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Abstract: Halloysite nanotubes are becoming interesting materials for drug delivery. The knowledge
of surface interactions is important for optimizing this application. The aim of this work is to perform
a computational study of the interaction between 5-aminosalicylic acid (5-ASA) drug and halloysite
nanotubes for the development of modified drug delivery systems. The optimization of this nanotube
and the adsorption of different conformers of the 5-ASA drug on the internal surface of halloysite
in the presence and absence of water were performed using quantum mechanical calculations by
using Density Functional Theory (DFT) and methods based on atomistic force fields for molecular
modeling, respectively.

Keywords: halloysite; 5-aminosalicylic acid; surface adsorption; DFT calculations; force fields; nanotubes

1. Introduction

5-aminosalicylic acid (5-ASA) is an anti-inflammatory drug widely used in the treatment of
different diseases, such as Crohn’s diseases, chronic bowel ulcerative colitis, and proctitis [1–4].
The consumption of 5-ASA is a growing market, worth an estimated US$1.5 billion in the USA
only [5]. For the treatment of the Crohn’s disease and chronic bowel ulcerative colitis disease, 5-ASA
is administered orally [6], while for the treatment of proctitis it is administered rectally [7,8]. When the
drug is administered orally it is rapidly absorbed in the stomach and in the small intestine. However,
for the treatment of these diseases, the drug adsorption at the level of the large intestine and the colon
is very important [9].

The consumption of high doses of pharmaceutical drugs can produce side effects and resistance
problems. The design and development of new modified drug delivery systems is attracting more
research attention, with the aim of finding improved therapeutic strategies to reduce the frequency of
drug administration and increasing the efficiency of the bioactive drugs [10]. Different nanoparticulated
materials have been proposed for modifying drug delivery. The use of clay minerals as carriers for these
systems appears as a low-cost and biocompatible alternative [11–14]. Several studies on the interaction
between drugs and different types of clays used as nanocarriers have been performed [15,16].
Halloysite nanotubes have been proposed as a natural vehicle for the dosage and modified release
of several drugs. Halloysite nanotubes have been recently studied as nanocarriers for the controlled
release of drugs [17,18]. Specifically, several experimental studies have been carried out to study the
interaction between 5-ASA and halloysite nanotubes [19–22].

Halloysite, Al2Si2O5(OH)4·nH2O, is a multilayer nanotubular clay mineral resulting from the
wrapping of 1:1 layers of kaolinite with dimensions of 500–1000 nm in length and 15–100 nm in inner
diameter [23–25]. Halloysite nanotubes are common excipients in pharmaceutical products and can
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modify drug bioavailability. They can retain organic molecules and, after administration, release the
retained bioactive compounds under controlled conditions [10,26–28]. Therefore, halloysite nanotubes
can be used as excipients to achieve colon-targeted drug delivery systems of the 5-ASA drug.

After the experimental studies, theoretical studies need to be carried out in order to explain the
chemical interactions that occur in the adsorption processes of 5-ASA inside the halloysite nanotube,
and in the slow release of the drug [9]. Hence, a theoretical study of the interactions between clay
minerals, in particular halloysite, and 5-ASA drug is proposed, as halloysite nanotubes represent
a good candidate for the modified release of 5-ASA.

Therefore, the aim of this work is to perform molecular modeling studies by methods based
on atomistic force fields for molecular modeling and quantum mechanics calculations to predict the
interactions between the drug 5-ASA and the halloysite nanotube excipient, in order to explain the use
of the excipient for colon-targeted drug delivery systems.

2. Methodology and Models

The halloysite structure was generated from the atomic coordinates of a slice of a halloysite from
previous work [29], with the stoichiometry Al2Si2O5(OH)4 and chirality (19,0). Periodic boundary
conditions were applied to create a periodical crystal structure. For the transformation of the initial
slice to a nanotube, the c axis cell parameter was optimized, obtaining d(O–Si) = 1.67 Å and c = 9.05 Å.
To avoid interactions between vicinal nanotubes, periodical cell parameters a = 50 Å, b = 50 Å were
applied (Figure 1). Then, a cylinder halloysite with an internal diameter of 27 Å was obtained
with an external sheet of the tetrahedral siloxane and one internal sheet of Al oxide-hydroxide [18].
Although the internal diameter of a natural halloysite nanotube is around 15–50 nm, our model can be
a good scenario to reproduce the interactions of the adsorption process at the molecular level.

