

Supplementary Materials

Physicochemical Model of Formation of Gold-Bearing Magnetite-Chlorite-Carbonate Rocks at the Karabash Ultramafic Massif (Southern Urals, Russia)

Valery Murzin, Konstantin Chudnenko, Galina Palyanova, Aleksandr Kissin and Dmitry Varlamov

- ¹ A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of Russian Academy of Sciences, Vonsovskogo str., 15, Ekaterinburg 620016, Russia; murzin@igg.uran.ru (V.M.); kissin@igg.uran.ru (A.K.)
- ² A.P. Vinogradov Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences, Favorskogo str., 1a, Irkutsk 664033, Russia; chud@igc.irk.ru
- ³ V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Akademika Koptyuga pr., 3, Novosibirsk 630090, Russia
- ⁴ Department of Geology and Geophysics, Novosibirsk State University, Pirogova str., 2, Novosibirsk 630090, Russia
- ⁵ Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia; dima@iem.ac.ru
- * Correspondence: palyan@igm.nsc.ru

.

No. Sample	1512	1422	1410	1421
Li	4.622	7.275	96.061	2.483
Be	0.217	0.014	0.000	0.152
В	27.074	3.533	0.300	9.794
Sc	7.89	21.99	63.46	62.36
Ti	89.6	24.5	2762.4	4095.2
V	25.19	66.37	138.17	70.11
Cr	1610	4367	15.8	71.9
Mn	770	573	1518	6937
Co	115.0	125.7	42.58	28.63
Ni	2500.1	3679.4	32.9	147.3
Cu	53.9	134.7	115.7	1082.4
Zn	56.42	163.02	250.18	511.46
Ga	1.552	5.508	3.359	0.346
Ge	1.321	0.053	0.775	0.107
As	34.611	-	16.177	12.914
Rb	0.359	0.544	0.328	0.172
Sr	8.9	6.3	65.0	1644
Y	0.250	0.473	13.169	46.115
Zr	2.064	0.799	104.74	441.59
Nb	0.270	0.619	9.879	25.469
Mo	н.о.	0.197	0.223	0.347
Hg	1.704	0.754	н.о.	0.246
Cd	1.062	0.552	0.414	7.937
Sb	5.399	2.319	0.763	0.965
Cs	0.059	0.263	0.387	0.085
Ba	7.65	13.24	6.11	53.10
Hf	0.053	0.022	2.914	11.452
Та	0.008	0.468	0.915	2.923
Pb	8.523	51.539	18.992	3.480
Bi	0.991	0.148	0.069	0.301
Th	0.078	0.098	6.412	58.233
U	0.027	0.096	3.660	19.596
Sum REE	1.92	1.61	231.72	304.31

Table S1. Trace-element composition of rocks (ppm).

Note. Samples: 1512, antigorite serpentinite; 1422, chloritolite with scarce magnetite dissemination; 1410, chloritolite with ilmenite and apatite phenocrysts; 1421, magnetite-chlorite-carbonate rock (with ilmenite and apatite). The trace-element composition of rocks was determined by ICP MS on an ELAN 9000 Perkin Elmer mass spectrometer at the Institute of Geology and Geochemistry, Yekaterinburg (analyst D.V. Kiseleva) [1].

Table S2. Componen	ts of aqueous solution	and gases taken into a	ccount in thermod	ynamic models.

