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Abstract: The Sungun porphyry ore deposit is located in Eastern Azarbaijan province, Northwestern
Iran. The oldest intrusive pulse in the region is a quartz-monzonite pluton, which hosts the porphyry
copper-molybdenum mineralization. The Sungun Copper Mine includes the mineralized Sungun
porphyry as well as six groups of cross-cutting and lithologically distinct post-mineralization dykes.
The composition of these dykes ranges from quartz diorite, gabbro, diorite, dacite, lamprophyre, and
microdiorite. Quartz diorite and dacite dykes are the oldest and youngest dykes, respectively. Based
on their cross-cutting relationships, the composition of the dykes tend to become more primitive
through time. The dykes strike Northwest-Southeast with Southwest dip, sub-parallel to the reverse
faults within the deposit area. The lamprophyric dykes range from phonotephrite, to trachybasalt,
tephrite, and basanite. The quartz-monzonite porphyry (SP) and the post-mineralization dykes
(DK1-DK3) have clear and distinct negative anomalies of Ti, Zr, P, Pr, Ce, and Nb, as well as positive
anomalies of Cs, U, K, Pb, and Nd with respect to primitive mantle. Microdioritic dykes (MDI) show
depletion of Ti, Nb, P, Ta, Th, Yb, and Zr, and enrichment of Cs, Ba, U, Pb, Nd. The similarities in trace
element abundances and patterns in the porphyry and post-mineralization calc-alkaline dykes implies
a single source and fractional crystallization as the main mechanism controlling magmatic evolution
in a collisional environment. Lamprophyric dykes have enrichment of LREE and LILE and depletion
of HREE and HFSE such as Ti, Nb, and Ta. The parent magma of the lamprophyric dykes (LAM)
was likely derived by low degrees of melting of a garnet lherzolite mantle peridotite. The 8 Sr /80Sr
and **Nd/!*4Nd ratios range from 0.704617 to 0.706464 and from 0.512648 to 0.512773 for the dykes
suggesting that the parental magmas came from a progressively more enriched mantle. Isotope ratios
of 8Sr /86Sr and *3Nd /1#*Nd support a cogenetic relationship of porphyry and calc-alkaline dykes,
except for the microdiorite ones. A common primary melt underwent gravity differentiation in a
deep magmatic chamber to form a dioritic magma. This subsequently migrated to shallower levels to
evolve further and feed individual dyke groups into the Sungun porphyry.

Keywords: cogenetic magmatism; dioritic magma; post-mineralization dykes; Sungun; porphyry deposit

1. Introduction

The Sungun Cu-Mo porphyry is situated in the NW-trending part of the Central Iran
post-collisional magmatic arc zone [1] known as Sahand-Bazman (Figure 1). Porphyry copper deposits
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form along convergent plate boundaries in continental magmatic arcs or in island-arc environments [2].
These deposits are associated with subduction-related volcanic centers, although in some examples,
they are thought to be associated with post-collisional volcanism [2]. Giant porphyry copper deposits
in Iran and Pakistan occur in a region along the suture zone between the Arabian (Afro-Arabian) and
Eurasian plates following subduction of the Neo-Tethys oceanic plate [3]. Reference [4] noted that
continental arc-style magmatism related to the subduction of the Neo-Tethys oceanic plate produced
several porphyry deposits such as the porphyry copper-molybdenum deposit at Sungun (northwestern
Iran), the giant gold-rich porphyry copper deposit at Sarcheshmeh, and porphyry copper deposit at
Meiduk. The magmatic suites in this area are part of the NW-SE trending Cenozoic magmatic belt of
Iran and the porphyries occur as stocks and dykes [5,6] (Figure 1).
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Figure 1. (a) Main tectonic terranes of Iran and neighboring countries. Additionally mapped are late
Mesozoic and Cenozoic magmatic provinces as well as ophiolitic domains [1,7]; (b) geologic map of
Northwestern Iran, showing the locations of Mesozoic and Cenozoic igneous rocks and associated
porphyry, epithermal, and Carlin-like deposits [7]. The location of the Sungun porphyry Cu-Mo deposit
in the Sahand-Bazman belt is shown by a star [8].

Most porphyry copper deposits are associated to shallow-intermediate silicic intrusive complexes
composed of small plutons and dykes. Some are associated solely to dykes. Porphyry Cu deposits are
centered in porphyry intrusions that range from vertical, pluglike stocks, and are circular to elongate
in a map view due to dyke arrays forming small, irregular bodies [9]. The stocks and dykes commonly
have diameters and lengths of <1 km.

In most porphyry deposits around the world dyke suites have compositions associated to
mineralized porphyry and are hence genetically related. In the copper belt of Iran, late and
unmineralized dykes genetically related with the mineralized porphyry occur at Sarcheshmeh, Sara,
Haftcheshmeh and Darrehzar [10-13]. The majority of studies on the Sungun porphyry Mo-Cu deposit
consist of exploration companies reports alongside master and PhD dissertations, and focused on
surveying the deposit geometry as well as determining the mechanisms of mineralization [14-27].
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A quantitative study of the petrology and geology on post-mineralization dykes has yet to be conducted.
In this paper we introduce new petrography, geochemistry, and isotopic data of the Sungun stock and
the associated post-mineralization dykes and discuss the links between the two.

Abbreviations used are as follows: Sungun porphyritic body (SP); Three phases of quartz dioritic
dykes divided in terms of alteration and temporal relationships (DK1a, DK1b, DK1c); Gabbrodioritic
dykes (DK2); Dioritic dykes (DK3); Dacitic dykes (DK4); Microdioritic dykes (MDI); Lamprophyric
dykes (LAM); Skarn (SKR), and Hornfels (HFS).

2. Geological Setting

Cenozoic magmatism and associated Porphyry copper mineralization in Iran occur in the
Sahand-Bazman belt. The Sungun porphyry deposit is approximately 100 km NE of Tabriz in
NW Iran (Figure 1). The oldest rocks in the study area are a 500 m sequence of Cretaceous
limestone with intercalations of shale (Figure 2) [15,17]. Fossils in this unit have an Upper Cretaceous
(Campanian-Maastrichtian) age. The oldest intrusive pulse in the region and the host of copper
and molybdenum mineralization is a quartz-monzonite porphyry (Sungun Porphyry, SP). The
quartz-monzonite stock has been dated by Ar-Ar at about 20.69 & 0.37 (+0.20) Ma [25] and by U-Pb zircon
at about 21 £ 0.15 Ma [27]. A skarn zone to the North and East of the Sungun-Chay and Pakhir-Chay
rivers related to the quartz monzonite stock hosts the Cu-Mo deposit at Sungun. A hornfels zone outcrops
along the Eastern margin of the porphyry and appears abundantly in drill cores (Figure 2).

Post-mineralization dykes in the Sungun deposit can be subdivided according to chemical
composition and relative age (Figure 3). We characterized six dyke groups: (1) Quartz dioritic;
(2) Gabbroic; (3) Dioritic; (4) Microdioritic; (5) Lamprophyric; and (6) Dacitic. Temporally, the dykes
are further classified into eight categories, with the oldest being the DK1a quartz dioritic dykes and
the youngest the dacite dykes (Figure 3).

Dykes are very strongly altered with most of the plagioclase megacrysts largely replaced by
sericite, epidote, kaolinite, and carbonate. The width of the dykes varies from a few centimeters to
approximately 30 m. The dykes show sharp, chilled contacts with the host rocks. The strike of the
dykes, as measured in the field (N = 752), is generally similar to the trends of lineaments measured from
aerial images. The field measurements show a somewhat more NW-SE trend of the dykes (Figure 4a,b).

Based on the appearance and cross-cutting relationships between the intrusions, three kinds of
quartz-dioritic dykes were distinguished. The first generation is DK1a. They are light grey in colour
and are generally very wide (0.5-20 m). References [25,27] reported an average age of 20.57 & 0.45 Ma
and 19.85 + 0.33 Ma (U-Pb method, zircon). DK1a are frequently cut by DK1b (Figure 5a).