Minerals 2018, 8, x FOR PEER REVIEW  2 of 14 

 

diameter [23–25]. Halloysite nanotubes are common excipients in pharmaceutical products and can 
modify drug bioavailability. They can retain organic molecules and, after administration, release the 
retained bioactive compounds under controlled conditions [10,26–28]. Therefore, halloysite 
nanotubes can be used as excipients to achieve colon-targeted drug delivery systems of the 5-ASA 
drug. 

After the experimental studies, theoretical studies need to be carried out in order to explain the 
chemical interactions that occur in the adsorption processes of 5-ASA inside the halloysite nanotube, 
and in the slow release of the drug [9]. Hence, a theoretical study of the interactions between clay 
minerals, in particular halloysite, and 5-ASA drug is proposed, as halloysite nanotubes represent a 
good candidate for the modified release of 5-ASA. 

Therefore, the aim of this work is to perform molecular modeling studies by methods based on 
atomistic force fields for molecular modeling and quantum mechanics calculations to predict the 
interactions between the drug 5-ASA and the halloysite nanotube excipient, in order to explain the 
use of the excipient for colon-targeted drug delivery systems. 

2. Methodology and Models 

The halloysite structure was generated from the atomic coordinates of a slice of a halloysite 
from previous work [29], with the stoichiometry Al2Si2O5(OH)4 and chirality (19,0). Periodic 
boundary conditions were applied to create a periodical crystal structure. For the transformation of 
the initial slice to a nanotube, the c axis cell parameter was optimized, obtaining d(O–Si) = 1.67 Å and c 
= 9.05 Å. To avoid interactions between vicinal nanotubes, periodical cell parameters a = 50 Å, b = 50 Å 
were applied (Figure 1). Then, a cylinder halloysite with an internal diameter of 27 Å was obtained 
with an external sheet of the tetrahedral siloxane and one internal sheet of Al oxide-hydroxide [18]. 
Although the internal diameter of a natural halloysite nanotube is around 15–50 nm, our model can be 
a good scenario to reproduce the interactions of the adsorption process at the molecular level. 

  
Figure 1. Structure of the 1 × 1 × 2 halloysite supercell with chirality (19,0) optimized. The Si, Al, O, 
and H atoms are in yellow, pink, red, and light-gray colors. These color patterns are maintained in 
the rest of the figures of this work. 
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optimization was performed with quantum mechanical calculations by using Density Functional 
Theory (DFT) within the Castep code [30], with the generalized gradient approximation (GGA), the 
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The optimization was performed with energy and force convergence tolerances of 5.0 × 10−6 eV/atom 
and 0.01 eV/Å, respectively. 

Starting from this optimized structure, a 1 × 1 × 2 supercell was generated of halloysite, 
Al152Si152O380(OH)304, with 1292 atoms to avoid intermolecular interactions between adsorbates of 
vicinal cells. The atomic charges were optimized with the Charge Equilibration (QEq) method, 
maintaining the structure electrically neutral [30] (Table 1). 

Figure 1. Structure of the 1 × 1 × 2 halloysite supercell with chirality (19,0) optimized. The Si, Al, O,
and H atoms are in yellow, pink, red, and light-gray colors. These color patterns are maintained in the
rest of the figures of this work.

Hence, our halloysite nanotube unit cell has the formula Al76Si76O190(OH)152 with 646 atoms.
Its optimization was performed with quantum mechanical calculations by using Density Functional
Theory (DFT) within the Castep code [30], with the generalized gradient approximation (GGA),
the Perdew–Burke–Ernzerhof (PBE) correlation exchange functional, and a cut off energy of 300 eV [30].
The optimization was performed with energy and force convergence tolerances of 5.0 × 10−6 eV/atom
and 0.01 eV/Å, respectively.

Starting from this optimized structure, a 1 × 1 × 2 supercell was generated of halloysite,
Al152Si152O380(OH)304, with 1292 atoms to avoid intermolecular interactions between adsorbates
of vicinal cells. The atomic charges were optimized with the Charge Equilibration (QEq) method,
maintaining the structure electrically neutral [30] (Table 1).
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Table 1. Net atomic charges of the main atoms of halloysite calculated with the QEq method.

