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Abstract: In this study, the effect of sodium pyrophosphate (NaPP) on the separation of apatite from
dolomite by flotation was systematically investigated. Flotation results revealed that NaPP could
selectively depress the flotation of apatite, thus realizing the separation of apatite from dolomite. Further,
the selective depression mechanism of NaPP was studied through zeta potential measurements, contact
angle measurements, and X-ray photoelectron spectroscopy (XPS) analysis. The results demonstrated that
the adsorption of sodium oleate (NaOL) onto apatite surface was depressed by the preferential interaction
of NaPP with active Ca sites. For dolomite, while the presence of NaPP hindered the interaction of NaOL
with active Ca sites, it appeared to enhance the reactivity with active Mg sites. Thus, the adsorption of
NaOL onto dolomite surface was hardly influenced. In this way, the separation of apatite from dolomite
was achieved.
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1. Introduction

Phosphorous, as one of the most common elements on earth and essential elements in organisms,
is widely used in the production of fertilizers, detergents, pharmaceuticals, fluxes, cement, and many other
industrial processes [1–5]. Nevertheless, with the rapid development of China’s economy, the production of
phosphorous cannot meet the requirement of the country [6]. Hence, the efficient exploitation of phosphate
ore resource becomes more and more important. Moreover, growing demands for phosphorous have
motivated the development of new technologies to concentrate phosphates from low-grade ores [7].

China has the second largest reserve of phosphate ore. However, vast majority of these resources
are complex low-grade ores [8,9]. In these ores, the main valuable mineral, apatite is usually associated
with gangue minerals, such as dolomite. Reverse flotation can be applied for phosphate ores that have
high dolomite content [9–12]. However, there are still considerable difficulties in separating apatite
from dolomite by means of reverse flotation. Furthermore, for fine-grained dissemination and complex
minerals composition, apatite is often intergrown with dolomite. On the other hand, as calcium-bearing
minerals, apatite and dolomite have similar surface properties. Additionally, dissolved components
from apatite and dolomite will hydrolyze, precipitate, and adsorb onto the minerals [13–15]. All of
these factors determine the interfacial properties of the minerals and make it more difficult to separate
apatite from dolomite.

For these reasons, to separate apatite from dolomite effectively, research has focused on developing
selective flotation agent. As known, fatty acids are most widely used collectors in the flotation of
apatite and dolomite, and the development of novel flotation collectors has been an area of research
interest. Despite successful and economic recovery of apatite via reverse flotation, the selectivity
of using fatty acids and their derivatives as collectors is still not satisfactory due to their similar
surface reactivity of calcium-bearing minerals such as apatite and dolomite [10,16–18]. For effective
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utilization of phosphate ore resource, it is important to selectively separate apatite from dolomite.
Therefore, an effective depressant is essential for improving the floatability differences between apatite
and dolomite.

Due to its extensive sources and low unit cost, H2SO4 has been widely used as a depressant in
apatite flotation. However, large dosages of H2SO4 will lead to the corrosion of flotation equipment,
and the production of acidic wastewater. In addition, the production of sediment (CaSO4) could cause
pipeline blocking, which cannot be appropriately resolved as yet [8,14,19]. Thus, the utilization of
H2SO4 to separate apatite from dolomite remains a problem.

Sodium pyrophosphate, known as condensed phosphate, is formed by repeated condensation of
tetrahedral [PO4] units. It is usually used as water softener, emulsifier, and chelating agent. For the
presence of chelating group, the addition of sodium pyrophosphate may promote the formation of
metal ion-pyrophosphate, preventing its reaction with collector [20]. It was demonstrated that sodium
pyrophosphate could reduce the adverse effect of serpentine on the flotation of pentlandite by shifting
the slime surface charge [21]. In addition, sodium pyrophosphate has also been used in scheelite
flotation [22,23]. However, there are few reports on the utilization of sodium pyrophosphate as a
depressant in apatite flotation.