Aqueous Solution							
Component	Ref.	Component	Ref.	Component	Ref.	Component	Ref.
Ag(CO ₃)-	2	CaHCO ₃ +	4	Fe ⁺²	6	K^+	6
$Ag(CO_3)_{2^{-3}}$	2	CaHSiO ₃ +	2	Fe ⁺³	6	KCl ⁰	2
Ag(OH)2-	4	CaOH+	6	FeCl+	2	KHSO ₄₀	2
Ag^+	3	$CaSO_{4^0}$	2	FeCl+2	2	KOH ⁰	6
Ag+2	3	Cl-	6	FeCl ₂ ⁰	2	KSO4-	2
AgCl ⁰	4	Cu(HS)2-	5	FeO ⁰	6	CH4 ⁰	7
AgCl2-	4	Cu(OH)2-	4	FeO+	6	Mg^{+2}	6
AgHS ⁰	5	Cu+	6	FeO ₂ -	6	MgCO ₃ 0	3
AgO-	6	Cu ⁺²	3	FeOH+	6	MgCl+	2
AgOH ⁰	4	CuCl ⁰	4	FeOH ⁺²	6	MgHSiO ₃ +	6
Al(OH)+2	7	CuCl+	2	HCO3-	6	MgOH+	7
Al(OH)2+	8	CuCl ²⁰	2	HCl ⁰	7	$MgSO_{4^0}$	6
Al(OH) ₃ 0	9	CuCl2-	4	HFeO ₂ ⁰	6	Na+	2
Al(OH)4-	9	CuCl ₃ -	2	HFeO ₂ -	6	NaCl ⁰	2
Al+3	7	CuCl4 ⁻²	2	HHgO2 ⁻	6	NaHSiO ₃ 0	6
Au(HS)2-	5	CuHS ⁰	4	H_2S^0	10	NaOH ⁰	7
Au(OH)2 ⁻	4	CuO ⁰	6	HS-	10	NaSO4-	6
Au+	4	CuO ₂ -2	6	HSO ₄ -	6	SO4-2	2
Au+3	6	CuOH ⁰	4	$Hg(HS)_{2^0}$	10	HSiO ₃	7
AuCl ⁰	4	CuOH+	6	$Hg(OH)_{2^0}$	10	SiO_{2^0}	11
AuCl2-	4	Mn ⁺²	6	Hg^0	10	H2PO4 ⁻	11
AuHS ⁰	5	Mn ⁺³	6	Hg^{+2}	3	HPO ₄ -2	2
AuOH ⁰	4	MnO4-	6	$Hg_{2^{+2}}$	6	PO4-3	2
CO^0	7	MnO4-2	6	HgCl⁺	2	$P_2O_{7^{-4}}$	2
CO_{2^0}	7	MnOH+	6	HgCl ₂ 0	2	HP2O7-3	2
CO3-2	6	MnO^0	6	HgCl3-	2	$H_2P_2O_{7^{-2}}$	2
Ca ⁺²	6	HMnO ₂ -	6	HgCl4 ⁻²	2	HPO3-2	2
CaCO ₃₀	2	MnO ₂ -2	6	HgO ⁰	6	H2PO3 ⁻	3
CaCl+	2	MnCl+	6	HgOH+	6	H_{2^0}	3
CaCl ₂ ⁰	2	MnSO ₄₀	6	HgS(HS)-	10	O_{2^0}	
Gases							
Component	Ref.	Component	Ref.	Component	Ref.	Component	Ref.
HCl	12	H ₂ S	12	H ₂	12	S ₂	12
SO ₂	12	O2	12	CO ₂	12	CO	12
CH ₄	12	Hg	13				

Mineral	Formula	Ref.	Mineral	Formula	Ref.
Ag-Au-Cu-Hg	Au	18	Ilmenite	MgTiO ₃	14
	Ag	18		Fe ₂ O ₃	14
	Cu	18		FeTiO ₃	14
	Hg	18		MnTiO ₃	14
Chlorites	$Mg_6Si_4O_{10}(OH)_8$	14	Cuprite	Cu ₂ O	15
	Mg4Al4Si2O10(OH)8	14	Tenorite	CuO	15
	Mg5Al2Si3O10(OH)8	14	Diopside	CaMg(SiO ₃) ₂	15
	Fe5Al2Si3O10(OH)8	14	Montroydite	HgO	16
Pyroxenes	CaMgSi ₂ O ₆	14	Akermanite	Ca2MgSi2O7	15
	CaFeSi ₂ O ₆	14	Albite	NaAlSi3O ₈	14
	NaAlSi2O6	14	K-feldspar	KAlSi3O ₈	14
Carbonates	CaCO ₃	14	Tremolite	Ca2Mg5Si8O22(OH)2	15
	MgCO ₃	14	Anhydrite	CaSO ₄	15
	MnCO ₃	14	Plagoiclase	NaAlSi ₃ O ₈	14
	FeCO ₃	14		CaAl ₂ Si ₂ O ₈	14
	CaMg(CO ₃) ₂	14	Ferrosilite	FeSiO ₃	15
Garnets	Fe3Al2Si3O12	14	Ferrous-oxide	FeO	15
	Ca3Fe2Si3O12	14	Graphite	С	14
	Ca3Al2Si3O12	14	Halite	NaCl	15
	Mg3Al2Si3O12	14	Hematite	Fe ₂ O ₃	14
	Mn3Al2Si3O12	15	Magnetite	Fe ₃ O ₄	14
Chalcocite	Cu ₂ S	15	Pyrite	FeS ₂	15
Chalcopyrite	CuFeS ₂	16	Troilite	FeS	17
Silver (I) oxide	Ag ₂ O	17	Quartz	SiO ₂	14
Chlorargyrite	AgCl	18	Rutile	TiO ₂	14
Argentite(acanth	Ag ₂ S	18	Sphene	CaTiSiO ₅	14
ite)	Ag ₃ AuS ₂	18	Mercury	Hg	15
Uytenbogaardtit	AgAuS	18	Sulfur	S	16
e	Mg3Si2O5(OH)4	15	Talc	$Mg_3Si_4O_{10}(OH)_2$	14
Petrovskaite	α-HgS	15	Olivine	Fe ₂ SiO ₄	14
Chrysotile	β-HgS	15		Mg2SiO4	14
Cinnabar	Cu	15	Hydroxyapatite	Ca5(PO4)3OH	20
Metacinnabar	CuS	15	Serpentine	Mg3Si2O5(OH)4	19
Copper	Cu ₅ FeS ₄	15		Mg5.5AlSi3.5O10(OH)8	19
Covellite					
Bornite					

Table S3. Solid phases components used in thermodynamic models.