Atoms Atomic Charges

H (AlOHAl) a 0.276–0.278
H (AlOHAl) b 0.302–0.304
H (AlOHAl) c 0.201–0.204
O (AlOHAl) a (−0.809)–(−0.812)
O (AlOHAl) b (−0.687)–(−0.703)
O (AlOHAl) c (−0.732)–(−0.734)

O (OSi) (−0.633)–(−0.659)
a H atoms of the hydroxyl groups oriented perpendicular to the surface. b H atoms of the hydroxyl groups oriented
parallel to the surface. c H atoms of the inner hydroxyl groups oriented towards the siloxane surface.

Moreover, two conformers of 5-ASA (F1 and F2) were considered, taking into account the relative
orientation of the carboxylic group with respect to the hydroxyl substituent. The hydroxyl O atom of
the carboxylic substituent can be oriented to the H atom of the hydroxyl substituent (conformer F1),
or the carbonyl group can be oriented towards the H atom of the hydroxyl substituent (conformer F2)
(Figure 2). Both conformers were optimized in a periodic box by using Castep and empirical interatomic
potentials with the Compass force field (FF), which provided good results in previous studies [31,32].
For non-bonding interactions in the FF calculations, the coulomb and van der Waals interactions
were calculated by the Ewald method with a cut-off of 12 Å. The optimization was performed with
energy and force convergence tolerances of 2.0 × 10−5 kcal/mol and 0.001 kcal/mol/Å, respectively.
The atomic charges provided by the forcefield were used (Figure 2).
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Figure 2. The optimized structures of the conformers of 5-ASA F1 (a) and F2 (b). Atomic charges
calculated by the force field (FF) are shown. The C, N, O, and H atoms are in gray, blue, red, and white
colors. This color pattern is maintained in the rest of the figures of this work.

Different solid models were generated with the 1 × 1 × 2 halloysite nanotube supercell and
the 5-ASA conformers applying periodic boundary conditions. Preliminary Monte Carlo simulated
annealing calculations based on Compass FF of the adsorption of 5-ASA on halloysite were performed,
exploring different orientations of adsorbate with respect to the mineral surface. In the adsorption,
both conformers of 5-ASA (F1 and F2) were placed in the most stable positions of the internal surface
of halloysite according to the previous Monte Carlo simulations. The adsorbed complexes were
optimized, maintaining the fixed mineral structure apart from the H atoms with the Compass force field.
Dry conditions without the presence of water molecules were used to avoid additional interactions
that can hide the actual adsorbate–surface interactions.

In addition, a model of halloysite was prepared with the presence of 1126 water molecules placed
inside the inner zone of nanotube, filling the whole internal space and surrounding the external surface
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of the nanotube. The amount of water molecules was considered for an average density close to
1 g/cm3 for the water zones for avoiding overpressured situations. The atomic charges of the Simple
Point Charge (SPC) water model was used for the water molecules included in the model, with charges
of −0.82 for the oxygen atoms and +0.41 for the hydrogen atoms.

The adsorption energy (Eadsorption) was calculated according to the equation:

Eadsorption = E(halloysite + 5-ASA) − (Ehalloysite + E5-ASA)

where E(halloysite + 5-ASA) is the energy of the adsorption complex, Ehalloysite is the energy of the halloysite
model, and E5-ASA is the energy of the drug molecule.

3. Results and Discussion

Firstly, both conformers of 5-ASA (F1 and F2) were optimized, isolated in a periodical box of 30 Å
× 30 Å × 30 Å to avoid intermolecular interactions. In both conformers all substituents maintained
coplanarity with the aromatic ring. The intramolecular hydrogen bond is 2.75 Å in F1 and 2.81 Å in F2.
The F1 conformer (Figure 2a) is 2.4 kcal/mol more stable than the F2 one (Figure 2b). However, CASTEP
calculations of both conformers showed that F2 is 4.4 kcal/mol more stable than F1. This indicates that
our FF does not properly estimate the intramolecular hydrogen bond of F2. Nevertheless, this energy
difference is very small in comparison to the adsorption energies, described below.

In the halloysite structure, several OH groups can be distinguished: those oriented perpendicular
to the surface; those oriented parallel to the surface; and those of the internal part oriented to the
siloxane surface. The H and O atoms of these groups have different atomic charges due to their
different electrostatic interactions.