In this paper, sodium pyrophosphate (NaPP) was introduced as a flotation depressant to selectively
separate apatite from dolomite. Micro-flotation tests were performed to reveal the selective depression
of apatite by NaPP. In addition, the underlying mechanism was investigated through zeta potential and
contact angle measurements, and XPS analyses.

2. Experiments

2.1. Materials

The sample of apatite was obtained from Yunnan Phosphate Chemical Group Co., Ltd. located in
Yunnan, China. The ore was dry-ground in a lab-scale ball mill and then sieved to get −74 + 38 µm
fraction for the flotation tests. In addition, a part of fine fraction (−2 µm) was also obtained for the
zeta potential measurements. X-ray diffraction (XRD) analyses (Figure 1) revealed that the purity of
apatite sample was considerably high with a bit of quartz.
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Figure 1. X-ray diffraction (XRD) pattern of the apatite sample. 

The sample of dolomite was obtained from Changsha Ore Powder Factory located in Hunan, 
China. The ore was dry-ground in a lab-scale ball mill and then sieved to get to get –74 + 38 μm 
fraction for the flotation tests. In addition, a part of fine fraction (−2 μm) was also obtained for the 

Figure 1. X-ray diffraction (XRD) pattern of the apatite sample.

The sample of dolomite was obtained from Changsha Ore Powder Factory located in Hunan,
China. The ore was dry-ground in a lab-scale ball mill and then sieved to get to get −74 + 38 µm
fraction for the flotation tests. In addition, a part of fine fraction (−2 µm) was also obtained for the
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zeta potential measurements. X-ray diffraction (XRD) analyses (Figure 2) revealed that the purity of
dolomite sample was very high.

Sodium pyrophosphate (NaPP) used as the depressant in this study was bought from Tianjin
Yongda Chemical Reagent Development Center. Sodium oleate (NaOL) bought from Tianjin Kermil
Chemical Reagents Development Centre was used as a collector. HCl and NaOH obtained from
Aladdin Reagent Co. Ltd. (Shanghai, China) were used to adjust the pH value. All the reagents used
in this study were of analytical grade. Deionized water was used for all the tests.
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Figure 2. XRD pattern of the dolomite sample. 
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Figure 2. XRD pattern of the dolomite sample.

2.2. Micro-Flotation Experiments

Micro-flotation experiments were carried out in an XFG flotation machine (Exploring machinery
Plant, Changchun, China) equipped with a 40-mL cell at 2000 rpm agitation speed. For single mineral
tests, 2.0 g of pure mineral was placed in the flotation cell with 35 mL deionized water and then
conditioned for 1 min. NaPP and NaOL were successively added and stirred for 3 min, respectively.
The flotation process lasted 3 min for each test. Following this, the flotation recoveries were calculated
based on the weights of concentrates and tailings.

For artificial mixed minerals flotation experiments, the mass ratio of apatite and dolomite mineral
was 1:1 for binary mixture. The flotation process was the same as single mineral tests. After the
flotation process, the concentrates and tailings were assayed for P and Ca. The recovery of apatite was
calculated based on P2O5 contents of concentrates and tailings.

2.3. Zeta Potential Measurements

Zeta potential measurements were carried out using a Zeta Plus Zeta Potential Meter (Bruker,
Karlsruhe, Germany). KNO3 was used to maintain the ionic strength at 10−3 mol/L. Small amounts of
sample below −2 µm were added to desired amounts of solution and magnetically stirred for 10 min,
and the pH was adjusted using HCl or NaOH. The zeta potential of samples was then measured three
times using a Zeta Plus Zeta Potential Meter (Bruker, Karlsruhe, Germany). The average value and the
standard deviation of zeta potential were respectively calculated.

