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Abstract: Mortars from different stratigraphic units at Portilla Castle (Alava, North Spain) have
been analyzed for mineralogical characterization before radiocarbon dating. The mortar binder at
Portilla Castle is composed not only of neoformation calcite but also of double-layered hydroxide
(LDH) minerals such as hydrotalcite and hydrocalumite. The mineralogy of several fractions of
the binder has been analyzed to determine the granulometric distribution of minerals in the binder.
The continuous monitoring of mineralogy during the extraction of different grain size fractions
has been performed by using a scanning electron microscopy (SEM), X-ray diffraction (XRD), and
thermogravimetric analyses (TGA). Hydrotalcite and hydrocalumite-bearing mortar binders give
older ages than expected since they introduce dead carbon into the system.
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1. Introduction

One of the main goals in building archaeology is to determine the age of the structures discovered.
In the absence of written records or other archaeological evidence to establish the chronology of the
building, traditionally wooden timbers are used in radiocarbon dating [1]. Through this way, the
date obtained may point to older ages due to material reuse or long storage. Therefore, it is vital to
determine that the historical remains are not affected by the use of older construction materials since
the reuse of wood materials leads to an in-built age defined as the difference between the time when
the wood formed and the date of the event of interest [2–5].

In this framework, mortars can provide a potential dating solution. Archaeological mortars are
artificial materials composed of a mixture of lime or plaster as binder and sand or other kinds of
organic or inorganic additive as aggregates. The ease of preparation as well as the availability of raw
materials and their durability have contributed to make mortars ubiquitous materials at sites from
the Neolithic period onwards, which becomes an important source of information in archaeological
sites [6,7].

Archaeological mortars have been dated by using radiocarbon methods since the 1960s as a way
to determine the age of historical/archaeological structures. As such, the application of radiocarbon
dating of mortars has been described by several authors [8–21]. Many studies have used charcoal
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fragments or other organic inclusions embedded in the mixture to date archaeological mortars.
However, the dating of charred materials could provide aged dates by incorporating “dead” C into the
system since the calcination process can already be decades or centuries old [22–24].

Lime mortar dating is useful since the mortar binder should reflect the time period when the
building was constructed. The basic mortar production technology, known as the lime cycle, can be
explained as follows: the calcium carbonate (CaCO3) of the limestone is heated at a high temperature
(800–1000 ◦C) to liberate carbon dioxide (CO2) and produce quicklime (CaO) in the calcination process
(Equation (1)). Then the calcium oxide is slaked by adding water. It then forms portlandite (Ca(OH)2)
(Equation (2)). Throughout this phase, portlandite crystals are rearranged and become smaller and
foil-like, which enhances their future CO2 absorption capability [25]. The slaked lime is mixed with
aggregates to increase its workability. In the setting phase, the calcium hydroxide in the mortar reacts
with atmospheric carbon dioxide and again becomes calcium carbonate in a carbonation process
(Equation (3)) [26].

The lime cycle is summarized in the following equations.

CaCO3 → CaO + CO2 (1)

CaO + H2O→ Ca(OH)2 (2)

Ca(OH)2 + CO2 → CaCO3 + H2O (3)

The 14C of atmospheric carbon dioxide is fixed in the neoformation carbonate as a result of the
hardening process and the radiocarbon dating of the binder gives the age of the building. In practice,
discrepancies between radiocarbon ages and expected ages are frequently observed. These fluctuations
correspond to primary carbonate relicts resulting from the inefficient calcination of the limestone or to
carbonate aggregates (limestone fragments) added to the mortar. Those carbonates of different origin
are the main problem in radiocarbon dating since they affect the accuracy of results by adding “dead”
C to the system and cause an aging of dates [15,18,21,27].