Then, the adsorption of the 5-ASA conformers in the space of halloysite (Figure 1) was studied to
determine the most important interaction sites with the mineral. In the Al152Si152O380(OH)304 model,
each 5-ASA conformer was placed in three different orientations in the nanotube.

3.1. Adsorption of the Conformer F1 of 5-ASA on Halloysite

The adsorption of the F1 conformer placed parallel to the surface with a crossing orientation
in the 1 × 1 × 2 halloysite supercell was studied, where the axis formed by the amino and
hydroxyl substituents in the 5-ASA molecule is perpendicular with respect to the cylinder axis,
c axis, of halloysite. After the optimization (Figure 3), the adsorbate maintained the parallel
disposition with respect to the mineral surface and the crossing orientation. The adsorbate-surface
interactions were mainly electrostatic ones between the negatively charged O atoms of the carbonyl
and hydroxyl groups of 5-ASA and the positively charged H atoms of the surface aluminol groups with
d(C=O...HOAl) = 1.86 Å and d(CC(H)O...HOAl) = 1.87 Å distances; between the H atoms of the amino
group and the O atoms of surface aluminol groups with the d(CNH...O(H)Al) = 2.27, 2.34, 2.45 Å
distances; and between the amino N atoms and the surface O atoms with d(CN...HOAl) = 2.49 Å.
The O atoms of the 5-ASA substituents do not break the coplanarity with the aromatic ring except the
carboxylic group, probably due to the repulsion with the surface O atoms. The carboxylic group is
slightly tilted, maintaining the planarity of the moiety with the carbonyl O atom oriented towards one
surface H atom and the hydroxyl group oriented against the surface due to repulsions with surface O
atoms. The non-bonding d(O...H) distances are short, but they cannot be considered strong H bonds
because the (C)O...HO(Al) angles are smaller than 120◦. Nevertheless, these small distances indicate
strong electrostatic interactions. The amino H atoms approaching the surface break the coplanarity
with the aromatic ring, and the NH...OAl interactions can be considered as weak hydrogen bonds
with NH...O(Al) angles close to 180◦. Moreover, the intramolecular hydrogen bond of 5-ASA molecule
is maintained strong with d(CCOH...O(H)CO) = 1.74 Å. The adsorption energy of the complex was
−26.23 kcal/mol (Table 2), indicating that this adsorption is energetically favorable.
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On the other hand, when the F1 conformer of 5-ASA is placed in a parallel disposition
with respect to the mineral surface with a different orientation, the axis formed by the hydroxyl
and amino substituents in the 5-ASA molecule has a parallel orientation with respect to the c
axis of the halloysite nanotube. The optimization of this adsorption complex in the 1 × 1 × 2
halloysite supercell showed that the adsorbate maintained the parallel disposition with respect
to the mineral surface, but with a twisted orientation of the molecule with respect to the surface
where the axis formed by the carboxylic substituents and the aromatic ring was perpendicular
to the c axis of halloysite (Figure 4). The adsorption energy was −26.49 kcal/mol (Table 2).
This energy is similar to the former one, indicating that the adsorbate-surface interactions are
similar when the adsorbate is in a parallel disposition with respect to the surface and the
relative orientation of the adsorbate does not significantly change the energetically favorable
adsorption. The main non-bonding interatomic distances between adsorbate and surface are similar
to those of the former adsorption complex: d(C=O...HOAl) = 1.80 Å, d(CC(H)O...HOAl) = 2.23 Å,
d(O=COH...O(H)Al) = 2.17 Å, d(CNH...O(H)Al) = 2.38 Å, and d(CN...HOHAl) = 2.36 Å. On the other
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hand, the intramolecular hydrogen bond in the 5-ASA molecule with d(CCOH...O(H)CO) = 1.72 Å is
stronger than that in the isolated molecule.

Table 2. Adsorption energy (in kcal/mol) of the halloysite/5-ASA complexes.