The second quartz diorite dyke generation is DK1b. They are dark grey in color, generally
thinner and shorter than DK1a. In the mine pit DK1b are abundantly exposed with lengths ranging
between 30 m and 3 km. They are easily recognizable by their coarse and pink orthoclase phenocrysts.
DK1b dykes contain enclaves (Figure 5c) that can be divided into two groups: Dioritic enclaves and
microgranular enclaves with quartz dioritic composition. The diameter of enclaves varies from a few
millimeters to 30 centimeters (Figure 5c).

DKlc is the third and youngest generation compared to DK1a and DK1b, based on cross cutting
relationships. The grey color of DK1 is clearly different from all of the other rocks of the units at
Sungun, making them easily recognizable in the field.

Gabbroic dykes (DK2) have not been seen inside the Sungun deposit but are found on its
Northeastern side. Gabbroic rocks (DK2) are dark grey in colour. This dyke group cuts quartz-diorite
dykes and is cut by the diorite dykes (DK3). The diorite dykes (DK3) are younger than the
quartz-diorite (DK1) and gabbroic dykes (DK2), and contain abundant hornfels enclaves (Figure 5d).
These dykes can be seen in drill cores and outcrop in the Skarn portion.
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Figure 2. Geological map of the Sungun Copper Mine [28].
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Figure 3. Classification of post-mineralization dykes is based on relative intrusive age.
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Figure 5. Field photographs. (a) Quartz diorite (DK1b) dykes intruded into the quartz diorite (DK1a),
view to the North; (b) quartz diorite (DK1c) and diorite (DK3) dykes intruded into the skarn, view to
the SE; (c) Irregular mingled contact between fine-grained enclave and medium-grained quartz diorite
(DK1b); and (d) hornfels enclave within an outcrop of fine-grained diorite (DK3).
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Lamprophyre and microdiorite dykes have formally been reported only from drill core
observations (Figure 6) [29,30]. Small microdiorite dykes are common in the Eastern skarn and
are found in drill cores SUS_01 (Figure 6a), 03, 07, 17, 41, 43, 44, 46, and 52 (Figure 2). At Sungun the
microdiorite dykes cross cut quartz-diorite dykes DK1la and DK1b. Lamprophyre dykes (LAM) have
not been reported at the surface but are found in drill cores SUS_24, 26, 38, 42, and 64 (Figure 6b).
The samples of the lamprophyre dykes are light green and grey in colour, fine-grained, and with
porphyritic textures.
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Figure 6. Two Sungun mine drill core logs representative of the diversisty of lithologies. (a) Core SUS01
contains a microdioritic dyke and (b) core SUS64 contains a lamprophyric dyke that have no surface
exposure. SP is Sungun porphyry; DK1a, b and c are three phases of quartz dioritic dykes; DK2 is
gabbrodiorite; DK3 is diorite; DK4 is dacite; MDI is a microdioritic dyke; LAM is a lamprophyric dyke;
SKR is skarn; and HFS is hornfels.

Dacite dykes DK4 are related to Chaldaghi subvolcanic bodies, which have been attributed to the
Plio-Quaternary [23]. These dacite dykes are covered by Plio-Quaternary epiclastic and pyroclastic
rocks known as Dashdibi volcanics. Dacite dykes are grey to dark grey, fine grained, and containg
mafic phenocrysts. Dacite dykes intrude the quartz monzonite of the Sungun porphyry. Dashdibi
volcanics, as the latest and youngest episode of magmatism in the study area, cover approximately
2 km? of the altered SP quartz monzonite stock and post-mineralization dykes in the Southwest and
West of Sungun. Dashdibi lavas are basaltic trachyandesite [23].
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3. Materials and Methods

A total of 200 rock samples from various lithologies in the Sungun deposit (20-SP, 95-DK1, 5-DK2,
35-DK3, 5-DK4, 20-LAM, and 20-MDI) were collected, of which 100 thin sections were studied by a
polarized microscope to identify the mineral assemblages. Twenty nine representative samples and an
additional thirty six from [26] were selected for whole-rock chemical analysis. Samples were analyzed
for major elements by X-ray fluorescence using standard XRF techniques. Trace and rare-earth elements
were analyzed by Lithium borate fusion ICP-MS at the ALS-Chemex Laboratories, Vancouver, Canada.
For mineral chemistry 6 sample thin sections including amphiboles, biotites and plagioclase were
selected and analyzed using the CAMECA SX100 at the Oklahoma University Microprobe Laboratory.
Typical beam operating conditions were 20 kV and 20 nA.

Six samples from the post-mineralization dykes were analysed for Sr and Nd isotopic compositions
in the Laboratory of Isotope Geology of the University of Aveiro, Portugal. Powdered samples were
dissolved by HF/HNOj3 solution in PTFE-lined Parr acid digestion bombs at a temperature of 180 °C
for 3 days. After the final solution evaporation, the samples were dissolved in HCl (6.2 M) also in
acid digestion bombs, and dried again. The elements analyzed were purified in two steps using
conventional ion chromatography technique: Sr and REE elements separation in ion exchange columns
was done using AG8 50 W cation exchange resin (Bio-Rad, Hercules, CA, USA); Nd separation from
the other lanthanides was done with Ln cation exchange resin (Eichrom Technologies, Lisle, IL, USA).
All reagents used in sample preparation were sub-boiling distilled and the water was produced by a
Milli-Q Element System apparatus (Merck Millipore, Darmstadt, Germany). Strontium was loaded
in a single Ta filament with H;PO, whereas Nd was loaded on a Ta outer side filament with HCl in
a triple filament arrangement. 87Sr/80Sr and 1**Nd /#4Nd isotopic ratios were determined using a
multi-collector thermal ionization mass spectrometer (TIMS) VG Sector 54 device. Data were acquired
in dynamic mode with peak measurements at 1-2 V for 88Sr and 0.5-1.0 V for *4Nd. typical runs
consisted of acquisition of 60 isotopic ratios. The isotopic ratios of Sr and Nd were corrected for mass
fractionation relative to 88Sr/%Sr = 0.1194 and **Nd/*Nd = 0.7219. During this study, the SRM-987
standard gave an average value of 8Sr/80Sr = 0.710249 + 12 (conf. lim 95%, N = 12) and the JNdi-1
standard gave an average value of **Nd/*Nd = 0.5121019 = 58 (conf. lim 95%, N = 15).

4. Petrography

4.1. SP (Quartz-Monzonite)

The main mineral associations in the Sungun porphyry deposit comprise plagioclase (40%—45%),
orthoclase (30%—-35%), amphibole (5%-10%), biotite (5%-10%), and quartz (5%—-10%). Plagioclas is
slightly altered to an assemblage of sericite, calcite and epidote (Figure 7a) in the propylitic zone and
entirely decomposed to sericite in the phyllic zone. This mineral is fresh in the potassic zone and
rarely altered to sericite. In the latter zone, metasomatic biotite is also observed. Ferromagnesian
minerals such as amphibole and biotite are altered to a sericite-calcite-chlorite-epidote association in
the propylitic zone and entirely replaced by sericite and opaque minerals and negligible chlorite and
epidote in the phyllic zone. Accessory minerals comprise zircon, apatite, titanite, and opaque minerals
(e.g., pyrite, chalcopyrite, magnetite, bornite, molybdenite, chalcocite, and covellite).

4.2. DK1 (Quartz Diorite)

These dykes are dark gray to dark green in hand specimen and have massive texture. Post
mineralization quartz diorite dykes in this region are subdivided into three categories based on
alteration and relative emplacement age (DK1a, DK1b and DKlc).

