			1.62	0
O8	0.117				1.531			1.65	0
O9						1.622		1.62	0
O10	0.141					1.531		1.67	0
O11							1.686	1.69	0
O12	0.161						1.786	1.95	0
O13					0.438	0.375	0.501	1.31	OH
O14		0.438 0.334		0.597				1.37	OH
O15					0.750	0.722	0.682	2.15	0
O16	0.253							0.25	H ₂ O
O17	0.249							0.25	H ₂ O
O18					0.736	0.656	0750	2.14	0
O19		0.541	0.531					1.07	OH
O20		0.652		0.753				2.04	0

		0.636							
O21			0.669 0.562	0.841				2.07	0
O22					0.375	0.482	0.501	1.36	OH
O23					0.531	0.455	0.265	1.25	OH
O24			0.473 0.388	0.545				1.41	OH
O25								0.00	H ₂ O
O26	0.363							0.36	H ₂ O
O27								0.00	H ₂ O
O28								0.00	H ₂ O
O29								0.00	H ₂ O
O30	0.217							0.22	H ₂ O
Σ	2.08	5.97	5.71	5.91	5.98	5.84	6.17		

The crystal structure of billietite contains six symmetrically independent U⁶⁺ cations, which are forming typical nearly linear (UO₂)²⁺ uranyl ions. Five of the six uranyl ions are additionally coordinated by five additional ligands ϕ ($\phi = O^{2-}$ or OH⁻) located at the equatorial vertices of the uranyl ions to form $Ur\phi_5$ pentagonal bipyramids. The $\langle U-O_{Ur}\rangle$ and $\langle U-\varphi_{eq}\rangle$ mean bond lengths vary between 1.78 and 1.83 Å, and between 2.37 and 2.41 Å, respectively (Table S6). Like in becquerelite, all of the uranyl ions are coordinated by two O²⁻ anions and three OH⁻ groups. The sixth uranyl ion (U3) is additionally coordinated by four ligands ϕ arranged at the vertices of a distorted octahedron. This polyhedra can also be identified as a distorted square bipyramid. The $\langle U-O_{Ur}\rangle$ and $\langle U-\varphi_{eq}\rangle$ mean bond lengths are 1.82 and 2.29 Å, respectively. The structure contains also one symmetrically independent Ba cation that is coordinated by ten ligands ϕ : six O²⁻ anions belonging to the uranyl ions (Our), and four H₂O water molecules, thus forming a BaO₆(H₂O)₄ polyhedron. The mean $\langle Ba1-\phi \rangle$ bond length is 2.88 Å. In addition, four isolated water molecules (O25, O27–O29) are located in the interlayer space, increasing the connectivity of adjacent sheets through H-bonds. The structural formula of billietite is given by Ba[(UO₂)₃O₂(OH)₃]₂(H₂O)₈.

The structure of billietite is based upon two symmetrically and stereochemically distinct infinite sheets parallel to (100). The first sheet consists of corner- and edge-sharing uranyl pentagonal bipyramids (Figure S3a), and is identical to the sheet occurring in the structure of becquerelite and compreignacite. The second sheet is formed by chains of edge-sharing uranyl pentagonal bipyramids that extend parallel to the *c* crystallographic axis (Figure S3b). Adjacent chains are then connected by corner-sharing and edge-sharing via the U3 distorted square bipyramids.

Figure S3. The structural sheets of uranyl polyhedra occurring in the structure of billietite: (**a**) α -U₃O₈ and (**b**) β -U₃O₈-type sheet. Yellow: UO₇ polyhedra, orange: UO₆ polyhedra, red: O²⁻ atoms, black: (OH)⁻ groups.

The anion topology of this second sheet is actually described as the β -U₃O₈ anion topology, which is also observed in the structure of minerals ianthinite [U⁴⁺₂(UO₂)₄O₆(OH)₄](H₂O)₅ [13], wyartite, and its dehydrated equivalent CaU⁵⁺[(UO₂)₂(CO₃)O₄(OH)](H₂O)₇₋₃ [14,15], spriggite Pb₃[(UO₂)₆O₈(OH)₂](H₂O)₃ [16], and rameauite K₂Ca[(UO₂)₃O₃(OH)₂]₂(H₂O)₆ [17]. Note that in spriggite, billietite and rameauite, the square sites contain U⁶⁺O₆ tetragonal bipyramids, while in wyartite and ianthinite the square sites are occupied by U⁵⁺O₇ polyhedra and U⁴⁺ φ ₆ octahedra, respectively. Adjacent infinite sheets of uranyl polyhedra are connected via the Ba cations which are bonded to six Our atoms, with three of which from the same sheet (Figure S4).

