Supplementary Material for

Si-disordering in MgAl₂O₄-spinel at high *P-T* conditions, with implication to Si-Mg disorder in Mg₂SiO₄-ringwoodite

Liping Liu^{1,2}, Xi Liu^{1,2*}, Xinjian Bao^{1,2}, Qiang He³, Wei Yan^{1,2,4}, Yunlu Ma^{1,2},

Mingyue He⁴, Renbiao Tao⁵ and Ruqiang Zou⁶

¹School of Earth and Space Sciences, Peking University, Beijing 100871, China

²Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education of China, Beijing 100871, China

³Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 659000, China

⁴School of Gemmology, China University of Geosciences (Beijing), Beijing 100083, China

⁵Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015, U.S.A.

⁶Beijing Key Lab of Theory and Technology for Advanced Battery Materials, Department of Material Science and Engineering, College of Engineering, Peking University, Beijing 100871, China

One fragment of the red, Si-free MgAl₂O₄-Sp crystal (N-Sp) with an octahedral shape from Mogok (Burma), 100*80*50 μ m³, was analyzed by the single-crystal X-ray diffraction method at ambient condition. Data were collected by an Agilent Technologies Rigaku micro-focused four-circle diffractometer using Mo K α radiation ($\lambda = 0.71073$ nm), with the theta range from 4.37 to 28.30 °.

An initial structure solution, carried out in the $Fd\overline{3}m$ space group, was obtained via direct methods and refined by a full-matrix least-squares method using the SHELXT

software, with the chemical constraint of $MgAl_{1.98}Cr_{0.02}O_4$ (see the main text for the compositional data). All the heavy atoms were first located unambiguously in the Fourier maps, and then the O atoms were found in the subsequent difference maps. All atoms were refined with anisotropic displacement parameters. The refined parameters were the oxygen positional parameter (*u*), bond distances of the T-site and M-site, and anisotropic displacement parameters.

As the value of the inversion parameter x directly obtained from the structure refinement process should be of high uncertainty due to the similar X-ray scattering factors of Mg and Al, we also calculated the x with the bond-length method of Carbonin et al. [1]. In the calculation, we used the ionic radii from Ref. [2]. The x value was calculated by minimizing the following function which took structural and chemical data into account [1],

$$\mathbf{F}(X_i) = \sum_{j} \left\{ \left[O_j - C_j(X_i) \right] / \delta_j \right\}^2$$

where O_j were observed quantities with their standard deviations as δ_j , i.e. T-O and M-O bond lengths, mean atomic numbers of the T-site and M-site, number of charges for charge balance, and atomic proportions obtained from microprobe analysis. $C_j(X_i)$ were the corresponding quantities calculated by variable cation fractions X_i .

In the minimization, some assumptions were made according to Ref. [1]: (a) Mg, Al, Fe²⁺, Fe³⁺ and vacancies would occupy both the T-site and M-site, that was to say, those were variables in our calculation; (b) Cr, Ti and Ni occupied the M-site only; (c) Bond lengths were a linear combination of site atomic fractions multiplied by their characteristic bond distances in the 2-3 spinels.

After several iterative operations with these two methods, $F(X_i)$ were achieved as less than 1 δ between the calculated and observed quantities. The final cycles of the least-squares refinement converged at $R_1 = 0.0164$, $wR_2 = 0.0730$, and S = 1.065 (see STable 1 and STable 2 for the crystal structure refinement details and results, respectively). The cations on the T-site and M-site were determined as Mg_{0.836}Al_{0.162}Fe³⁺_{0.002} and Mg_{0.157}Al_{1.823}Cr_{0.018}Ti_{0.001}Ni_{0.001}, respectively. Eventually, the cation fraction of Al on the T-site, or the inversion parameter *x*, was determined as 0.162, a value compatible with our Raman spectroscopic data.

Empirical formula	(Mg _{0.993} Fe _{0.002} Ti _{0.001} Ni _{0.001})	$(Mg_{0.993}Fe_{0.002}Ti_{0.001}Ni_{0.001})(Al_{1.983}Cr_{0.018})O_4$	
Formula weight	141.205		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Cubic		
Space group	$Fd\overline{3}m$		
Unit cell dimensions	a = 8.0728(9) Å	$\alpha = 90^{\circ}$	
	b = 8.0728(9) Å	$\beta = 90^{\circ}$	
	c = 8.0728(9) Å	$\gamma = 90^{\circ}$	
Volume	526.11(10) \AA^3		
Ζ	8		
Density (calculated)	3.566 kg/m^3		
Absorption coefficient	1.217 mm^{-1}		
<i>F</i> (000)	561.8		
Crystal size	$100 \ge 80 \ge 50 \ \mu m^3$		
Theta range for data collection	4.37 to 28.30 °		
Index ranges	-10≤ <i>h</i> ≤8, -10≤ <i>k</i> ≤9, -10≤ <i>l</i> ≤10		
Reflections collected	1090		
Independent reflections	47 [<i>R</i> (int) = 0.0562]		
Completeness to theta = 28.30 $^{\circ}$	100%	100%	
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	47 / 0 / 8		
Goodness-of-fit on F^2	1.065	1.065	
Final <i>R</i> indices [<i>I</i> >2sigma(I)]	$R_1 = 0.0164, wR_2 = 0.0730$		

STABLE 1. Details of structure refinement

R indices (all data)	$R_1 = 0.0173, wR_2 = 0.0740$
Largest diff. peak and hole	0.216 and -0.219 e Å ⁻³

STABLE 2. Structural data of N-Sp

Lattice parameter (Å)	8.0728(9)
O atom position <i>u</i>	0.26329(24)
Inversion parameter <i>x</i>	0.162
T-O (Å)	1.93367(13)
M-O (Å)	1.9169(3)
$V_{\rm T}$ (Å ³)	3.7105
$V_{\rm M}$ (Å ³)	9.3915
U _{iso} (oxy)	0.0041(9)
$U_{\rm iso}$ (tet)	0.0039(10)
$U_{\rm iso}~({\rm oct})$	0.0034(8)
R_p	0.0173

References

- Carbonin, S.; Russo, U.; Giusta, A.D. Cation distribution in some natural spinels from X-ray diffraction and Mössbauer spectroscopy. *Mineral. Mag.* 2016, 60, 355-368.
- 2. Lavina, B.; Salviulo, G.; Giusta, A.D. Cation distribution and structure modelling of spinel solid solutions. *Phys. Chem. Mineral.* **2002**, *29*, 10-18.