Several methodologies and preparation procedures have been developed to isolate a pure
neo-formation calcite fraction without any other carbon contaminant [17–21,28–31]. The first procedures
to date the binder consisted of the hydrolysis of lime binder particles of different grain size fractions
by using diluted hydrochloric acid (HCl) or 85% ortophosphoric acid (H3PO4) [12,13,16,17,19–21,32–35].
When carbonate aggregates appear, mechanical/physical methods of binder extraction are an alternative
to chemical methods to avoid contamination by carbonate aggregates in the fraction used for
hydrolysis [29,30,36]. The use of lime lumps in mortar for radiocarbon dating has been reported by
Van Strydonck et al. [16] and Lindroos et al. [17] since these lumps represent a pure binder when the lime
is scarcely mixed with the aggregates [37,38].

However, previously developed protocols do not always solve the problem because often the
obtained ages are older or younger than expected. Since the proposed methods do not seem to
provide consistent and reproducible results, it is imperative to develop new procedures to assess the
contaminant nature and the granulometric distribution within the binder. Since particle size is the
main issue to obtain a suitable fraction for dating, the extraction and monitoring of the adequate grain
size particle of the binder becomes vital [28].

When dolostones and/or limestones enriched in magnesium are used as a raw material in lime
production, magnesium minerals should be considered in the mortar binder because they may add
new problems to mortar dating.

During the calcination of calcium magnesium rich limestone, the dolomitic lime cycle differs
from the typical lime cycle. When the natural dolomite (CaMg(CO3)2) is burned, a half thermal
decomposition occurs by generating a mixture of periclase (MgO), quicklime (CaO) and calcite
(CaCO3) [39]. At the beginning, during the calcination process between 640 ◦C to 740 ◦C, the dolomite
decomposes to produce calcite (CaCO3) and periclase (MgO) (Equation (4)). Afterward, the generated
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calcium carbonate decomposes in quicklime (CaO) (Equation (5)). These reactions are described by the
equations below.

CaMg(CO3)2 → CaCO3 + MgO + CO2 (4)

CaCO3 → CaO + CO2 (5)

As a result of the slaking process, besides portlandite (Ca(OH)2), the brucite (Mg(OH)2) mineral
phase is also formed, which leads to a wider variety of phases during the carbonation process of the
mortar binder.

In comparison with the carbonation of portlandite to calcite, the carbonation of brucite is not
simple. Brucite is a relatively stable compound that causes a slow carbonation process and even
yields partial carbonation. The resulting mortars contain a mixture of compounds in varying amounts.
Therefore, the dolomitic lime cycle does not constitute a full cycle like the calcium lime cycle [40].

Likewise, during the slaking process in the dolomitic cycle, layered double hydroxide (LDH)
compounds can be formed [41]. In general, LDH minerals are often referred to as hydrotalcite-like
clay (HT-like) since hydrotalcite is one of the most representative minerals in this group [42,43]. The
presence of Al3+ ions combining with Mg2+ ions from MgO leads to the formation of hydrotalcite
crystals [Mg6Al2(CO3)(OH)16·4(H2O)] [44]. The MgO-Al2O3 rehydrates and combines with other
available anions present in the putty to form hydrotalcite in the presence of water [45,46].

A hydrotalcite mineral is based on positive brucite-like layers alternating with layers containing
anions and water molecules. In the crystallographic structure of hydrotalcite, some Mg2+ cations are
replaced isomorphously by Al3+ cations in octahedral sites. The resultant positive charge is balanced
by CO3

2− anions in the interlayer sites where the crystallization water can also be found [47–50].
Under hyper-alkaline conditions during the slaking process, Ca2+ ions are sparingly

soluble [51,52]. Over time, early-formed portlandite is consumed, which forms more stable Ca
minerals [53]. In the presence of aluminate ions (Al(OH)4−) from the decomposition of clay minerals
present as impurities in the raw material, the portlandite (Ca(OH)2) is transformed into some forms
of LDH minerals such as hydrocalumite [Ca4Al2(Cl,CO3,OH)2(OH)12·4H2O] [54,55]. Therefore,
hydrocalumite is the calcium analogue of hydrotalcite [50,56]. Consequently, these LDH minerals have
a high capacity to capture large anions such as CO3