References

1. Murzin, V.V.; Varlamov, D.A.; Palyanova, G.A. Conditions of formation of gold-bearing magnetite–chlorite–carbonate rocks of the Karabash ultrabasic massif (South Urals). *Russian Geol. and Geophys.* **2017**, *58*, 803–814, DOI 10.1016/j.rgg.2017.06.003

- 2. Sverjensky, D.A.; Shock, E.L.; Helgeson, H.C. Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. *Geochim. Cosmochim. Acta* **1997**, *61*, 1359–1412. DOI:10.1016/S0016-7037(97)00009-4.
- 3. Shock, E.L.; Helgeson, H.C.; Sverjensky, D.A. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. *Geochim. Cosmochim. Acta* **1989**, *53*, 2157–2183. DOI:10.1016/0016-7037(89)90341-4.
- 4. Akinfiev, N.N.; Zotov, A.V. Thermodynamic description of chloride, hydrosulfide, and hydroxo complexes of Ag(I), Cu(I), and Au(I) at temperatures of 25–500°C and pressures of 1–2000 bars. *Geochem. Int.* **2001**, *39*, 990–1006.
- 5. Akinfiev, N.N.; Zotov, A.V. Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0–600°C and pressures of 1–3000 bar. *Geochem. Int.* **2010**, *48* (7), 714–720, DOI: 10.1134/S0016702910070074.
- 6. Shock, E.L.; Sassani, D.C.; Willis, M.; Sverjensky, D.A. Inorganic species in geologic fluids: Correlation among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. *Geochim. Cosmochim. Acta* **1997**, *61*, 907–950. DOI: 10.1016/S0016-7037(96)00339-0.
- 7. Johnson, J.W.; Oelkers, E.H.; Helgeson, H.C. SUPCRT92: software package for calculating the standard molal thermodynamic properties of mineral, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C. *Comput. Geosci.* **1992**, *18*, 899–947. DOI: 10.1016/0098-3004(92)90029-Q.
- 8. Pokrovskii, V.A.; Helgeson, H.C. Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: the system Al₂O₃-H₂O-NaCl. *Am. J. Sci.* **1995**, *295*, 1255–1342. DOI: 10.2475/ajs.295.10.1255.
- 9. Diakonov, I.; Pokrovski, G.; Schott, J.; Castet, S.; Gout, R. An experimental and computational study of sodium-aluminum complexing in crustal fluids. *Geochim. Cosmochim. Acta* **1996**, *60*, 197–211. DOI: 10.1016/0016-7037(95)00403-3.
- 10. Bessinger, B.; Apps, J.A., The hydrothermal chemistry of gold, arsenic, antimony, mercury and silver. Report Number: LBNL-57395. 2003. DOI: 10.2172/840338
- 11. Shock, E.L.; Helgeson, H. C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C, *Geochim. Cosmochim. Acta* **1988**, *52*, 2009-2036. DOI: 10.1016/0016-7037(88)90181-0.
- 12. Reid, R.C.; Prausnitz, J.M.; Sherwood, T.K. *The Properties of Gases and Liquids*. McGraw-Hill Book Company: New York, USA, 1977; pp. 688
- 13. Yokokawa, H. Tables of thermodynamic properties of inorganic compounds. J. Nat. Chem. Lab. Indus. Tsukuba Ibaraki., Jap. **1988**, 83, 27-118.
- 14. Holland, T.J.B.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. *J. Metamorph. Geol.* **1998**, *16*, 309–343. DOI: 10.1111/j.1525-1314.1998.00140.x.
- 15. Helgeson, H.C.; Delany, J.M.; Nesbitt, H.W.; Bird, D.K. Summary and critique of the thermodynamic properties of rock-forming minerals. *Am. J. Sci* **1978**, *278A*, 1–229.
- 16. Naumov, G.B.; Ryzhenko, B.N.; Khodakovsky, I.L. *Handbook of Thermodynamic Data*. U.S. Geol. Surv.WRD-74-001, 1974, pp. 240 (In Russian).
- Robie, R.A.; Hemingway, B.S. Thermodynamic Properties of Minerals and related Substances at 298.15 K and 1 bar (10⁵Pascals) Pressure and at Higher Temperatures. U.S. Geol. Survey Bull. 2131. United States government printing office, Washington, 1995; pp. 456.
- Tagirov, B.R.; Baranova, N.N.; Zotov, A.V.; Schott, J.; Bannykh, L.N. Experimental determination of the stabilities of Au₂S(cr) at 25°C and Au(HS)² at 25–250°C. *Geochim. Cosmochim. Acta* 2006, 70, 3689–3701. DOI: 10.1016/j.gca.2006.05.006.
- 19. Stefansson, A. Dissolution of primary minerals of basalt in natural waters. I. Calculation of mineral solubilities from 0°C to 350°C, *Chem. Geol.* **2001**, *172*, 225-250. DOI:10.1016/S0009-2541(00)00263-1.
- 20. Dorogokupets, P.I.; Karpov, I.K. *Thermodynamics of Minerals and Mineral Equilibria*. Novosibirsk: Nauka, Russia, 1984; pp.185 (In Russian).

@ 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).