The structural data obtained on natural billietite from Rabejac are completely consistent with the data previously published [4]. As the work of Finch *et al.* (2006) [4], this study confirms the presence of six OH⁻ groups and eight water molecules *pfu* for billietite, and disprove the structural model containing four water molecules *pfu* proposed by Pagoaga *et al.* (1987) [5].

Figure S4. Structure of billietite projected along [001] and showing the connectivity between the sheets and the Ba ϕ_{10} polyhedra. Yellow: U ϕ_7 polyhedra, orange: U ϕ_6 polyhedra, green: Ba ϕ_{10} polyhedra, red: O²⁻ atoms and H₂O groups, black: (OH)⁻ groups.

Table S8. Experimental details for the single-crystal X-ray diffraction study of liebigite.

Sample	U016
Ideal structural formula	Ca2[(UO2)(CO3)3](H2O)11
a (Å)	17.5731(4)
b	16.7367(4)
С	13.7180(4)
V (Å ³)	4034.7(2)
Space group	Aba2
Z	8.654

Calculated density (g·cm⁻³)	2.398
Absorption coefficient (mm ⁻¹)	8.654
F(000)	3008
Radiation (Å)	ΜοΚα, 0.71073
Crystal size (mm)	$0.22 \times 0.16 \times 0.13$
Temperature (K)	293(2)
θ range (°)	2.25 to 28.62
	$-23 \le h \le 21$
Reflection range	$13 \le k \le 21$
	$-18 \le 1 \le 13$
Total no. of reflections	6468
Unique reflections	3810
Observed reflections, $ Fo \ge 4\sigma F$	3504
Refined parameters	320
R_{1} , $ Fo \ge 4\sigma F$	0.0622
R1, all data	0.0669
wR_2 (F^2), all data	0.1678
GOF obs/all	1.033/1.038
$\Delta\sigma_{ m min}$, $\Delta\sigma_{ m max}~(e/{ m \AA^3})$	1.47, -1.09

Table S9. Atom coordinates and isotropic displacement parameters (\AA^2) for liebigite.

			-	
	x	у	Z	$oldsymbol{U}_{ m eq}$
Ca1	0.5	0.5	0.3912(4)	0.0268(10)
Ca2	0.70640(19)	0.3138(2)	0.0879(3)	0.0300(7)
Ca3	0.5	0	0.3041(3)	0.0263(11)
U1	0.54415(3)	0.23821(3)	0.27860(11)	0.02234(18)
C1	0.6311(10)	0.1245(10)	0.1675(13)	0.028(3)
C2	0.5741(11)	0.4038(11)	0.2469(14)	0.035(4)
C3	0.5652(11)	0.3180(11)	-0.0839(15)	0.035(4)
O1	0.06166(9)	0.2371(9)	0.3715(2)	0.043(3)
O2	0.4731(8)	0.2380(9)	0.1845(12)	0.036(3)
O3	0.5214(8)	0.3795(7)	0.3058(10)	0.040(4)
O4	0.4785(8)	0.1347(7)	0.3638(10)	0.035(3)
O5	0.4478(9)	0.2574(8)	0.4033(15)	0.041(4)
O6	0.5808(7)	0.1038(7)	0.2302(9)	0.032(3)
07	0.6086(8)	0.3490(8)	0.1997(11)	0.039(3)
O8	0.6392(8)	0.2012(7)	0.1576(11)	0.035(3)
O9	0.7661(19)	0.1903(14)	0.040(3)	0.120(13)
H9a	0.804(13)	0.19(2)	0.09(2)	0.137
H9b	0.792(18)	0.21(2)	-0.013(14)	0.137
O10	0.5030(10)	0.6017(9)	0.5157(11)	0.044(3)
H10a	0.510(12)	0.652(3)	0.495(10)	0.052
H10b	0.461(7)	0.607(8)	0.552(14)	0.052
O11	0.4115(8)	0.5227(7)	0.2378(11)	0.041(3)
O12	0.6151(9)	0.3466(9)	-0.0286(12)	0.049(4)
O13	0.8088(11)	0.3503(15)	-0.0133(15)	0.070(6)
H13a	0.842(12)	0.314(8)	-0.036(15)	0.084
H13b	0.803(10)	0.381(14)	-0.066(11)	0.084
O14	0.6320(8)	0.5076(9)	0.4418(10)	0.041(3)
H14a	0.655(7)	0.469(7)	0.407(12)	0.049
H14b	0.650(7)	0.552(6)	0.412(13)	0.049
O15	0.7110(8)	0.4583(8)	0.1093(14)	0.051(4)