2−due to their ion-exchange properties [47].
LDH phases have been observed in ancient hydraulic mortars, in modern pozzolanic cements,

and in dolomitic lime mortars [57–60]. Nevertheless, until the current study, neither the shape nor the
size distribution of hydrotalcite and hydrocalumite in the lime mortars has ever been described in
detail. To this end, it is essential to establish particle size distribution of mineral phases in the binder.
For this purpose, several size grain fractions of the binder have been extracted by a settling procedure
and by checking the mineralogy of all fractions using multi-analytical techniques.

The aim of this work is to study mineral composition of the mortar binder obtained by the
calcination of dolostones and/or impure limestones in order to select the adequate fraction to date.
Several mortar samples from the main structures of Portilla Castle (Álava, Spain) have been analyzed
by adapting previous extraction procedures to the real mineralogy.

2. Archaeological Background

The archaeological site of Portilla is located in the village of Zambrana (Álava, Spain) (Figure 1).
Portilla Castle and the Portilla de Ibda medieval village form the archaeological site. The site was
classified as Cultural Heritage with the category of Monumental Complex in 2012 because it constitutes
one the best-conserved examples of a fortified medieval settlement. The archaeological work showed
discontinuous periods of occupation during the Late Bronze and Early Iron Ages, the Late Roman
Period (3rd to 5th centuries AD), and the Late Middle Ages (11th to 15th centuries).

Portilla Castle is located on Txulato Mountain and the strategic location was valuable for the
Kingdom of Navarre during the 11th and 12th centuries until, in the 13th century, it became part of the
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Kingdom of Castile. In the early 14th century, the fortified village gradually lost its population as a
more accessible settlement was established in the valley. Although the first written references to Portilla
date back to the year 1040, the origin and later evolution of the building remains unknown [61,62].Minerals 2018, 8, x FOR PEER REVIEW  4 of 16 
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Figure 1. Geographic location of Portilla Castle (Álava, Spain).

3. Materials and Methods

Seven samples of archaeological mortars from different stratigraphic units (SU) at Portilla Castle
were considered for lime mortar sampling. Of the fourteen structures defined [62], the three most
significant structures were selected in the sampling known as the West Tower (A14, SU-2), Tower Keep
(A12, SU-4), and the East Tower (A11, SU-19) (Figure 2 and Table 1).

Minerals 2018, 8, x FOR PEER REVIEW  4 of 16 

 

 
Figure 1. Geographic location of Portilla Castle (Álava, Spain). 

3. Materials and Methods 

Seven samples of archaeological mortars from different stratigraphic units (SU) at Portilla 
Castle were considered for lime mortar sampling. Of the fourteen structures defined [62], the three 
most significant structures were selected in the sampling known as the West Tower (A14, SU-2), 
Tower Keep (A12, SU-4), and the East Tower (A11, SU-19) (Figure 2 and Table 1). 

To determine the binder and aggregate types, mortar thin-sections were analyzed by an optical 
polarizing microscope using a Nikon Eclipse LV100POL microscope equipped with a DS F-I1 digital 
camera and a DS L-2 control unit. 

 

Figure 2. Studied structures at Portilla Castle. West Tower (A14), Tower Keep (A12), and East Tower 
(A11). 
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Table 1. Studied samples from different structures at Portilla Castle.

Stratigraphic Unit Archaeological
Structure Sample

SU-2 West Town (A14) CP-2

SU-4 Tower Keep (A12)

CP-4
CP-13-6
CP-13-8

CP-13-10

SU-19 East Town (A11)
CP-19

CP-13-3

SU: Stratigraphic Unit.

To determine the binder and aggregate types, mortar thin-sections were analyzed by an optical
polarizing microscope using a Nikon Eclipse LV100POL microscope equipped with a DS F-I1 digital
camera and a DS L-2 control unit.