4.2.1. Dkla

Quartz diorite dykes are composed mainly of plagioclase (50%—60%), biotite (15%—-20%),
amphibole (5%-10%), and accessory minerals which include K-feldspar, quartz, zircon, apatite, titanite,
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and epidote (Figure 7b). Amphibole and biotite crystals are influenced by hydrothermal alteration and
are locally completely altered to chlorite.

Figure 7. Photomicrographs (cross polarized light) show textures and mineral assemblages of
the Sungun stock and post-mineralization dykes. (a) Alteration of plagioclase to sericite in
quartz-monzonite; (b) subrounded “quartz eye” within altered plagioclase and biotite groundmass;
quartz diorite dyke (DK1a); (c) Alteration of biotite to chlorite in quartz diorite; (d) amphibole with
Carlsbad Twinning; (e) megacryst of plagioclase in diorite (DK3); (f) flow texture and cognate inclusion
of feldspars in microdiorite (MDI); (g) megacryst of biotite in lamprophyre dyke; and (h) phenocryst of
apatite in lamprophyre. Abbreviation: Amp = Amphibole, Chl = Chlorite, Am = amphibole, Bt = biotite,
Pl = plagioclase, Ser = Sericite, Qtz = quartz, and Ap = apatite.
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4.2.2. DK1b

This rock is porphyritic with a microlithic porphyre textures groundmass and mainly consist of
plagioclase, amphibole and biotite (Figure 7c). Plagioclase crystals mostly show alteration to sericite
and epidote. Amphibole phenocrysts are partially altered to chlorite, but to a lesser degree than biotite,
which is mostly altered to chlorite.

4.2.3. DKlc

These dykes have dark green color. General textures are porphyritic with a microlithic
groundmass. The quartz diorite consists of plagioclase, amphibole (Figure 7d), and biotite. Accessory
minerals include quartz, titanite, and apatite.

4.3. DK2 (Gabbro)

Gabbro commonly show a porphyritic texture with phenocrysts of pyroxene and plagioclase.
Accessory phases are apatite, titanite, Fe-oxides, Fe-sulphides, and epidote.

4.4. DK3 (Diorite)

These dykes are dark green and commonly show a porphyritic texture with phenocrysts consisting
of plagioclase, amphibole, K-feldspar, and accessory phases including quartz, apatite, and titanite.
Most plagioclases are altered to epidote, chlorite, and calcite, and K-feldspar is altered to sericite and
clay minerals (Figure 7e). Amphibole is altered to chlorite and calcite.

4.5. DK4 (Dacite)

These are dark grey in color and have porphyritic textures consisting of plagioclase and sanidine.
Ampbhibole is an accessory mineral.

4.6. MDI (Microdiorite)

Micro diorite is dark grey in color and commonly consists of phenocryst, groundmass, and
cognate inclusions (Figure 7f). Phenocrysts mainly consist of feldspar and quartz.

4.7. LAM (Lamprophyre)

In hand sample the color is gray to bright green. The rock is porphyritic with a microlitic
groundmass. The main minerals include biotite (Figure 7g,h), amphibole, plagioclase, alkali feldspar,
and pyroxene. Accessory minerals include apatite (Figure 7h), zircon, and quartz.

5. Mineral Chemistry and Whole Rock Geochemistry
5.1. Mineral Chemistry

5.1.1. Plagioclase

Representative compositions of plagioclase in Sungun deposit post-mineralization dykes, are
reported in Table 1 and illustrated in Figure 8. Plagioclase in quartz diorite dykes (DK1) ranges
from andesine to oligoclase with some nearly pure albite. Dacite dykes have the most anorthitic
felsdspars, ranging from labradorite to andesine. Lamprophyre dykes contain oligoclase to albite,
whereas microditorite dykes contain nearly pure albite.
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Table 1. Representative microprobe analyses of plagioclases. Cations calculation is based on 8 oxygen.

DK1la DK1b DK1lc LAM MDI
Sample
al a2 b1 b2 cl c2 k2 k2 L1 L2 M2 M3
SiO, 68.71 68.56 62.75 61.94 58.93 57.42 56.41 56.56 68.92 68.77 67.7 66.77
TiOy 0 0 0 0 0 0 0 0 0 0 0 0
Al,O3 2043 20.19 21.71 20.73 25.1 26.95 26.83 26.36 20.46 20.51 20.05 2041
Cr,03 0 0 0 0 0 0 0 0 0 0 0 0
FeO 0.03 0.03 0.59 0.56 0.25 0.24 0.41 0.42 0.01 0.01 0.2 0.07
MnO 0 0 0 0.01 0 0 0.01 0 0 0 0 0.03
MgO 0 0 0.44 0.44 0 0 0.02 0.03 0 0 0.05 0.02
CaO 0.11 0.09 2.7 4.13 7.02 8.3 9.65 9.25 0.57 0.57 0.45 0.23
Na,O 11.2 11.64 10.51 10.77 6.99 6.49 6.01 6.36 10.94 11.31 11.01 10.99
KO 0.07 0.1 0.39 0.33 0.52 0.39 0.62 0.6 0.11 0.11 0.33 0.56
Total 100.55 100.6 99.09 98.91 98.81 99.79 99.96 99.58 101.01 101.28 99.79 99.08
Si 2.98 2.98 2.81 2.8 2.66 2.58 2.55 2.56 2.98 297 297 295
Ti 0 0 0 0 0 0 0 0 0 0 0 0
Al 1.04 1.03 1.15 1.11 1.34 1.43 1.43 1.41 1.04 1.04 1.04 1.06
Cr 0 0 0 0 0 0 0 0 0 0 0 0
Fe?* 0 0 0.02 0.02 0.01 0.01 0.02 0.02 0 0 0.01 0
Mn 0 0 0 0 0 0 0 0 0 0 0 0
Mg 0 0 0.03 0.03 0 0 0 0 0 0 0 0
Ca 0 0 0.13 0.2 0.34 0.4 0.47 0.45 0.03 0.03 0.02 0.01
Na 0.94 0.98 0.91 0.95 0.61 0.57 0.53 0.56 0.92 0.95 0.94 0.94
K 0 0.01 0.02 0.02 0.03 0.02 0.04 0.03 0.01 0.01 0.02 0.03
Total 497 5 5.08 5.13 4.99 5 5.02 5.03 497 4.99 4.99 5
Or 043 0.55 2.09 1.64 3.02 2.28 3.47 3.33 0.65 0.64 1.87 3.22
Ab 99.05 99.03 85.74 81.16 62.37 57.26 51.15 53.6 96.55 96.68 95.97 95.66
An 0.51 0.41 12.17 17.2 34.61 40.46 45.38 43.08 2.8 2.68 2.15 1.12
Sample
4 Dkla
® Dkib
® DKic
A DK3
v LAM
Y MDI

Figure 8. Plagioclases composition of dykes in the Sungun deposit classified based on the feldspar
ternary diagram [31].

5.1.2. Amphibole

Representative compositions of amphiboles are presented in Table 2. Based on the Mg/ (Mg + Fe?*)
vs. Si classification diagram, amphiboles from quartz diorite, diorite and lamprophyre dyke samples,
plot in the fields of magnesiohornblende, and tschermakite (Figure 9). All amphiboles have between 6

and 7 Si atoms per formula unit (apfu), values which are typical of igneous amphiboles [32].
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Table 2. Representative microprobe analysis of amphiboles in Sungun deposit late dykes. Cation

calculation is based on 23 oxygen.