Structure Orientation a Adsorption Energy

5-ASA-F1
Parallel-crossed −26.23
Parallel-parallel −26.49
Perpendicular −16.48

5-ASA-F2
Parallel-crossed −29.61
Parallel-parallel −29.05
Perpendicular −18.67

F1Wsurf −31.50

F1Wcenter −29.58
a Relative orientation of the adsorbate with respect to the surface. Parallel-crossed: the adsorbate molecular plane is
parallel to the mineral surface and the axis formed by the amino and hydroxyl substituents in the 5-ASA molecule
is oriented perpendicularly with respect to the c axis of the halloysite nanotube; parallel-parallel: the adsorbate
molecular plane is parallel to the mineral surface and the axis formed by the amino and hydroxyl substituents in the
5-ASA molecule is also parallel to the c axis of the halloysite nanotube.
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Another possible orientation of the adsorbate with respect to the mineral surface is that
with the axis formed by the carboxylic group and aromatic ring of the 5-ASA molecule in
a perpendicular plane with respect to the surface and the carboxylic group oriented towards
the surface. The optimization of this adsorption complex maintained the perpendicular
orientation of 5-ASA (Figure 5). The intramolecular hydrogen bond is maintained with the same
strength with d(CCOH...O(H)CO) = 1.73 Å. The main interatomic adsorbate-surface distances were
d(C=O...HOAl) = 1.80 Å and d(O=COH...O(H)Al) = 1.51 Å. These two distances show both strong
hydrogen bonds with OHO angles close to 180◦. The adsorption energy of this complex is
−16.48 kcal/mol. This is significantly lower than the above adsorption models. This means that,
in spite of both strong hydrogen bonds, this adsorption complex does not have the same electrostatic
interactions of the hydroxyl and amino groups with the mineral surface as observed in above models.
Besides, this result is interesting because it reveals a π interaction between the aromatic ring and the O
atoms layer of the mineral surface in the former adsorption complexes where the adsorbate is placed
parallel to the surface. This interaction is absent in this model with the perpendicular orientation of
5-ASA, justifying its lower adsorption energy.
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3.2. Adsorption of the Conformer F2 of 5-ASA in the Halloysite

Analogous to the above conformer, the F2 conformer of the 5-ASA molecule was placed in a parallel
disposition with respect to the internal mineral surface with a crossing orientation, where the axis
formed by the amino and hydroxyl substituents in the 5-ASA molecule is oriented perpendicularly
with respect to the cylinder axis, c axis, of the halloysite nanotube. After the optimization of this
adsorption complex the molecular orientation is similar to that of the conformer F1 (Figure 6) and
main adsorbate-surface interatomic distances are: d(C=O...HOAl) = 1.97 Å, d(CC(H)O...HOAl) = 2.07 Å,
d(CCOH...O(H)Al) = 2.24 Å, and d(CN...HOHAl) = 2.14 Å. In this adsorption complex, the amino H
atoms break the coplanarity of the 5-ASA molecule but are oriented against the surface, in contrast to
the abovementioned adsorption models. The intramolecular hydrogen bond of 5-ASA is maintained
with d(CCOH...O=CO) = 1.95 Å, this distance being longer than that in F1 and in the isolated molecule.
The interaction between the negatively charged amino N atom and the positively charged H atoms of
mineral surface is stronger, whereas those of the 5-ASA carboxylic and hydroxyl groups are weaker
than in above adsorption complexes. The adsorption energy is −29.61 kcal/mol (Table 2) in this
adsorption model, mainly due to the electrostatic interactions and the π interaction between the
aromatic ring and surface. This adsorption energy shows that this adsorption is also energetically
favorable, even more so than in F1. The difference of the total energy of the adsorption complexes
between F1 and F2 conformers with the same orientation with respect to surface is only 3.38 kcal/mol
more stable for F2 than F1.
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On the other hand, the adsorption of the F2 conformer of 5-ASA can be placed in a parallel
disposition with respect to the surface as well as in a parallel orientation with respect to the
c axis of the nanotube (Figure 7). This orientation was maintained during the optimization
process. The intramolecular hydrogen bond of the adsorbate molecule is maintained with
d(CCOH...O=CO) = 1.89 Å, being shorter than that in the former F2 adsorption complex but longer
than that in the F1 complex. The main adsorbate-surface interactions are d(C=O...HOAl) = 2.33 Å,
d(CC(H)O...HOAl) = 2.20 Å, d(OCOH...O(H)Al) = 1.83 Å, and d(CN...HOHAl) = 2.10 Å, being similar
to the former model of F2. In this case, the main interaction is between the carboxylic H atom and the
surface O atom. This interaction breaks the coplanarity of the carboxylic H atom, with the aromatic
ring approaching the surface. The adsorption energy of this complex is −29.05 kcal/mol (Table 2),
being slightly smaller than the former one with F2 and greater than that with F1. However, considering
the total energy of the adsorption complexes between F1 and F2 conformers with the same orientation
with respect to surface, the difference is only 0.19 kcal/mol more stable for F2 than F1.
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In addition, the F2 conformer of 5-ASA can be placed perpendicularly to the internal
halloysite surface with the carboxylic group oriented to the surface. This orientation was
maintained during the optimization (Figure 8). The adsorption energy is −18.67 kcal/mol.
This energy is higher than that achieved with the conformer F1 of 5-ASA with the same relative
orientation with respect to the mineral surface, but lower than those of F2 with a parallel
orientation of adsorbate with respect to the surface (Table 2). Moreover, the intramolecular
hydrogen bond of the 5-ASA molecule is maintained with d(OC=O...HOCC) = 1.88 Å. The main
adsorbate-surface interatomic interactions are d(C=O...HOAl) = 1.99 Å, d(O=C–(H)O...HOAl) = 2.27 Å,
and d(O=COH...O(H)Al) = 1.51 Å. The carboxylic H atom forms a very strong hydrogen bond with
the surface O atoms.
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3.3. Adsorption of the Conformer F1 of 5-ASA in the Halloysite Nanotube in the Presence of Water Molecules