The binder was analyzed by several techniques. The X-ray diffraction (XRD) analysis in a powder
sample was performed using a Philips X’Pert diffractometer (Malvern PANalytical, Almelo, The
Netherlands) equipped with a monocromatic Cu-kα1 X-radiation operating at 40 kV and 20 mA.
The data collection on the powder sample was performed by a continuous scan in the range 5◦ to
70◦ [2θ] at an acquisition rate of 0.02◦ per second [2θ]. The interpretation of diffraction patterns
and semi-quantitative calculation were performed with X’Pert HighScore Plus 3.0 software (Malvern
PANalytical, Almelo, The Neatherlands) by using a PANalytical on the basis of the characteristic space
of each mineral by reconstructing mineral profiles of the compounds and comparing the experimental
peaks with experimental patterns of ICDD and ICSD diffraction databases. The extracted fractions of
the binder were analyzed by using the scanning electron microscopy (SEM) with a JEOL JSM-7000F
Schottky-type field emission scanning electron microscope (JEOL, Tokyo, Japan) and by operating with
an Oxford Pentafet photon energy instruments Link Isis X-ray (EDX) microanalysis system. Samples
were carbon-coated to eliminate charging effects. Thermo-gravimetric analysis (TGA) was performed
in a TA SDT 2960 TG-DSC simultaneous instrument (TA Instruments, New Castle, DE, USA). Pt
crucibles containing 5 mg to 7 mg of the sample were heated at 2 ◦C min−1 from room temperature
to 1000 ◦C under a dry oxidizing atmosphere. The samples have been dated by the 14C accelerator
technique (AMS) in Beta Analytic Inc. (Miami, FL, USA). The conventional 14C ages were calibrated by
using OxCal v4.2.3 software [63] and an IntCal13 atmospheric calibration curve [64].

Extraction Procedure

A settling extraction procedure has been performed to obtain different grain size fractions of the
binder based on the procedure described by Ortega et al. [28]. In order to assess the potential of the
binder as a time record, the extracted fractions have been characterized mineralogically. Unlike in
Ortega et al. [28], the mortars from Portilla Castle show a more complex mineralogy in the finest fraction
(<2 µm). The occurrence of potential contaminant phases such as LDHs has led to an adjustment of
the extraction procedure to refine the fraction suitable for dating. The modification of the procedure
consists of both modifying centrifugation times and including an additional extraction step. The
modified extraction procedure of the fractions consists of the following steps (Figure 3).

1. The few upper millimeters of mortar surface were removed using a scraper to eliminate the altered
surfaces that may interfere in the analytical results. Then mortars were crumbled manually, which
is described by Casadio et al. [65]. The fragments of charcoal produced during lime production
were picked out and removed.

2. The sample was placed in an ultrasonic bath with 150 mL of ultrapure water for 10 min. To
promote further crumbling, the test tube was shaken vigorously and then left to rest for 5 min.
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Then, the topmost 50 mL of suspended volume corresponding to particle fraction size 2 µm to
20 µm was extracted. This fraction was referred to as coarse fraction (CF).

3. Coarse fraction enriched in the binder was re-suspended in 65 mL of ultrapure water and placed
in the ultrasonic bath to promote particle disaggregation. The suspension was centrifuged for
100 s at 1000 rpm. The uppermost 15 mL were collected corresponding to a grain size fraction of
<2 µm and were referred to as a fine fraction (FF).

4. From the fine fraction, the particles of grain size <0.5 µm were removed. To this end, the sample
was re-suspended again in 65 mL of ultrapure water and placed in an ultrasonic bath. The
suspension was centrifuged for 9 min at 2000 rpm and the uppermost 15 mL were collected and
referred to as ultrafine fraction (UF).

5. The suitable fraction enriched in neoformation calcite was obtained as a result of removing the
ultrafine fraction (UF) from the fine fraction (FF). This fraction was named a target fraction (TF)
corresponding to a grain size between 0.5 µm to 2 µm.