DK1b DKlc DK3 LAM
Sample
b1 b2 b3 2 3 4 3.2 33 3.4 L1 L2 L3
Si0, 46.81 46.67 46.66 46.04 46.72 46.59 43.26 47.85 47.36 46.28 45.68 44.64
TiO, 1.13 1.24 0.93 1.65 1.59 1.70 2.99 131 1.29 1.10 1.20 1.29
ALO;3 7.96 8.53 8.67 8.77 8.35 8.53 10.56 7.02 7.29 7.90 8.13 8.79
FeO 14.70 15.39 15.39 13.97 12.62 12.68 12.02 11.50 11.57 14.13 14.65 15.23
MnO 0.32 0.38 0.37 0.13 0.10 0.08 0.24 0.33 0.34 0.33 0.34 0.30
MgO 13.36 13.59 13.61 13.41 14.11 13.96 14.52 16.45 16.18 13.86 13.37 13.06
CaO 11.43 11.44 11.27 12.62 12.94 12.65 11.25 10.51 10.59 11.24 11.14 11.27
Na;O 1.72 1.44 1.43 1.76 1.81 191 2,52 1.34 1.43 1.41 1.57 1.68
K20 1.02 1.06 1.02 0.07 0.06 0.04 1.02 0.40 041 0.87 0.96 0.98
Total ~ 10053  101.85 10146 10051 10040  100.24 10048  98.82 98.56 99.19 99.10 99.30
T
Si 6.74 6.63 6.64 6.60 6.68 6.66 6.17 6.81 6.76 6.71 6.66 6.51
Al(IV) 1.26 137 1.36 1.41 132 1.34 1.77 1.18 1.23 1.29 1.34 1.49
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.02 0.01 0.00 0.00 0.00
Total 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
C
AL(VI) 0.09 0.05 0.09 0.08 0.08 0.10 0.00 0.00 0.00 0.06 0.05 0.02
Ti 0.12 0.13 0.10 0.18 0.17 0.18 0.26 0.12 0.13 0.12 0.13 0.14
Fe3* 0.96 111 1.17 0.99 0.86 0.88 1.31 1.25 1.26 1.07 1.10 1.23
Mg 2.87 2.88 2.89 2.86 3.01 298 3.09 3.49 3.45 3.00 2.90 2.84
Fe2* 0.81 0.72 0.66 0.69 0.64 0.63 0.12 0.12 0.12 0.65 0.69 0.63
Mn?* 0.04 0.05 0.05 0.02 0.01 0.01 0.03 0.02 0.04 0.04 0.04 0.04
Total 489 494 495 4.81 478 4.79 481 5.00 5.00 493 492 4.89
B
Ca 1.76 1.74 1.72 1.94 1.98 1.94 1.72 1.60 1.62 1.75 1.74 1.76
Na 0.24 0.26 0.28 0.06 0.02 0.06 0.28 0.37 0.38 0.25 0.26 0.24
Total 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.9 2.00 2.00 2.00 2.00
A
Na 0.24 0.14 0.11 0.43 0.48 0.47 0.42 0.00 0.02 0.14 0.18 0.24
Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K 0.19 0.19 0.19 0.01 0.01 0.01 0.19 0.07 0.08 0.16 0.18 0.18
Total 0.43 033 0.30 0.44 0.49 0.48 0.60 0.07 0.09 0.30 0.36 0.42
Caa<0.50; Caz>1.5: (Na+K)a<0.5
1.0 . A‘ ! Sample
termolite M # =" oa
c
09 — u A D3
v LAM
. r .
actinolite mag;nesmhorgbl*‘ tschermakite
—_ A
rtlu A
5
2
= 05
=
ferro .
actinolite|  ferrohornblende ferrotschermakite
0.0-
L L l I
8.0 7.5 7.0 6.5 6.0 5.5

Si in formula

Figure 9. Major element data for amphiboles from dykes of the Sungun deposit plotted on the
Mg/(Mg + Fe?*) vs. Si classification diagrams [33].

5.1.3. Biotite

Representative biotite compositions are reported in Table 3. The biotites of quartz diorite and
lamprohyre dykes generally do not show differences in chemical composition and are classified as
Mg-rich biotite and phlogopite with XFe = Fe?* /Fe?* + Mg) = 0.28-0.49 (Figure 10).
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Table 3. Representative microprobe analysis of biotite. Cation calculation is based on 11 oxygen.
DKlc LAM
Sample
AB4 AB5 AB6 AB7 al a2 a3 a4
Si0, 37.56 37.37 36.88 36.49 38.14 38.06 37.95 37.98
TiO, 4.37 4.26 4.32 4.22 3.68 3.52 3.73 3.53
Al O3 14.2 14.3 14.13 14.12 14.86 14.4 14.41 14.52
CrO3 0 0 0 0 0 0 0 0
FeO 13.66 13.85 13.48 13.5 16.13 16.16 16.21 15.19
MnO 0.14 0.15 0.13 0.15 0.08 0.08 0.07 0.06
MgO 16.56 16.4 15.51 15.6 14.94 14.6 14.55 15.2
CaO 0.03 0.04 0.01 0.02 0 0.01 0.02 0.01
Na,O 0.42 0.4 0.56 0.58 0.01 0.02 0.04 0.03
KO 8.16 7.83 8.3 8.14 9.38 9.3 9.29 9.52
BaO 0 0 0 0 0 0 0 0
F 0.38 0.31 0.37 0.36 0.53 0.35 0.44 0.91
Cl 0.13 0.13 0.12 0.12 0.18 0.18 0.19 0.19
O=F 1 0.19 0.16 0.18 0.18 0.26 0.19 0.23 0.43
Total 95.8 95.2 93.99 93.48 98.19 96.87 97.13 97.53
Formula 11(O)
Si 2.77 2.77 2.78 2.76 2.79 2.81 2.8 2.8
Ti 0.24 0.24 0.24 0.24 0.2 0.2 0.21 0.2
Al 1.23 1.25 1.25 1.26 1.28 1.25 1.25 1.26
Cr 0 0 0 0 0 0 0 0
Fe3* 0.08 0.09 0.08 0.09 0.1 0.1 0.1 0.09
Fe?* 0.76 0.77 0.76 0.77 0.89 0.9 0.9 0.84
Mn 0.01 0.01 0.01 0.01 0 0.01 0 0
Mg 1.82 1.81 1.74 1.76 1.63 1.61 1.6 1.67
Ca 0 0 0 0 0 0 0 0
Na 0.06 0.06 0.08 0.08 0 0 0.01 0
K 0.77 0.74 0.8 0.79 0.87 0.88 0.88 0.9
Ba 0 0 0 0 0 0 0 0
Total 7.74 7.73 7.75 7.76 7.76 7.75 7.75 7.77
Mg/Fe + Mg 0.68 0.68 0.67 0.67 0.62 0.62 0.62 0.64
6 Sample
® DKic
v LAM
Phlogopite Mg-Biotite Fe-Biotite
5 M
yov ViR
2 T T T T
0.1 0.3 0.5 0.7 0.9
Fe/(Fet+tMg)

Figure 10. The classification of biotites from the dykes of the Sungun deposit [31,34].
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5.2. Whole Rock Geochemistry

The results of major and trace elements analysis of the Sungun porphyry and of post-mineralization
dykes are presented in Tables 4-6. The amount of SiO; vary from 48.18 to 69.24, and of MgO from 1.47 to
8.27. On the SiO, versus Zr/TiO, diagram [35] the sample plot in the andesite, dacite, and rhyodacite
fields, which in plutonic terminology are equivalent to diorite, quartz diorite and granodiorite
respectively (Figure 11a). Lamprophyre dykes plot in the field of alkaline basalt. The Ta/Yb-Th/Yb
diagram [36] shows the shoshonitic nature of the main intrusive suite at Sungun except for the
microdiorite samples that have calk-alkaline affinities (Figure 11b).