H15a	0.756(4)	0.485(7)	0.111(17)	0.060
H15b	0.686(10)	0.483(7)	0.158(12)	0.060
O16	0.4109(8)	0.0618(7)	0.1858(10)	0.036(3)
H16a	0.382(9)	0.038(4)	0.140(11)	0.043
H16b	0.390(9)	0.111(5)	0.188(10	0.043
O17	0.6713(7)	0.0752(8)	0.1217(9)	0.034(3)
O18	0.5977(8)	0.0090(8)	0.4297(11)	0.041(3)
H18a	0.588(5)	0.032(12)	0.487(7)	0.048
H18b	0.644(5)	0.029(12)	0.416(7)	0.048
O19	0.7832(11)	0.3244(14)	0.2366(14)	0.072(6)
H19a	0.803(13)	0.287(10)	0.197(10)	0.085
H19b	0.789(14)	0.369(6)	0.200(11)	0.085
O20	0.691(2)	0.684(2)	0.328(4)	0.19(3)
H20a	0.71(3)	0.634(16)	0.31(6)	0.264
H20b	0.73(2)	0.71(3)	0.31(6)	0.264
O21	0.7609(11)	0.523(2)	0.3339(19)	0.134(14)
H21a	0.812(4)	0.52(2)	0.33(3)	0.151
H21b	0.75(2)	0.55(2)	0.28(2)	0.151
O22	0.5839(15)	0.1087(13)	0.5943(17)	0.079(6)
H22a	0.543(11)	0.082(15)	0.57(2)	0.095
H22b	0.576(17)	0.156(8)	0.57(2)	0.095

Table S10. Atom anisotropic displacement parameters (Å²) for liebigite.

	U_{11}	U 22	U 33	U 23	U 13	U_{12}
Ca1	0.030(2)	0.022(2)	0.028(2)	0.000	0.000	0.0046(17)
Ca2	0.0252(16)	0.0329(17)	0.0319(17)	0.0068(16)	-0.0002(14)	-0.0014(14)
Ca3	0.026(2)	0.0199(19)	0.033(3)	0.000	0.000	-0.0010(15)
U1	0.0251(3)	0.0175(3)	0.0244(3)	-0.0039(5)	0.0023(4)	-0.0009(2)
C1	0.032(8)	0.023(7)	0.028(8)	-0.002(7)	0.002(7)	0.005(6)
C2	0.036(9)	0.031(9)	0.038(10)	-0.003(7)	0.007(7)	0.003(7)
C3	0.042(10)	0.023(8)	0.039(10)	0.12(3)	0.12(4)	0.07(2)
O1	0.042(8)	0.047(9)	0.041(8)	-0.001(7)	-0.008(7)	-0.007(6)
O2	0.030(6)	0.042(9)	0.037(8)	0.008(6)	0.002(6)	0.014(6)
O3	0.039(7)	0.022(6)	0.059(11)	-0.011(6)	0.012(6)	0.003(5)
O4	0.044(7)	0.022(6)	0.038(7)	-0.004(6)	0.011(6)	0.000(5)
O5	0.053(10)	0.013(6)	0.058(11)	-0.006(6)	0.020(8)	-0.005(5)
O6	0.031(6)	0.028(6)	0.037(7)	-0.001(5)	0.013(5)	0.003(5)
O7	0.050(8)	0.022(6)	0.045(7)	-0.006(6)	0.026(7)	-0.001(5)
O8	0.040(7)	0.021(6)	0.043(7)	-0.002(5)	0.014(6)	0.002(5)
O9	0.14(3)	0.055(10)	0.16(3)	0.005(18)	0.09(2)	0.006(15)
O10	0.060(9)	0.033(7)	0038(7)	-0.009(6)	0.006(7)	-0.002(7)
O11	0.045(7)	0.025(6)	0.054(8)	-0.008(6)	-0.008(7)	0.002(5)
O12	0.060(10)	0.035(7)	0.051(9)	0.006(7)	-0.028(8)	-0.008(7)
O13	0.055(11)	0.091(16)	0.063(12)	0.005(11)	0.035(10)	0.014(10)
O14	0.033(6)	0.048(8)	0.041(8)	-0.002(6)	0.000(6)	-0.004(6)
O15	0.040(8)	0.032(7)	0.080(12)	-0.008(7)	0.004(8)	-0.010(6)
O16	0.041(7)	0.027(6)	0.040(7)	-0.001(6)	-0.016(6)	0.001(5)
O17	0.027(6)	0.032(6)	0.044(8)	-0.005(6)	0.008(5)	0.001(5)
O18	0.046(8)	0.033(7)	0.044(8)	0.002(6)	-0.018(7)	-0.001(6)
O19	0.060(11)	0.093(14)	0.063(11)	0.022(10)	-0.026(9)	-0.020(10)
O20	0.17(3)	0.12(2)	0.29(6)	0.12(3)	0.12(4)	0.07(2)
O21	0.031(11)	0.30(5)	0.072(15)	0.04(2)	0.011(10)	-0.008(16)