2.4. Contact Angle Measurements

The contact angle measurements were performed with sessile drop method using a Digidrop
goniometer (GBX, Isere, France). The crystals of apatite and dolomite were embedded in resin and then
polished with 500 grit, 1000 grit and 4000 grit alumina sandpapers, successively. For the measurements
of minerals in the absence of NaPP, the prepared sample was immersed in a desired concentration
NaOL solution for 15 min. For the measurements of minerals in the presence of NaPP, the prepared
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sample was firstly immersed in NaPP solution for 15 min and then in NaOL solution for another
15 min. Next, the sample was washed with deionized water and then air dried. A water droplet (about
2 mm in diameter) was introduced onto the sample surface, and then the contact angle results were
analyzed by computer software.

2.5. XPS Analysis

The change of surface chemical composition of mineral samples (apatite and dolomite) pretreated
with different reagents was determined by X-ray photoelectron spectroscopy (XPS). To prevent
extra surface change, the samples were stored in a vacuum drier under the temperature of 25 ◦C.
The XPS measurements were performed on a X-ray photoelectron spectrometer (PHI5000, ULVAC-PHI,
Chigasaki, Japan). Firstly, chemical components of the samples were identified by survey scan. Then,
high-resolution scans were conducted focusing on certain elements. Sample charging was compensated
by taking the C1s peak of background hydrocarbon at 284.8 eV as an internal standard.

3. Results and Discussion

3.1. Micro-flotation Experiments

Figure 3 shows the flotation results of apatite and dolomite as a function of NaOL dosage.
It can be seen from Figure 3 that the flotation recoveries of two minerals increased with the increase
of NaOL dosage. The recoveries of apatite and dolomite at 60 mg/L dosage NaOL were 80.78% and
93.6%, respectively. Meanwhile, the flotation recovery of dolomite was higher than that of apatite,
which implied that NaOL had a better collecting ability to dolomite. Therefore, for the better flotation
performance of dolomite, reverse flotation is a proper method to separate apatite from dolomite.
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The effect of NaPP dosage on the flotation of apatite and dolomite is shown in Figure 4. Our results
with single mineral flotation show that while NaPP was an effective depressant for apatite, it had
minimal effect on dolomite flotation. At a NaPP dosage of 100 mg/L, apatite was nearly completely
depressed while that of dolomite decreased from 93.8% to 84%.

The distinct difference of the flotation recovery makes it possible to separate apatite from dolomite
using NaPP as the depressant. Therefore, the flotation tests on the artificial mixed minerals were
performed using NaPP as depressant. The flotation results are presented in Table 1.

As can be seen from Table 1 that, the flotation recovery of apatite was improved from 39.4% to
96.5% in the presence of NaPP, while the recovery of MgO slightly increased from 11.3% to 16.3%.
Further, the addition of NaPP also resulted in a sharp increase of P2O5 grade of concentrate from
26.4% to 34.1% and a decrease of MgO grade of concentrate from 3.8% to 2.9%. The artificial mixed
minerals separation reported here suggests that NaPP can be used for separating dolomite from apatite.
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However, the availability of utility of this approach has to be demonstrated with “real” complex ores
such as those described in the Section 1.Minerals 2018, 8, x FOR PEER REVIEW  5 of 11 
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Table 1. Artificial mixed minerals flotation results (NaOL: 60 mg/L).

NaPP (mg/L) Production Yield (%)
Grade (%) Recovery (%)

P2O5 MgO P2O5 MgO

0
Concentrate 29.4 26.4 3.8 39.4 11.3

Tailing 70.6 16.9 12.4 60.6 88.7
Feed 100.0 19.7 9.9 100.0 100.0

100
Concentrate 55.7 34.1 2.9 96.5 16.3

Tailing 44.3 1.5 18.6 3.5 83.7
Feed 100.0 19.7 9.9 100.0 100.0

3.2. Zeta Potential Measurements

To reveal the underlying depression mechanism of NaPP, the zeta potential measurements of
apatite and dolomite under different reagent conditions were performed as a function of pH, and the
results are shown in Figure 5a,b.
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Comparing the data in Figure 5a,b, there were obvious potential differences which resulted in the
difference in the flotation performance of the two minerals. For apatite, it was positively charged in
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the pH range of 3–6, which matched well with other literature. The isoelectric point (IEP) of dolomite
was near a pH of 6.5, which was also in agreement with the previous study [15,24].