0
«© Samole | E T T T TTTT T T TTT T T mTTTTH
® o] 10F i :
A DKib F / d
21 - - - o0 4o
e i - Shoshopit O"ﬁ * ]
Rholite/Dacite Com/Pant.® AW | - e

10 E PR @ ¢ E
R - Rhyodasite/Dacite C - o~ - ‘ A e E
o i - « . ]

=] : Trachyte o e e

w -
u 1 E Calc-Akaline € 7 5
8  AncBieg A ok £ E s ;
" e - — — — ]
Phonelite r ‘ - - B
04 Tholeitic - |
84 swas TE P 3
Basanite C - ]
Lo ]
Bas/Trach/Neph - —
2 i : : 0.01 Lol Ll L
0.001 0.010 0.100 1,000 10000 .01 0.1 1 10
ZiTio2 Ta/Yb

Figure 11. General classification of igneous rocks in the Sungun area. (a) SiO, vs. Zr/Ti classification
diagram for the Sungun dykes [35]; and (b) Ta/Yb-Th/Yb diagram [36].

Sungun lamprophyre dykes span a relatively wide range of SiO; (48.18-51.54), MgO (7.26-8.34),
CaO (1.37-4.96), and Fe;O5; (3.82-5.65) with Mg numbers of 43-59, similar to potassium-rich
lamprophyres. Lamprophyres plot in the calc-alkaline field in the SiO,—CaO-TiO; diagram (Figure 12a)
and compositionally lie within the overlapping field of lamproites and lamprophyres in the
K;O-MgO-Al,O3 diagram (Figure 12b).

@ Si02/10 @ K0

Ca0 TiO2x4 MgO AL O;

Figure 12. (a) Ternary plot of TiO; x 4-S5i0,/10-CaO in which Sungun lamprophyres plot in the
calc-alkaline field [37] and (b) Ternary plot of K,O-MgO-Al,O3 where the study samples plot across
the lamproite/lamprophyre fields [38].
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Table 4. Major oxide (wt %), trace element (ppm) compositions of dykes (DK1la, DK1b and DK1c) in the Sungun porphyry deposit ((A) analysis by [26]).

Sample DK1a-96 DK1a-553 DK1a-156 DK1a-330 DK1la-Al DK1a-A2 DK1a-A3 DK1a-A4 DK1la-A5 DK1la-A6 DK1b-A1l

5i0, 67.85 62.91 65.71 63.24 62.89 62.77 62.91 62.98 69.18 69.24 62.10
Al,O3 14.12 14.07 14.17 15.45 15.01 14.96 14.86 14.93 15.58 15.55 15.06
CaO 4.09 5.71 4.55 5.12 3.44 3.47 2.26 2.29 0.36 0.39 4.12
Fe,O3 2.02 2.28 1.61 1.91 3.82 3.78 3.81 391 3.65 3.48 426
FeO 2.02 2.79 1.74 2.16 2.53 2.49 1.83 1.89 2.56 2.49 2.61
KO 2.78 2.36 3.69 3.39 3.38 3.29 448 4.51 2.96 2.98 271
MgO 1.51 2.08 1.47 1.78 2.13 2.17 2.61 2.58 1.56 1.52 2.38
MnO 0.10 0.09 0.11 0.12 0.07 0.06 0.02 0.04 0.05 0.04 0.08
Na,O 3.69 2.67 2.34 2.49 4.18 4.12 4.06 4.02 341 3.49 4.12
P,05 0.28 0.19 0.18 0.17 0.24 0.23 0.26 0.31 0.24 0.26 0.29
TiO, 0.48 0.54 0.42 0.46 0.48 0.51 0.52 0.56 0.43 0.38 0.53
LOI 1.98 2.86 3.12 3.42 3.81 2.98 1.06 0.98 1.01 0.96 3.68
Total 100.92 98.55 99.11 99.71 101.98 100.83 98.68 99 100.99 100.78 101.94
Ag 0.03 0.05 0.04 0.06 0.11 0.13 0.28 0.31 0.07 0.08 0.10

As 11.30 10.80 11.70 12.20

Au 0.02 0.02 0.02 0.03

Ba 810.00 780.00 1120.00 1080.00 1028.00 1036.00 1241.00 1248.00 471.00 468.00 854.00
Be 1.55 1.49 1.58 1.61

Bi 0.08 0.06 0.09 0.11 0.21 0.23 4.10 4.20 0.20 0.30 0.10
Cd 0.02 0.03 0.01 0.04 0.08 0.09 0.16 0.18 0.21 0.19 0.07
Ce 57.00 52.00 61.40 55.00 53.20 53.70 71.80 71.20 68.20 68.40 62.40
Co 8.40 9.10 9.70 8.60 10.60 10.90 14.60 14.30 8.60 8.90 12.80
Cr 10.00 12.00 17.00 16.00 26.00 27.00 41.00 43.00 24.00 23.00 41.00
Cs 1.79 1.68 1.77 1.81 1.30 1.20 2.10 2.20 3.70 3.90 1.70
Cu 31.70 32.60 35.70 28.20 81.70 83.00 951.00 942.00 3906.00 38.80 151.00
Dy 2.03 2.01 2.06 2.04 1.86 1.85 1.92 191 2.03 2.01 2.38
Er 1.04 1.05 1.04 1.06 1.09 1.12 1.01 1.03 1.12 1.14 1.36
Eu 0.85 0.88 0.82 0.86 0.94 0.96 1.44 1.47 1.03 1.07 1.22
Ga 17.15 17.12 16.91 17.36 15.30 15.50 16.70 16.40 16.10 16.30 16.40
Gd 2.54 2.53 2.51 2.57 2.61 2.63 3.14 3.16 3.08 3.11 3.26
Ge 0.25 0.21 0.26 0.29

Hf 2.20 2.30 2.10 2.50 1.37 1.39 1.12 1.11 1.36 1.34 1.31

Ho 0.39 0.36 0.39 0.39 0.41 0.43 0.35 0.37 0.41 0.43 0.53
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Sample DK1a-96 DK1a-553 DK1a-156 DK1a-330 DK1la-Al DK1a-A2 DK1a-A3 DK1a-A4 DK1la-A5 DK1la-A6 DK1b-A1l
In 0.02 0.02 0.02 0.02
La 31.90 29.70 32.60 28.70 29.80 30.10 40.30 40.50 39.60 39.80 37.10
Li 8.50 8.20 7.80 8.30
Lu 0.16 0.17 0.16 0.15 0.18 0.16 0.38 0.41 0.17 0.18 0.21
Mo 2.77 2.61 2.88 277 3.30 3.50 3.50 3.60 2.30 2.50 1.20
Nb 13.90 13.20 12.80 14.10 10.80 10.90 13.70 13.50 6.70 6.60 12.40
Nd 20.70 20.20 20.80 20.70 19.70 19.90 29.30 29.50 26.60 26.80 24.80
Ni 10.90 11.70 12.20 10.80 21.00 22.00 31.00 32.00 22.00 24.00 27.00
Pb 19.20 20.70 18.40 19.20 19.90 19.70 14.30 14.60 41.10 40.90 17.30
Pr 5.66 5.59 5.61 5.63 5.71 5.73 8.05 8.07 7.53 7.55 6.92
Rb 75.00 79.10 72.60 81.20 67.50 67.60 99.30 99.40 122.10 122.30 56.70
Re 0.00 0.00 0.00 0.00
S 5200.00 6100.00 5700.00 6210.00
Sb 1.07 1.02 1.12 1.09
Se 5.80 5.40 5.60 5.90
Sm 3.22 3.21 3.24 3.29 3.08 3.09 418 421 4.03 4.05 3.78
Sn 0.70 0.60 0.70 0.80 0.90 0.70 1.40 1.60 0.80 0.90 1.10
Sr 598.00 612.00 589.00 608.00 607.00 604.00 691.00 694.00 188.00 191.00 845.00
Ta 0.87 0.88 0.82 0.85 1.36 1.38 1.18 1.16 0.68 0.71 0.98
Tb 0.33 0.32 0.31 0.35 0.39 0.37 0.41 0.44 0.41 0.43 0.46
Te 0.07 0.08 0.06 0.08
Th 13.10 12.90 13.60 13.50 11.70 11.90 21.70 21.90 17.70 17.90 14.10
Tm 0.15 0.13 0.15 0.16
U 3.70 3.40 3.50 3.90 5.61 5.58 11.61 11.58 6.82 6.84 5.09
\% 62.00 69.00 59.00 64.00 77.00 78.00 66.00 67.00 59.00 58.00 81.00
W 3.90 3.20 3.80 3.10 3.10 3.30 3.60 3.80 1.40 1.70 2.20
Y 9.50 9.70 9.30 9.60 10.40 10.60 9.50 9.60 10.10 10.30 13.40
Yb 0.99 0.98 0.97 1.02 1.12 1.13 0.94 0.96 1.01 1.03 1.32
Zn 77.00 71.00 78.00 81.00 54.60 54.30 32.80 32.60 158.10 158.30 52.60
Zr 81.60 88.20 89.10 90.20 43.00 42.00 34.00 36.00 42.00 44.00 38.00
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Table 4. Cont.