A similar study was conducted with the presence of water molecules. After the optimization of
the halloysite filled with water in the internal and external zones, the water molecules placed outside
the nanotube are at an average distance of d(OH...OSi) = 1.7–2.0 Å to the basal tetrahedral O atoms.
However, the internal water molecules placed inside the nanotube are closer to the aluminol surface
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with an average distance of d(OH...OH) = 1.6–1.7 Å. These distances are shorter than those with the
external siloxane surface, indicating that the aluminol surface is more hydrophilic than the siloxane
surface (Figure 9). For the adsorption study, one 5-ASA molecule was placed inside a halloysite
nanotube filled with water molecules. Two relative positions of the 5-ASA molecule were explored,
one placed parallel to the mineral surface near the O–H groups of the aluminol surface of the halloysite
(F1Wsurf) and another one placed in the middle of the nanotube in a parallel orientation to the c axis
of the nanotube (F1Wcenter). After the optimization both adsorbates remained in the same positions
(Figure 9). In both adsorption complexes the intramolecular H bond of the 5-ASA molecule remained
similar to d(CCOH...O(H)CO) = 1.70 Å. In F1Wsurf, the adsorbate-surface interactions are similar
to the first model of F1 along some hydrogen bonds between the water molecules and the 5-ASA
molecule. Nevertheless, no water molecule entered the space between the 5-ASA molecule and the
mineral surface. In the F1Wcenter complex, the main interactions are between 5-ASA and the water
molecules. The adsorption energies of the complexes are −31.50 and −29.58 kcal/mol for the F1Wsurf
and F1Wcenter complexes, respectively (Table 2).
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The adsorption energy of the 5-ASA in halloysite with water is also energetically favorable.
The adsorption energy in F1Wsurf is higher than that in F1Wcenter, meaning that the 5-ASA is likely
to be adsorbed in the halloysite internal surface. On the other hand, the adsorption energy in F1Wsurf
is higher than the adsorption of the F1 conformer of 5-ASA without water molecules, due to the
interaction of solvating water molecules with 5-ASA (Table 2).
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4. Conclusions

In all adsorption models of 5-ASA and the internal surface of halloysite, the adsorption is
energetically favorable. The adsorption energy is independent of the conformer type of 5-ASA,
and both conformers exhibit the same behavior. The presence of water favors the adsorption of 5-ASA,
forming hydrogen bonds with the 5-ASA molecule.

The 5-ASA molecule tends to be adsorbed in a parallel disposition with respect to the mineral
surface, whereas the occurrence of a perpendicular orientation of the molecule with respect to the
surface is highly improbable. The main interactions between 5-ASA and the halloysite surface are the
π interaction between the aromatic ring of 5-ASA and the mineral surface, electrostatic interactions
between the positively charged atoms and the negatively charged O atoms of the polar substituents of
5-ASA and the mineral surface, and some weak hydrogen bonds.
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