6. The collected fractions were concentrated via centrifugation at 3000 rpm for 10 min using a
Kubota 3000 centrifuge (Kubota Corp., Tokyo, Japan).

To avoid the precipitation of calcite during the extraction process by absorption of modern
atmospheric CO2, ultrapure water was used throughout the process. Moreover, the water is buffered
at pH = 8 to preclude the calcite dissolution and favor the optimal scattering of small crystals [66]
and, at the same time, avoid chemical reactions that dissolve the calcite [67]. Furthermore, 30 mL of
each collected fraction (CF, FF, UF, and TF) were placed in a Petri dish to monitor fraction grain size
by several analytical techniques in order to determine the mineralogical composition throughout the
procedure. The fractions were dried in an oven at 80 ◦C. According to the binder/aggregate relation of
mortars, the procedure was repeated as necessary until a sufficient amount of the binder for accelerator
mass spectrometry (AMS) analysis (>0.8 mg) was obtained.
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of different particle-fractionations of the binder mortar and Step 6 shows the concentration of the
extracted fraction. CF: coarse fraction, FF: fine fraction, UF: ultrafine fraction, TF: target fraction.

4. Results and Discussion

Petrographic studies of mortar have been used to identify the nature of aggregates and the
binder. The relation and ratios between the aggregates and cementing matrix, texture, form, and
size of mortar components have also been observed. The petrographic study of the Portilla samples
revealed the similar nature of all the mortars but revealed heterogeneous textures. Aggregates were
composed by heterometric and angular/sub-angular detrital quartz, limestone fragments, some
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partially dolomitized, and unburnt limestone remains (Figure 4a,b). Within the binder matrix,
heterometric lime lumps were observed (Figure 4c,d). Additionally, minute charcoal fragments
were present in most samples (Figure 4d). Textural and mineralogical heterogeneities constituted
additional difficulties for the extraction of the binder.
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Figure 4. Photomicrographs showing the textural heterogeneity of historic lime mortars from Portilla
Castle. (a) Mortar with rock fragments, lumps, and quartz grains. (b) Fragments of unburnt limestone
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with a pure lump and charcoal fragment. Rx: rock fragment, Qtz: quartz, L: lump, U: unburnt,
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During the binder extraction process, several analytical techniques were applied to evaluate the
mineralogy of the different fractions and monitoring the extraction method. By XRD analysis of the fine
fraction (<2 µm), magnesium calcite was identified as the main component of all samples while quartz,
hydrotalcite [Mg6Al2(CO3)(OH)16·4(H2O)], and hydrocalumite [Ca4Al2(Cl,CO3,OH)2(OH)12·4H2O]
are also present in minor amounts (Figure 5). The low intensity of hydrotalcite and hydrocalumite
reflections indicates not only low abundance but also the low degree of crystallization of these mineral
phases [49].
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These LDH mineral phases are formed as a result of the slaking process and identification and
characterization is crucial due to their very high ability to fix carbonate anions [68]. During the
rehydration process, CO3

2− from the partial washing of unburnt fragments of limestone is fixed in the
crystalline structure of HT-like minerals. The captured CO3

2− introduces dead carbon in the system
and ages the radiometric dates. A new step was introduced in the extraction procedure in order to
remove the potential contaminant HT-like mineral phases in the ultrafine fraction (<0.5 µm).