$\phi = \phi =$	O22	0.115(18)	0.066(12)	0.057(11)	-0.002(11)	0.004(13)	0.032(12
---	-----	-----------	-----------	-----------	------------	-----------	----------

Bond	d, Å	Bond	d, Å	Bond	d, Å
U101	1.801(16)	Ca1–O3	2.362(12)	Ca2–O7	2.378(13)
U102	1.796(16)	Ca1–O3	2.362(12)	Ca208	2.422(13)
U1-O3	2.427(12)	Ca1-H2O10	2.413(14)	Ca2-H ₂ O9	2.410(30)
U1-04	2.387(13)	Ca1-H2O10	2.413(14)	Ca2012	2.329(14)
U1-05	2.428(17)	Ca1-011	2.644(15)	Ca2-H2O13	2.353(17)
U1-06	2.433(12)	Ca1-011	2.644(15)	Ca2-H2O15	2.438(14)
U1–07	2.427(13)	Ca1-H2O14	2.425(14)	Ca2-H2O19	2.453(19)
U1–O8	2.435(13)	Ca1-H2O14	2.425(14)	<Са2–ф>	2.40
<u1–our></u1–our>	1.80	<ca1–ф></ca1–ф>	2.46		
<u1–oeq></u1–oeq>	2.42				
Ca3O4	2.429(12)	C1-O6	1.28(2)		
Ca3O4	2.429(12)	C1-O8	1.30(2)		
Ca306	2.462(12)	C1017	1.25(2)	C3-O4	1.32(2)
Ca306	2.462(12)	<c1-o></c1-o>	1.28	C3-O5	1.30(2)
Ca3-H2O16	2.481(13)			C3-O12	1.25(2)
Ca3-H2O16	2.481(13)	C2–O3	1.30(2)	<c3–o></c3–o>	1.29
Ca3-H2O18	2.437(13)	C2-07	1.28(2)		
Ca3-H2O18	2.437(13)	C2-O11	1.26(2)		
<ca3-\$< td=""><td>2.45</td><td><c2–o></c2–o></td><td>1.28</td><td></td><td></td></ca3-\$<>	2.45	<c2–o></c2–o>	1.28		

Table S11. Selected bond distances (Å) in the structure of liebigite.

 Table S12. Hydrogen-bond geometry in the structure of liebigite.