With the addition of NaPP, zeta potentials of two minerals sharply dropped over the entire pH
range, probably due to the adsorption of dissolved NaPP components which were negatively charged.
Similar shifts of zeta potentials of both minerals revealed that NaPP interacted intensively with two
mineral surfaces.

When NaOL was applied after the addition of NaPP, apatite gave zeta potential which was about
the same value obtained for apatite in the presence of NaPP alone. However, the zeta potential of
dolomite is more negative compared with that using NaPP alone. The zeta potential results illustrated
that the pre-treatment of NaPP prior to NaOL did not prevent the interaction of NaOL with dolomite,
but hindered the adsorption of NaOL onto apatite surface. The zeta potential measurements results
provided a preliminary understanding of the depressant effect of NaPP.

3.3. Contact Angle Measurements

The advancing contact angle of the two minerals before and after interaction with NaPP as a
function of NaOL dosage was measured to reveal the changes of surface wettability of the two minerals.
As can be seen from Figure 6, surface hydrophobicity of both minerals in the absence of NaPP was
dramatically improved with the increase of NaOL dosage, which indicated the increasing adsorption
of NaOL onto the minerals surface. In addition, the contact angle values of apatite and dolomite were
in accord with the flotation recoveries presented in Figure 3. After interaction with NaPP, the contact
angle of apatite was significantly decreased. However, as for dolomite, the insignificant change of
contact angle showed little influence of NaPP on its surface hydrophobicity. The different effects
of NaPP on the surface hydrophobicity of apatite and dolomite revealed that NaPP could restrict
the adsorption of NaOL onto apatite while hardly affect NaOL adsorption onto dolomite. Therefore,
the decrease of NaOL adsorption onto apatite resulted in the depression of its flotation performance.

1 
 

 

 

Figure 6. Figure 6. Contact angle of the minerals before after interaction with NaPP as a function of NaOL dosage.

3.4. XPS Analysis

To further investigate the interaction mechanism between NaPP and the two minerals (apatite and
dolomite), XPS analyses of apatite and dolomite in the absence and presence of NaPP were conducted,
and the fitted results are shown Figure 7. With reference to data from United States National Institute
of Standards and Technology (NIST), the binding energy of 133.39 eV and 133.80 eV corresponds to
Ca5(PO4)3F and Ca2P2O7, respectively. As can be seen from Figure 7a, only the peak of Ca5(PO4)3F was
observed in the absence of NaPP, whereas the P2p peaks could be decomposed into two P2p-P2p3/2
doublets, indicating the existence of Ca5(PO4)3F and Ca2P2O7 in the presence of NaPP. Furthermore,
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after adding NaPP, the P2p atomic concentration increased from 10.84% to 11.69%, which also showed
NaPP successfully chemisorbed onto the apatite surface, and thus depressed the flotation of apatite.

As for dolomite, the Ca2p and Mg1s peaks with and without NaPP are also fitted to confirm
the chemical information of surface species. It could be seen from Figure 7b, the Ca2p peak of
single dolomite appeared at 347.00 eV, in which the peak of 347.00 eV was assigned to CaCO3.
After the addition of NaPP, a new Ca2p3/2 peak for Ca2P2O7 was observed and the characteristic
P was also detected on dolomite surface. However, the Mg1s binding energy did not change in the
presence of NaPP. All these changes offered good evidence that NaPP adsorbed onto dolomite surface,
and selectively reacted with active Ca sites rather than Mg sites.
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In addition, to obtain more detailed information about the selective depression of NaPP on apatite
flotation, broad scan XPS analyses of apatite and dolomite under different reagent conditions were also
employed, and the results are shown in Figure 8 and Table 2. Generally, an obvious shift of binding
energy indicates variations of chemical environment. From Table 2 we can see that after apatite was
treated with NaOL, the binding energy of Ca2p decreased by 0.51 eV, which revealed a chemical
interaction between apatite and NaOL. For the chemical adsorption of NaOL onto apatite surface,
apatite was hydrophobic. After apatite was treated with both NaPP and NaOL, the binding energy of
Ca2p shifted by 0.05 eV, which was much smaller than that treated with single NaOL, indicating that
the interaction between apatite and NaOL was obviously suppressed by NaPP. Meanwhile, according
to Figure 7 we deduced that active Ca sites strongly interacted with both NaPP and NaOL. When
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NaPP was added before NaOL, NaPP chemisorbed onto apatite surface and thus restricted the reaction
of Ca with NaOL. Thus, the flotation of apatite was depressed by NaPP.