Sample DK1b-A2 DK1b-A3 DK1b-A4 DK1b-A5 DK1b-A6 DK1b-128 DK1b-593 DK1b-615 DK1b-200 DK1c-558 DK1c-351

5i0, 61.98 60.08 59.98 60.71 60.08 63.81 64.61 66.20 63.19 60.12 62.19
Al,O3 15.01 16.12 16.18 14.58 14.51 14.33 16.05 14.70 14.82 15.29 14.66
CaO 4.08 4.61 4.69 5.14 521 4.49 2.88 3.06 3.56 525 5.75
Fe,O3 4.29 5.51 5.58 3.41 3.38 2.36 2.70 243 3.31 2.84 2.57
FeO 2.58 2.61 2.72 2.08 2.12 2.36 298 2.70 3.34 2.90 2.96
KO 2.68 2.38 244 3.11 324 245 297 241 2.54 237 2.46
MgO 242 3.08 3.17 2.18 227 227 2.86 3.07 2.96 2.72 3.36
MnO 0.07 0.11 0.09 0.07 0.06 0.09 0.08 0.07 0.13 0.08 0.13
Na,O 4.08 4.49 4.51 4.77 4.73 4.46 2.78 2.84 3.01 4.23 2.78
P,05 0.31 0.31 0.32 0.27 0.29 0.23 0.19 0.21 0.22 0.26 0.24
TiO, 0.51 0.61 0.59 0.49 0.46 0.52 0.62 0.58 0.64 0.63 0.58
LOI 3.06 2.18 1.98 3.81 3.23 1.92 1.22 1.70 2.28 2.81 2.31
Total 101.07 102.09 102.25 100.62 99.58 99.29 99.94 99.97 100 99.5 99.99
Ag 0.12 0.13 0.14 0.10 0.11 0.03 0.03 0.02 0.05 0.03 0.03
As 1.70 1.60 1.20 1.80 1.10 1.30
Au 0.01 0.00 0.01 0.00 0.00 0.00
Ba 856.00 724.00 726.00 857.00 859.00 860.00 921.00 1070.00 895.00 770.00 790.00
Be 1.31 1.29 1.33 1.38 1.09 1.09
Bi 0.10 0.20 0.10 0.30 0.20 0.11 0.12 0.14 0.17 0.13 0.15
Cd 0.09 0.08 0.09 0.09 0.11 0.03 0.02 0.06 0.02 0.03 0.04
Ce 62.60 45.80 45.50 70.80 71.10 50.30 49.80 51.20 54.00 49.00 44.00
Co 12.90 16.20 16.50 9.10 9.30 10.90 10.70 9.80 11.20 13.50 12.80
Cr 40.00 27.00 28.00 31.00 33.00 31.00 33.00 28.00 39.00 27.00 26.00
Cs 1.60 0.60 0.70 1.10 1.30 0.60 0.62 0.71 0.62 0.66 0.61
Cu 153.00 144.00 143.00 127.00 128.00 68.00 58.10 62.60 48.10 49.60 45.20
Dy 241 2.46 243 2.27 2.29 2.12 2.16 2.13 2.11 2.56 248
Er 1.38 1.39 1.41 1.22 1.23 1.09 1.09 1.08 1.07 1.39 1.38
Eu 1.24 1.07 1.08 1.11 1.09 0.96 0.97 0.93 0.95 1.09 1.08
Ga 16.70 17.50 17.30 16.60 16.30 17.30 17.14 17.37 16.91 17.35 17.14
Gd 3.28 3.12 3.09 3.09 3.13 2.68 2.62 2.70 2.66 3.25 3.21

Ge 0.20 0.21 0.22 0.19 0.24 0.25
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Table 4. Cont.

Sample DK1b-A2 DK1b-A3 DK1b-A4 DK1b-A5 DK1b-A6 DK1b-128 DK1b-593 DK1b-615 DK1b-200 DK1c-558 DK1c-351
Hf 1.33 1.92 1.95 1.46 1.49 1.30 1.20 1.30 1.10 1.70 1.60
Ho 0.52 0.52 0.51 0.46 0.48 0.40 0.42 0.47 0.44 0.51 0.53
In 0.04 0.03 0.04 0.03 0.04 0.03
La 37.00 24.90 24.70 42.30 42.50 28.30 28.60 27.20 29.70 28.20 28.30
Li 10.00 10.30 9.80 9.30 9.70 9.50
Lu 0.23 0.21 0.22 0.18 0.16 0.15 0.16 0.18 0.14 0.20 0.18
Mo 1.40 2.80 2.90 4.20 4.30 2.72 2.69 2.78 2.81 247 2.46
Nb 12.20 11.60 11.70 11.20 11.40 12.70 12.20 11.80 12.40 11.00 11.90
Nd 24.90 19.80 20.10 26.60 26.80 19.70 19.30 19.60 19.90 20.70 20.60
Ni 25.00 22.00 23.00 24.00 25.00 20.80 21.20 20.20 19.80 20.60 21.20
Pb 17.40 14.10 14.30 9.60 9.70 21.70 22.20 23.70 20.60 10.00 10.60
Pr 6.96 5.19 5.15 7.61 7.63 5.29 5.31 5.27 5.24 5.29 5.31
Rb 56.50 37.10 37.20 65.50 65.20 57.90 59.40 56.20 57.40 47.40 48.60
Re 0.00 0.00 0.00 0.00 0.00 0.00

S 3100.00 3260.00 3310.00 3000.00 2000.00 2100.00
Sb 0.81 0.84 0.91 0.77 0.55 0.59
Se 8.00 8.20 8.60 7.80 10.70 10.20
Sm 3.81 3.31 3.34 3.76 3.74 3.17 3.18 3.21 3.14 3.70 3.71
Sn 0.90 1.00 0.90 0.80 0.90 0.80 0.60 0.70 0.80 0.90 0.90
Sr 847.00 805.00 807.00 667.00 664.00 725.00 736.00 742.00 718.00 650.00 662.00
Ta 0.99 0.91 0.93 0.98 0.99 0.85 0.86 0.89 0.84 0.73 0.72
Tb 0.44 0.43 0.47 0.43 0.45 0.35 0.32 0.35 0.37 0.43 0.44
Te 0.05 0.05 0.07 0.05 0.05 0.06
Th 13.90 6.50 6.60 19.20 19.40 12.80 12.60 12.40 12.90 9.60 9.40

Tm 0.15 0.14 0.15 0.17 0.19 0.18

U 5.07 3.21 5.24 4.96 4.95 3.80 3.80 4.10 3.20 2.90 2.60
\% 82.00 112.00 111.00 61.00 59.00 86.00 82.00 91.00 86.00 102.00 104.00
'V 1.90 1.20 1.30 13.20 13.40 2.50 2.60 2.20 2.10 1.10 1.30
Y 13.20 13.10 12.90 12.50 12.30 9.80 9.40 9.30 8.90 13.10 13.20
Yb 1.31 1.31 1.33 1.14 1.12 1.02 1.01 1.03 0.99 1.26 1.27
/n 52.80 70.90 70.70 43.10 43.30 64.00 61.00 58.00 62.00 51.00 48.00
Zr 36.00 58.00 60.00 39.00 37.00 37.40 36.40 39.10 35.20 50.50 51.70
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Table 5. Major oxide (wt %), trace element (ppm) compositions of dykes (DK1c, DK3 and MDI) in the Sungun porphyry deposit ((A) analysis by [26]).