Bond	O–H (Å)	H…O (Å)	O…O (Å)	O−H…O (°)
O9-H9a…O22	1.00(30)	2.40(30)	3.06(4)	126(15)
O9-H9b…O13	0.90(30)	2.40(30)	2.88(4)	115(15)
O9-H9b…O1	0.90(30)	2.30(30)	3.20(4)	164(15)
O10-H10a…O3	0.90(8)	2.71(14)	2.93(3)	95(13)
O10-H10a…O5	0.90(8)	2.11(11)	2.95(2)	156(11)
O10-H10b…O16	0.90(16)	2.17(18)	2.92(2)	140(12)
O13-H13a…O1	0.90(18)	1.95(18)	2.79(3)	156(3)
O13-H13b…O14	0.89(19)	2.40(20)	2.90(3)	115(13)
O14-H14a…O11	0.90(13)	2.60(16)	2.94(3)	103(15)
O14-H14a…O13	0.90(13)	2.36(13)	2.90(3)	119(14)
O14-H14a…O21	0.90(13)	2.30(13)	2.72(3)	108(9)
O14-H14b…O20	0.91(12)	2.59(13)	3.50(4)	176(14)
O14-H14b…O21	0.91(12)	2.28(14)	2.72(3)	110(9)
O15-H15a…O17	0.91(10)	1.98(10)	2.85(2)	160(11)
O15-H15b…O11	0.90(16)	2.04(17)	2.80(2)	142(14)
O16-H16a…O14	0.90(13)	2.83(15)	3.62(2)	146(19)
O16-H16a…O17	0.90(13)	2.13(10)	2.85(2)	136(10)
O16-H16b…O2	0.90(9)	2.58(11)	3.14(2)	121(13)
O16-H16b…O19	0.90(9)	2.27(14)	3.03(2)	142(12)
O18-H18a…O22	0.89(14)	1.95(15)	2.82(3)	163(11)
O18-H18b…O21	0.90(12)	2.02(10)	2.82(3)	148(15)
O19-H19a…O15	0.91(13)	2.38(13)	3.11(3)	138(19)
O19-H19a…O16	0.91(13)	2.40(20)	3.03(2)	122(17)
O19-H19b…O9	0.90(17)	2.77(16)	3.52(5)	142(3)
O19-H19b…O20	0.90(17)	2.49(16)	2.70(5)	94(14)

O20-H20a…O21	0.90(40)	2.10(30)	2.96(5)	155(5)	
O20-H20b…O19	0.90(5)	2.20(60)	2.70(5)	120(3)	
O21-H21a…O6	0.90(11)	2.70(30)	3.40(3)	134(3)	
O21-H21a…O18	0.90(11)	2.10(30)	2.82(3)	136(4)	
O21-H21b…O17	0.90(30)	2.60(30)	3.26(3)	131(3)	
O21-H21b…O20	0.90(30)	2.60(30)	2.96(5)	109(3)	
O22-H22a…O18	0.91(18)	2.50(30)	2.82(3)	103(19)	
O22–H22b…O2	0.87(14)	2.50(20)	3.02(3)	117(1)	

Table S13. Bond-valence table (vu) for liebigite from Rabejac, France.

	U1	C1	C2	C3	Ca1	Ca2	Ca3	Σ	Species
01	1.61							1.61	0
O2	1.63							1.63	0
O3	0.47		1.28		$0.34 \times 2 \downarrow$			2.09	0
O4	0.51			1.21			$0.29 \times 2 \downarrow$	2.01	0
O5	0.47			1.28				1.75	0
O6	0.46	1.35					$0.26 \times 2 \downarrow$	2.07	0
O7	0.47		1.35			0.33		2.15	0
O8	0.46	1.28				0.29		2.03	0
O9						0.30		0.30	H ₂ O
O10					0.30 ×2 ↓			0.30	H ₂ O
O11			1.42		0.16 ×2 ↓			1.58	0
O12				1.46		0.38		1.84	0
O13						0.35		0.35	H ₂ O
O14					0.29 ×2 ↓			0.29	H ₂ O
O15						0.28		0.28	H ₂ O
O16							$0.25 \times 2 \downarrow$	0.25	H ₂ O
O17		1.46						1.46	0
O18							$0.28 \times 2 \downarrow$	0.28	H ₂ O
O19						0.27		0.27	H ₂ O
O20								0.00	H ₂ O
O21								0.00	H ₂ O
O22								0.00	H ₂ O
Σ	6.06	4.08	4.04	3.94	2.19	2.20	2.16		

 \downarrow : Indicates the coordination.