SEM observations of fine fraction (<2 µm) of the binder confirm the presence of very small HT-like
particles embedded in a calcitic matrix (Figure 6). Irregular and hexagonal crystals of <0.5 µm grain
size, corresponding to Ca-enriched or Mg-enriched anion clays, can be observed in Figure 6b. The
Energy Dispersive X-ray (EDX) analyses indicate that well-formed or euhedral crystals correspond to
Ca-enriched HT-like particles (point 1 in Figure 7) while the irregular or anhedral crystals correspond
to Mg-enriched HT-like particles (point 2 in Figure 7). Therefore, Ca-enriched particles correspond
to hydrocalumite and Mg-enriched particles to hydrotalcite. In fact, hydrotalcite is more likely to be
present as a non-well-formed phase compared with hydrocalumite [44]. The EDX analysis also shows
the presence of silica that has been attributed to the presence of microcrystalline quartz. The SEM
images of ultrafine fraction (<0.5 µm) show a homogeneous matrix composed only of hydrotalcite and
hydrocalumite phases of a <0.5 µm grain size. The SEM-EDX analysis supports that the extraction of
HT-like minerals from the fine fraction was successful (Figure 6c).
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Figure 7. Energy dispersive X-ray analyses results of layered double hydroxides (LDH) of the fine
fraction shown in Figure 6b. Point 1 is Ca-enriched anion clay (i.e., hydrocalumite) and point 2 is
Ca-enriched anion clay (i.e., hydrotalcite).

Petrographic, XRD, and SEM-EDX analyses show that the raw material used to obtain lime was
impure limestone and/or partially dolomitized limestone. When limestones enriched in calcium
magnesium are calcined, magnesium minerals should be considered in the mortar binder. Magnesium
oxide (MgO) is formed as well as calcium oxide (CaO) during the calcination of dolomitic rocks due to
the dolomitic cycle, which differs from the typical lime cycle (Figure 8).

Considering that the LDH mineral phases constitute a potential contaminant in radiocarbon
dating, the grain size fraction <0.5 µm (i.e., ultrafine fraction) is extracted in order to eliminate these
phases. XRD patterns of UF show significant increases of reflexions at d = 7.86 Å (11.2◦ 2θ), d = 7.69 Å
(11.4◦ 2θ), d = 3.83 Å (23.2◦ 2θ), and d = 2.58 Å (34.4◦ 2θ) corresponding to hydrotalcite and indicate a
large enrichment of LDH mineral phases in the ultrafine fraction (Figure 5b).

As a result of the LDH minerals phase being removed, the target fraction (TF) corresponds to
the grain size fraction between 0.5 µm to 2 µm. An XRD pattern of the TF fraction shows an increase
in magnesium calcite reflections while hydrotalcite reflections disappear (Figure 5c). Nevertheless,
an extraction procedure of the target fraction has to be checked in each mortar sample. Figure 9
shows XRD patterns of the target fraction of several samples. The presence and the intensity of
characteristic reflections of LDH minerals in some XRD patterns suggest different levels of refinement
in the extraction procedure, which indicates different amounts of LDH minerals in each sample. As
can be observed, CP-2-TF, CP-4-TF, and CP-19-TF samples exhibit low intensity hydrotalcite reflections
while CP-13-3-TF, CP-13-6-TF, CP-13-8-TF, and CP-13-10-TF samples still present significant LDH
mineral reflections.
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Table 2 summarizes the mineralogical assemblages and the semi-quantitative values (expressed in
percentages) of identified phases in the ultrafine (<0.5 µm) and target (0.5 µm to 2 µm) factions. XRD
results of target fraction show the persistent presence of LDH phases in small variable amounts in all
samples. Nevertheless, XRD analysis does not always detect the presence of LDH phases when the
amount remains near or under the detection limit. To check the extraction of the target fraction, even
when the LDHs are not detected by XRD analysis, thermo-gravimetric analysis (TGA) is performed.
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Table 2. Semi-quantitative data results (%) of X-ray diffraction analyses of target and ultrafine fractions
of mortar binders.