Sample DK1c-417 DK1c-145 DK1c-Al DK1c-A2 DK1c-A3 DK1c-A4 DK1c-A5 DK1c-Ab6 DK3-190 DK3-103 DK3-25

5i0, 61.51 60.53 62.88 62.81 62.81 56.45 56.81 56.88 65.38 63.72 60.49
Al,O3 14.89 14.62 15.01 14.89 14.81 16.31 15.13 15.21 12.62 14.21 13.70
CaO 5.82 6.92 3.44 341 2.26 6.12 6.01 5.98 6.27 5.86 717
Fe,O3 2.95 2.96 3.81 3.78 3.81 6.07 6.12 6.08 1.83 2.28 292
FeO 3.46 3.69 2.61 2.58 1.81 3.14 2.71 2.68 1.83 2.78 343
KO 2.99 2.08 3.31 3.28 448 1.93 2.03 2.01 0.16 2.04 1.92
MgO 3.13 3.82 2.13 224 248 3.68 4.81 4.79 2.07 3.32 4.02
MnO 0.12 0.12 0.07 0.08 0.03 0.10 0.12 0.12 0.10 0.09 0.15
Na,O 2.38 2.61 4.21 4.18 4.10 4.10 4.05 4.08 6.47 2.65 3.46
P,05 0.21 0.23 0.26 0.28 0.29 0.41 0.33 0.34 0.22 0.21 0.25
TiO, 0.54 0.73 0.49 0.51 0.53 0.68 0.69 0.62 0.45 0.56 0.68
LOI 2.28 2.12 3.81 3.68 1.06 2.12 2.38 2.18 2.68 1.98 2.01
Total 100.28 100.43 102.03 101.72 98.47 101.11 101.19 100.97 100.08 99.7 100.2
Ag 0.02 0.05 0.10 0.11 0.28 0.08 0.12 0.11 0.06 0.06 0.09
As 1.10 1.60 5.20 5.40 4.80
Au 0.00 0.00 0.00 0.00 0.00
Ba 810.00 768.00 1032.00 1038.00 1245.00 586.00 677.00 672.00 30.00 45.00 48.00
Be 0.98 1.12 2.08 2.18 2.02
Bi 0.18 0.19 0.20 0.30 4.10 0.01 0.13 0.12 0.36 0.39 0.41
Cd 0.06 0.02 0.09 0.11 0.14 0.07 0.09 0.08 0.06 0.05 0.04
Ce 47.60 45.90 54.80 53.90 71.80 61.60 51.70 51.40 71.40 72.20 69.60
Co 13.90 14.00 10.90 11.10 14.80 19.10 23.20 23.60 4.70 4.60 4.40
Cr 31.00 28.00 27.00 28.00 41.00 34.00 122.00 121.00 50.00 52.00 48.00
Cs 0.72 0.77 1.20 1.30 2.20 0.50 0.60 0.70 0.21 0.24 0.26
Cu 43.10 39.70 83.30 84.60 943.00 57.00 101.00 107.00 48.80 46.40 41.10
Dy 2.52 2.57 1.86 1.88 1.96 3.12 3.11 3.14 1.35 1.36 1.35
Er 1.36 1.40 1.12 1.08 1.01 1.77 1.71 1.73 0.65 0.66 0.65
Eu 1.12 1.06 0.93 0.97 1.47 1.31 1.26 1.28 0.47 0.44 0.49
Ga 16.96 16.62 15.60 15.30 16.70 18.20 17.30 17.40 12.45 13.01 13.26
Gd 3.26 3.29 2.58 2.56 3.15 411 3.81 3.87 2.08 2.06 2.02
Ge 0.23 0.21 0.21 0.22 0.25
Hf 1.80 1.60 1.38 1.39 1.12 2.14 2.17 2.15 1.00 1.20 0.90

Ho 0.55 0.49 0.41 0.39 0.37 0.64 0.67 0.66 0.24 0.26 0.22
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Sample DK1c-417 DK1c-145 DK1c-Al DK1c-A2 DK1c-A3 DK1c-A4 DK1c-A5 DK1c-Ab6 DK3-190 DK3-103 DK3-25
In 0.03 0.02 0.20 0.04 0.20
La 29.10 27.20 29.80 30.10 40.30 34.70 28.30 28.60 40.60 41.20 39.80
Li 8.70 9.10 2.30 2.20 2.60
Lu 0.21 0.23 0.18 0.16 0.38 0.27 0.28 0.29 0.07 0.06 0.08

Mo 232 2.37 3.30 3.60 3.70 2.20 1.70 1.60 3.31 3.41 3.51
Nb 10.80 11.40 10.80 10.90 13.70 11.60 12.30 12.40 15.50 16.70 15.20
Nd 20.90 20.30 19.80 19.90 29.30 27.30 23.20 23.60 23.90 23.80 23.40
Ni 21.70 20.60 21.00 23.00 31.00 31.00 42.00 69.00 26.90 27.60 26.20
Pb 11.20 9.80 19.70 19.30 14.30 11.90 7.20 7.60 9.90 9.60 8.90
Pr 5.26 5.28 5.81 5.77 8.31 721 6.06 6.12 7.37 7.32 7.39
Rb 50.10 51.70 67.30 67.50 99.30 37.80 39.40 40.10 2.70 2.90 3.40
Re 0.00 0.00 0.01 0.01 0.01
S 2400.00 1900.00 3300.00 3460.00 3100.00
Sb 0.48 0.52 1.92 1.69 1.88
Se 11.10 10.80 6.60 6.60 6.80
Sm 3.77 3.68 3.08 3.05 4.21 4.34 4.01 4.06 3.10 3.12 3.16
Sn 0.80 0.60 0.70 0.90 1.60 0.90 0.90 1.10 0.90 0.70 0.60
Sr 626.00 672.00 605.00 604.00 698.00 867.00 771.00 781.00 316.00 321.00 334.00
Ta 0.76 0.74 1.36 1.37 1.18 0.85 0.80 0.82 0.95 0.97 0.92
Tb 0.42 0.41 0.39 0.37 0.41 0.56 0.57 0.59 0.16 0.17 0.16
Te 0.07 0.05 0.27 0.26 0.29
Th 9.80 9.20 11.90 11.10 21.90 6.80 7.10 7.20 21.80 22.10 21.80
Tm 0.17 0.15 0.08 0.09 0.08
U 2.80 3.10 5.51 5.58 11.71 2.44 2.61 2.66 3.20 3.30 3.70
v 98.00 105.00 77.00 74.00 65.00 122.00 132.00 136.00 62.00 63.00 69.00
W 0.90 1.40 3.40 3.30 3.80 1.00 1.20 1.10 1.40 1.30 1.10
Y 13.70 13.60 10.52 10.53 9.58 16.60 17.20 17.30 6.80 6.50 6.90
Yb 1.24 1.26 1.09 1.11 0.96 1.76 1.66 1.69 0.51 0.52 0.55
Zn 54.00 42.00 54.10 54.90 32.80 89.30 80.50 81.20 24.00 21.00 23.00
Zr 53.20 50.60 43.00 44.00 39.00 69.00 78.00 81.00 24.00 23.70 22.60
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Table 5. Cont.