	H9a	H9b	H10a	H10b	H13a	H13b	H14a	H14b	H15a	H15b	H16a	H16b	H18a	H18b	H19a	H19b	H20a	H20b	H21a	H21b	H22a	H22b	H*	Cations	Σ
O1		0.16			0.23																		0.39	1.61	2.00
O2												0.12										0.13	0.25	1.63	1.88
O3			0.10																				0.10	2.09	2.19
O4																							0.00	2.01	2.01
O5			0.19																				0.19	1.75	1.94
O6																			0.10				0.10	2.07	2.17
07																							0.00	2.15	2.15
O8																							0.00	2.03	2.03
O9	0.63	0.70			0.11											0.10							1.54	0.30	1.84
O10			0.70	0.70																			1.41	0.30	1.71
O11							0.12			0.21													0.32	1.58	1.90
O12																							0.00	1.84	1.84
O13		0.14			0.70	0.71	0.15																1.71	0.35	2.06
O14						0.14	0.70	0.70			0.09												1.63	0.29	1.92
O15									0.70	0.70					0.15								1.54	0.28	1.82
O16				0.18							0.70	0.70			0.14								1.73	0.25	1.98
017									0.22		0.19									0.12			0.53	1.46	1.99
018													0.71	0.70					0.20		0.13		1.74	0.28	2.02
O19												0.16			0.70	0.70		0.18					1.73	0.27	2.00
O20								0.12								0.13	0.70	0.70		0.12			1.77	0.00	1.77
O21							0.16	0.16						0.21			0.20		0.70	0.70			2.14	0.00	2.14
022	0.14												0.23								0.70	0.73	1.79	0.00	1.79
Σ	0.77	1.00	1.00	0.89	1.04	0.85	1.13	0.97	0.92	0.91	0.98	0.98	0.94	0.92	0.98	0.92	0.90	0.88	1.00	0.93	0.82	0.85	0.94		1.96

 Table S13. Cont. Bond-valence table (vu) for liebigite.

The crystal structure of liebigite is composed by one symmetrically independent U⁶⁺ cation, which is forming a typical nearly linear UO₂²⁺ uranyl ion. This UO₂²⁺ uranyl ion is coordinated by six oxygen atoms arranged at the equatorial vertices in order to form *Ur*O₆ hexagonal bipyramids. The mean <U–O*u*^{*r*}> bond length is 1.80 Å and the mean <U–O*e*^{*q*}> bond length is 2.42 Å (Table S11). In addition to the *Ur*O₆ polyhedra, three independent C⁴⁺ cations are occurring as typical CO₃ triangles. The <C–O> bond lengths vary between 1.25 and 1.32 Å. The structure also contains three independent Ca²⁺ atoms occurring either in 7- or 8-fold coordination to form the following polyhedra: Ca(1)O₄(H₂O)₄, Ca(2)O₃(H₂O)₄ and Ca(3)O₄(H₂O)₄. Finally, three isolated water molecules (H₂O20, H₂O21 and H₂O22) are occurring in the interlayer space of the structure. The structural chemical formula of liebigite is given by Ca₂[(UO₂)(CO₃)₃](H₂O)₁₁.

The structure of liebigite is based upon the uranyl tricarbonate $[(UO_2)(CO_3)_3]^{4-}$ clusters, which are constituted by one *UrO*₆ hexagonal bipyramid and three CO₃ triangles connected together by edge-sharing. These clusters are linked together by three independent Ca²⁺ polyhedra, and the connection between the clusters and the Ca polyhedra lead to the formation of layers perpendicular to the crystallographic *a* axis. (Figure S5). Each Ca polyhedron is differently connected to the $[(UO_2)(CO_3)_3]^{4-}$ clusters: Ca(1)O₄(H₂O)₄ shares one edge with two CO₃ triangles from two different clusters, Ca(2)O₃(H₂O)₄ shares one edge with *UrO*₆ hexagonal bipyramid and one vertex with CO₃ triangle, and Ca(3)O₄(H₂O)₄ shares one edge with two different *UrO*₆ hexagonal bipyramids (Figure. S6). All the oxygen atoms from the Ca polyhedra which are not linked to the *UrO*₆ or CO₃ polyhedra are connected to hydrogen atoms to form water molecules.