Sample
Target Fraction (%) Ultrafine Fraction (%)

Mg-Cal HT HC Qtz Total LDHs Mg-Cal HT HC Qtz Total LDHs

CP-2 88 3 6 3 9 64 12 24 - 36
CP-4 84 8 8 - 16 58 16 26 - 42
CP-13-6 62 10 28 - 38 38 28 34 - 62
CP-13-8 79 9 10 2 19 48 28 24 - 52
CP-13-10 85 4 10 1 14 55 22 23 - 45
CP-19 89 5 5 1 10 55 24 20 - 44
CP-13-3 68 13 18 1 31 61 11 28 - 39

Mg-Cal: magnesium calcite, HT: hydrotalcite, HC: hydrocalumite, Qtz: quartz, LDHs: layered double hydroxides.

The temperature ranges and relative weight loss observed in TGA analysis are reliable for the
characterization of these materials. The first weight loss below 120 ◦C is attributed to the presence of
adsorption water in the inter-particle pore. The second weight loss occurs between 120 and 200 ◦C and
is attributed to the crystallization water or the interlayer water. The weight loss between 200 ◦C to
600 ◦C is attributed to structural OH−, which corresponds to the dehydration of the Ca(OH)2 of pure
carbonates. Lastly, at temperatures above 600 ◦C, the loss of CO2 takes place due to the decomposition
of the carbonate [69–71]. However, in the third decomposition step (200 ◦C to 600 ◦C) of target fraction
(0.5 µm to 2 µm) from Portilla Castle samples, the TGA curve shows two weight loss steps (Figure 10).
These weight losses correspond to the decomposition of LDH phases and are attributed to the loss of
the OH− groups bonded to Al3+ and to Mg2+ in Mg-Al-CO3 compounds [72,73].
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Figure 10. Thermo-gravimetric analyses of target fractions of representative mortar binders. (A) Binder
samples with little weight loss and (B) binder samples with clear stepped weight loss in the 200 ◦C to
600 ◦C range.

The thermos-gravimetric analyses of the target fraction show two different patterns, which are
representative of TGA curves. These patterns are shown in Figure 10. The pattern type-A corresponds
to samples with little weight loss in the 200 ◦C to 600 ◦C range (CP-2-TF, CP-4-TF, and CP-19-TF) while
pattern type-B displays a pronounced stepped weight loss (CP-13-3-TF, CP-13-6-TF, CP-13-8-TF, and
CP-13-10-TF). Table 3 summarizes the weight loss percentages of the target fraction in each temperature
range. Samples show weight loss between 1.5% and 2.9% due to adsorbed water. The lower weight
loss of water molecules from the interlayer space corresponds to type-A patterns and higher to
type-B patterns. The weight loss between 200 ◦C and 600 ◦C temperature range corresponding to the
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dehydroxylation processes shows larger variations in the TG curves. Type-A pattern curves show
weight loss varying from 10.3% to 12.8% while the weight loss in the type-B patterns varies from 13.6%
to 19.6%. Weight loss in dehydroxylation processes shows larger contents of LDH minerals in the type-B
samples than in samples with a type-A pattern. When over 600 ◦C, carbonates decompose and CO2

content ranges between 16.3% and 23.5%. The weight loss of pure calcium carbonate decomposition
is 44% and lower percentages of weight loss indicate variable amounts of other compounds as LDH
minerals. Therefore, mortars with no or little structurally-bound water (OH−) and high carbon dioxide
content are potentially adequate for radiocarbon dating since they reflect the absence of other carbonate
phases apart from calcite. Therefore, CP-2 and CP-19 are the most suitable mortars for radiocarbon
dating since they display lower structurally-bound water and higher carbon dioxide content (Table 3).

Table 3. Thermo-gravimetric analysis results (wt %) of target fractions of mortar binders.

Sample Pattern Type H2O(Itp) H2O(Itl) OH− CO3
2−

CP-2-TF A 1.46 1.35 10.40 23.47
CP-4-TF A 2.86 1.82 12.8 16.28
CP-13-6-TF B 2.30 2.78 19.64 18.46
CP-13-8-TF B 1.89 2.28 15.41 23.04
CP-13-10-TF B 1.89 2.12 17.01 21.83
CP-19-TF A 2.54 1.41 10.31 23.29
CP-13-3-TF B 2.77 2.45 13.56 18.06

Itp: interparticle, Itl: interlayer, TF: target fraction. Pattern type as referred in Figure 10.