In the case of dolomite, after treatment with NaOL, the binding energy of Ca2p and Mg1s shifted
by −0.63 eV and −0.29 eV, respectively. These changes suggested that both Ca and Mg were active
sites for chemical reaction with NaOL [5,25]. Moreover, the shift of Ca2p binding energy of dolomite
was larger than that of apatite, revealing that the interaction between Ca of dolomite and NaOL
was more intensive, which was in accordance with the flotation results of Figure 3 and the contact
angle measurements of Figure 6. Interestingly, after dolomite was treated with both NaPP and NaOL,
the binding energy of Ca2p and Mg1s changed by −0.07 eV and −0.56 eV, respectively. These results
demonstrated that for dolomite both Ca and Mg were active sites that reacted with NaOL. The presence
of NaPP restricted the interaction between active Ca sites and NaOL, but enhanced the interaction
between Mg sites and NaOL. Thus, Mg became predominant active sites for NaOL adsorption. Thus,
these changes did not affect the adsorption of NaOL and maintained the flotation performance of
dolomite with the addition of NaPP.
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Table 2. Binding energy of elements on the minerals surface under different reagent conditions.

Sample
Binding Energy (eV) Chemical Shift (eV)

Ca Mg Ca Mg

Apatite 347.54 - - -
Apatite + NaOL 347.03 - −0.51 -

Apatite + NaPP + NaOL 347.49 - −0.05 -
Dolomite 347.14 1303.79 - -

Dolomite + NaOL 346.51 1303.50 −0.63 −0.29
Dolomite + NaPP + NaOL 347.07 1303.23 −0.07 −0.56

3.5. Depression Mechanism of NaPP

Based on the flotation results, zeta potential and contact angle measurements, and XPS analysis,
the possible mechanism about NaPP depression is proposed in Figure 9.

For apatite, Ca provided the only active sites which interacted with both NaPP and NaOL.
This led to the competitive adsorption of NaPP and NaOL onto apatite surface. The pre-adsorption of
hydrophilic NaPP occupied active Ca sites, restricting the adsorption of NaOL onto apatite surface
and thus producing hydrophilia in apatite. However, dolomite has both active Ca and Mg sites for
chemical reaction with NaOL. Thus, while NaPP interfered with the interaction of active Ca sites
with NaOL, it improved the reactivity of the Mg sites with collector. Thus, the interaction differences
resulted in the selective depression of apatite by NaPP.
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Figure 9. Schematic diagram of potential depression mechanism of NaPP.

4. Conclusions

This study systematically investigated the effect of sodium pyrophosphate on the selective reverse
flotation of apatite from dolomite. NaPP showed selective depression of apatite, thus realizing the
preferential flotation separation of apatite from dolomite. Based on the results of zeta potential and
contact angle measurements, and XPS analyses, it was concluded that NaPP occupied active Ca sites
and hindered the adsorption of NaOL onto apatite surface. As for dolomite, although the presence of
NaPP interfered with the interaction between active Ca sites and NaOL, it improves the reactivity of
active Mg sites with NaOL. Thus, the flotation of dolomite was slightly influenced by NaPP. In this
way, the separation of apatite from dolomite was achieved. However, the limitation of the work is that
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the test was carried out on pure minerals. The focus of the following work is to confirm the results
with dolomitic phosphate ores.
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