Figure S5. General view projected along the *c* axis of the structure of liebigite, showing the uranyl tricarbonate clusters connected together via the Ca polyhedra. Yellow: UO₈, green: CO₃, green: Ca atoms, red: O^{2-} atoms, white: H⁺ atoms.

Figure S6. Detailed view of the connectivity around the Ca polyhedra: (a) $Ca(1)O_4(H_2O)_4$, (b) $Ca(2)O_3(H_2O)_4$ and (c) $Ca(3)O_4(H_2O)_4$. Same legend as Figure S5.

The hydrogen bonds network is primordial to maintain the stability of the structure of liebigite. The connections between the $[(UO_2)(CO_3)_3]^{4-}$ clusters and the Ca polyhedra result in a lose framework, in which the H bonds strengthen the connectivity and the stability of the structure. On the eleven water molecules located in the structure of liebigite, eight are connected to the Ca polyhedra. These H₂O groups share twelve H-bonds with anions from other Ca polyhedra, seven Hbonds with oxygen atoms of the uranyl carbonate clusters, and seven H-bonds with isolated water molecules (Table S12). Four of the eight water molecules connected to the Ca polyhedra (H2O10, H₂O14, H₂O16 and H₂O19) act as *bond-valence transformers*, transforming the bond valence received from the cation (Ca) into two separate bonds of lower valence towards neighboring anions [18–20]. Three water molecules (H₂O9, H₂O13 and H₂O15) act as *non-transformer* H₂O groups, receiving and giving the same number of bonds. The last water molecule (H₂O18) connected to the Ca polyhedra acts as inverse-transformer H2O group, receiving more bonds than given [20]. Finally, the water molecules, which are not directly bonded to any cations, act as non-transformer H2O groups (H2O21 and H₂O22) or either as *inverse-transformer* H₂O group (H₂O20). They share three H-bonds with anions from the Ca polyhedra, three H-bond with the uranyl carbonate clusters, and two H-bonds with other isolated water molecules (Table S12). Hence, according to the method of Schindler & Hawthorne (2008) [20], the structural formula of the interstitial complex in liebigite can be given as $[7.66]Ca_2(H_2O)_4(H_2O)_2(H_2O)_3(H_2O)_2]^{4+}$

The crystal structure of natural liebigite was firstly reported by Mereiter (1982) [21], from a natural sample of Joachimsthal. Later, Vochten *et al.* (1994) [22] solved the structure of a synthetic phase compositionally intermediate between liebigite and andersonite, Na₂Ca[(UO₂)(CO₃)₃](H₂O)₆. The present study confirms that liebigite contains 11 water molecule *pfu*, as it was demonstrated by the previous structural data [21] and by the chemical analyses performed on synthetic compounds analogue to liebigite [23,24].

References

- 1. Burns, P.C.; Ewing, R.C.; Hawthorne, F.C. The crystal chemistry of hexavalent uranium: Polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. *Can. Mineral.* **1997**, *35*, 1551–1570.
- 2. Lussier, A.J.; Lopez, R.A.K.; Burns, P.C. A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. *Can. Mineral.* **2016**, *54*, 177–283.
- Burns, P.C.; Miller, M.L.; Ewing, R.C. U⁶⁺ minerals and inorganic phases: A comparison and hierarchy of crystals structures. *Can. Mineral.* 1996, 34, 845–880.
- Finch, R.L.; Burns, P.C.; Hawthorne, F.C.; Ewing, R.C. Refinement of the crystal structure of billietite, Ba[(UO2)₆O₄(OH)₆](H₂O)₈. *Can. Mineral.* 2006, 44, 1197–1205.