Since sample CP-19 shows the lowest weight loss of structurally-bound water corresponding to
the decomposition of LDH phases, it has been selected instead of sample CP-2. In order to verify the
contaminant potential of LDHs, both fine fraction (particle size <2 µm) and target fraction (particle
size between 0.5 and 2 µm) have been dated (Table 4).

Table 4. Results of AMS 14C dates for different grain-size fractions of mortar binder.

Lab Code Sample Binder Grain-Size Conventional Age δ13C Calibrate Age (95.4%)

BETA375404 CP-19-TF 0.5–2 µm 1370 ± 30 BP −16.5 Cal AD 640–675
BETA343295 CP-19-FF <2 µm 2180 ± 40 BP −21.3 Cal BC 380–160

TF: target fraction, FF: fine fraction.

The result of 14C dating of CP-19-FF is 2180 ± 40 BP corresponding to the calendar age of Cal
BC 380–160 (Figure 11a) and the radiocarbon age of CP-19-TF is 1370 ± 30 BP, which corresponds
to the calendar age of Cal AD 640–675 (Figure 11b). The obtained dates are older than expected
since the first written chronicle of Portilla Castle is dated in 1040 AD. The age interval between the
archaeological age and radiocarbon ages of the target fraction reflects the persistent presence of dead
carbon contamination related with the CO3

2−anion of hydrotalcite and hydrocalumite.
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Figure 11. Calibrated 14C dates of two fraction-sizes of the same lime mortar from Portilla Castle, (a) fine
fraction (FF), and (b) target fraction (TF) obtained with OxCal v 4.1.7 [63] and IntCal09 atmospheric
data [64].

The mineralogical composition of carbonate phases of the mortar binder and the granulometric
distribution has determined the particle size to be extracted for radiocarbon dating. The selection of
fine-grain size fraction (<2 µm) is only useful when the mortar binder is formed solely by calcite, e.g.,
Ortega et al. [28]. In contrast, when the binder includes hydrotalcite and hydrocalumite besides
neo-formation calcite, as in Portilla Castle, which determines the granulometric distribution of
carbonate minerals is essential in selecting effective thresholds. Once the granulometric distribution
is determined, the most suitable preconditioning method should be established for each sample in
order to isolate the adequate fraction for radiocarbon dating. Therefore, dating of mortars without a
comprehensive mineralogical study can lead to meaningless results.

5. Conclusions

Portilla Castle mortars are formed by calcitic binder and quartz, limestone fragments, some
partially dolomitized, and unburnt limestone remains as aggregates. The presence of hydrotalcite
and hydrocalumite in the fine grain fraction of binder indicates the use of impure limestone and/or
partially dolomitized limestones in the lime production. These raw materials provide magnesium and
aluminium ions and under hyper-alkaline conditions lead to the formation of LDHs phases during the
slaking process.

The continuous mineralogical control of the extraction procedure allows a better mineralogical
characterization of the finest grain fractions (<2 µm) of the binder. Only the study of these fractions
allows the identification of hydrotalcite and hydrocalumite in lime mortars. In this contribution,
additional steps in the extraction process to remove small grain size particles enriched in LDHs has
been performed making the obtained radiocarbon dates closer to the archaeological ages.

The occurrence of hydrotalcite and hydrocalumite mainly in the grain size is smaller than 0.5 µm
in the Portilla Castle mortars, which adds dead carbon to the system and explains older ages than
expected. Therefore, hydrotalcite and hydrocalumite constitute crucial contaminant mineral phases in
mortar dating issues.

Mineralogical studies are essential to select the samples for dating and reject unsuitable samples
since they allow the mineralogical nature of the contaminants and the grain size distribution within
the binder to be determined. Mineralogical studies of the binder have to develop tailored purification
procedures for each sample.
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