- 5. Pagoaga, M.K.; Appleman, D.E.; Stewart, J.M. Crystal structures and crystal chemistry of the uranyl oxide hydrates becquerelite, billietite, and protasite. *Am. Mineral.* **1987**, *72*, 1230–1238.
- 6. Burns, P.C. The structure of compreignacite, K₂[(UO₂)₃O₂(OH)₃]₂(H₂O)₇. Can. Mineral. 1998, 36, 1061–1067.
- 7. Burns, P.C.; Hanchar, J.M. The structure of masuyite, Pb[(UO₂)₃O₃(OH)₂](H₂O)₃, and its relationship to protasite. *Can. Mineral.* **1999**, *37*, 1483–1491.
- 8. Cahill, C.L.; Burns, P.C. The structure of agrinierite: A Sr-containing uranyl oxide hydrate mineral. *Am. Mineral.* **2000**, *85*, 1294–1297.
- 9. Burns, P.C. The structure of richetite, a rare lead uranyl oxide hydrate. Can Mineral. 1998, 36, 187–199.
- 10. Plášil, J. Crystal structure of richetite revisited: Crystallographic evidence for the presence of pentavalent uranium. *Am Mineral.* **2017**, *102*, 1771–1775.
- 11. Burns, P.C. The crystal chemistry of uranium. *In Uranium: Mineralogy, Geochemistry and the Environment* (Burns P.C.; Finch R.; Eds.). *Rev. Mineral.* **1999**, *38*, 23–90.
- 12. Burns, P.C.; Li, Y. The structures of becquerelite and Sr-exchanged becquerelite. *Am. Mineral.* **2002**, *87*, 550–557.
- Burns, P.C.; Finch, R.J.; Hawthorne, F.C.; Miller, M.L.; Ewing, R.C. The crystal structure of ianthinite, [U⁴⁺₂(UO₂)₄O₆(OH)₄](H₂O)₅: A possible phase for Pu⁴⁺ incorporation during the oxidation of spent nuclear fuel. *J. Nucl. Mater.* **1997**, *249*, 199–206.
- 14. Burns, P.C. & Finch, R.J. Wyartite: Crystallographic evidence for the first pentavalent-uranium mineral. *Am. Mineral.* **1999**, *84*, 1456–1460.
- 15. Hawthorne, F.C.; Finch, R.J.; Ewing, R.C. The crystal structure of dehydrated wyartite, Ca(CO₃)[U⁵⁺(U⁶⁺O₂)₂O₄(OH)](H₂O)₃. *Can. Mineral.* **2006**, *44*, 1379–1385.
- Brugger, J.; Krivovichev, S.V.; Berlepsch, P.; Meisser, N.; Ansermet, S.; Armbruster, T. Spriggite, Pb₃[(UO₂)₆O₈(OH)₂](H₂O)₃, a new mineral with β-U₃O₈-type sheets: Description and crystal structure. *Am. Mineral.* 2004, *89*, 339–347.
- 17. Plášil, J.; Škoda, R.; Čejka, J.; Bourgoin, V.; Boulliard, J.C. Crystal structure of the uranyl-oxide mineral rameauite. *Eur. J. Mineral.* **2016**, *28*, 959–967.
- 18. Schindler, M.; Hawthorne, F.C. A bond-valence approach to the structure, chemistry and paragenesis of hydroxy-hydrated oxysalt minerals. I. Theory. *Can. Mineral.* **2001**, *39*, 1225–1242.
- 19. Schindler, M.; Hawthorne, F.C. A bond-valence approach to the uranyl-oxide hydroxy-hydrate minerals: Chemical composition and occurrence. Can. Mineral. 2004, 42, 1601–1627.
- 20. Schindler, M.; Hawthorne, F.C. The stereochemistry and chemical composition of interstitial complexes in uranyl-oxysalt minerals. *Can. Mineral.* **2008**, *46*, 467–501.
- 21. Mereiter, K. The crystal structure of liebigite, Ca₂UO₂(CO₃)₃·~11H₂O. *Tscher. Miner. Petrog.* **1982**, 30, 277–288.
- 22. Vochten, R.; Van Haverbeke, L.; Van Springel, K. The structure and physicochemical characteristics of a synthetic phase compositionally intermediate between liebigite and andersonite. *Can. Mineral.* **1994**, *32*, 553–561.
- 23. Meyrowitz, R.; Ross, D.; Weeks, A.D. Synthesis of liebigite. U.S. Geological Survey Prof. Paper 1963, 475B, 162–163.
- 24. Čejka, J. To the chemistry of andersonite and thermal decomposition of dioxo-tricarbonatouranates. *Chem. Commun.* **1969**, *34*, 1635–1656.