Sample DK3-320 DK3-A1 DK3-A2 DK3-A3 DK3-A4 DK3-A5 DK3-A6 MDI-416 MDI-196 MDI-132 MDI-146

5i0, 62.72 62.54 62.51 59.55 59.57 62.91 62.95 54.68 55.12 56.08 54.48
Al,O3 13.81 15.18 15.21 14.61 14.58 14.88 14.86 16.06 16.16 15.81 16.12
CaO 6.48 291 294 5.58 5.56 4.02 4.01 10.12 9.98 9.36 9.82
Fe,O3 2.88 2.51 2.48 4.51 448 2.12 2.08 3.68 3.74 3.47 3.55
FeO 3.18 1.28 1.31 1.51 1.48 1.21 1.18 5.02 5.08 471 4.82
KO 2.14 7.32 7.38 3.21 3.18 241 2.38 294 2.96 2.88 2.86
MgO 3.38 2.58 2.64 3.81 3.78 2.61 2.65 3.53 3.62 3.72 3.62
MnO 0.11 0.02 0.02 0.12 0.10 0.06 0.05 0.13 0.14 0.13 0.14
Na,O 3.66 341 3.38 541 5.38 5.77 5.78 1.13 1.16 1.26 1.26
P,05 0.22 0.31 0.32 0.32 0.34 0.31 0.31 0.27 0.26 0.27 0.28
TiO, 0.62 0.58 0.59 0.57 0.58 0.51 0.53 0.88 0.91 0.82 0.82
LOI 1.36 0.51 0.48 1.68 1.65 3.13 3.21 2.36 1.98 2.06 2.12
Total 100.56 99.15 99.26 100.88 100.68 99.94 99.99 100.8 101.11 100.57 99.89
Ag 0.06 0.25 0.23 0.22 0.21 0.13 0.11 0.07 0.08 0.09 0.06
As 4.60 2.70 2.90 2.61 3.10
Au 0.00 0.01 0.00 0.00 0.00
Ba 72.00 1128.00 1119.00 877.00 881.00 698.00 691.00 1310.00 1360.00 998.00 1240.00
Be 1.98 0.94 0.96 0.98 1.02
Bi 0.34 1.10 1.00 60.20 61.80 1.20 1.30 0.19 0.18 0.19 0.21
Cd 0.02 0.06 0.06 0.14 0.15 0.07 0.08 0.06 0.07 0.04 0.06
Ce 70.00 41.60 41.30 51.70 51.40 106.00 103.80 24.30 25.60 29.70 24.20
Co 5.10 5.30 5.40 10.70 10.80 5.10 5.30 27.90 29.10 28.60 27.00
Cr 54.00 52.00 53.00 88.00 91.00 54.00 57.00 4.00 6.00 7.00 3.00
Cs 0.19 0.50 0.60 0.20 0.30 0.80 0.80 6.85 6.94 6.15 591
Cu 38.70 470.00 477.00 39.60 38.80 89.10 87.40 79.00 75.10 41.20 38.20
Dy 1.37 1.66 1.64 1.53 1.57 1.88 191 3.75 3.72 3.77 3.71
Er 0.67 0.85 0.83 0.81 0.79 1.01 1.03 1.96 1.94 1.92 1.97
Eu 0.51 0.74 0.75 0.86 0.83 1.21 1.26 1.20 1.18 1.22 1.19
Ga 12.98 15.70 15.80 14.50 14.90 16.70 16.90 16.40 17.10 16.12 17.18
Gd 2.11 2.35 237 2.32 2.34 3.32 3.29 4.01 4.06 4.02 4.07
Ge 0.19 0.21 0.22 0.19 0.18

Hf 4.30 1.32 1.34 1.17 1.19 1.01 1.03 1.50 1.60 1.90 1.80
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Table 5. Cont.
Sample DK3-320 DK3-A1 DK3-A2 DK3-A3 DK3-A4 DK3-A5 DK3-A6 MDI-416 MDI-196 MDI-132 MDI-146
Ho 0.27 0.33 0.35 0.30 0.32 0.37 0.36 0.73 0.77 0.71 0.74
In 0.20 0.05 0.06 0.05 0.06
La 41.60 20.10 20.30 27.70 27.90 67.80 67.70 11.10 10.80 11.20 10.60
Li 2.40 16.30 16.70 16.20 16.90
Lu 0.07 0.16 0.14 0.11 0.09 0.15 0.13 0.30 0.31 0.33 0.29
Mo 3.44 1.20 1.40 2.10 2.30 1.20 1.10 0.77 0.78 0.79 0.81
Nb 16.10 18.40 18.20 20.50 20.70 11.90 12.10 5.10 5.20 5.80 4.60
Nd 23.10 18.80 18.90 20.70 20.50 34.80 34.60 15.00 15.60 14.90 15.40
Ni 25.70 41.00 44.00 51.00 53.00 38.00 36.00 3.50 3.20 3.40 4.10
Pb 9.40 18.10 18.30 11.40 11.60 16.70 16.40 14.80 13.20 14.10 13.60
Pr 7.31 4.81 4.81 5.89 5.93 10.71 10.78 3.27 3.29 3.24 3.30
Rb 4.20 67.80 68.10 18.90 18.20 46.00 47.00 97.60 99.20 91.60 89.40
Re 0.01 0.00 0.00 0.00 0.00
S 3400.00 1800.00 1600.00 1600.00 1460.00
Sb 1.96 0.98 0.92 0.91 0.86
Se 6.20 13.10 13.60 12.80 12.40
Sm 3.08 2.85 2.87 2.98 3.01 4.32 4.28 3.67 3.64 3.66 3.61
Sn 0.70 4.60 4.40 1.20 1.10 0.90 0.70 0.80 0.90 0.80 0.60
Sr 298.00 288.00 291.00 354.00 355.00 707.00 709.00 234.00 226.00 237.00 216.00
Ta 0.96 1.93 1.94 1.29 1.31 0.94 0.95 0.27 0.26 0.27 0.31
Tb 0.19 0.34 0.35 0.32 0.30 0.43 0.45 0.57 0.52 0.56 0.58
Te 0.24 0.05 0.04 0.05 0.06
Th 21.40 13.20 13.30 14.20 14.00 28.90 28.70 1.80 1.90 1.60 1.80
Tm 0.09 0.30 0.31 0.33 0.29
U 2.90 4.36 4.34 8.08 8.05 9.36 9.41 0.50 0.50 0.70 0.60
\Y 62.00 84.00 85.00 89.00 90.00 63.00 66.00 176.00 171.00 168.00 171.00
Y 1.60 3.60 3.50 1.70 1.80 7.20 7.80 1.10 1.20 0.90 1.20
Y 6.60 7.99 8.01 6.96 6.99 10.51 10.48 18.80 18.20 18.60 17.90
Yb 0.53 0.73 0.74 0.69 0.71 0.90 0.93 1.84 0.86 0.84 0.82
/n 27.00 27.90 27.70 47.50 47.60 42.90 43.10 122.00 126.00 118.00 116.00
Zr 25.00 34.00 35.00 31.00 33.00 32.00 36.00 42.40 43.40 42.10 42.60
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Table 6. Major oxide (wt %), trace element (ppm) compositions of lamprophyre dykes (LAM) and Sungun porphyry stock (SP) in the Sungun deposit ((A) analysis by [26]).

Sample SPA1 SPA2 SPA3 SPA4 SPA5 SPA6 SPA7 SPAS SPA9 SPA10 SPA11 SPA12
SiO, 65.88 67.15 67.08 59.71 59.62 66.03 67.01 66.98 63.31 63.34 62.41 62.36
AlL,O3 15.17 14.48 14.51 14.01 14.02 15.18 14.72 14.74 13.42 13.41 14.86 14.91
CaO 2.43 0.32 0.31 6.02 5.96 2.48 0.48 0.49 3.08 3.06 0.48 0.47
Fe, O3 2.8 241 2.36 3.38 3.32 2.72 3.58 3.61 2.71 2.78 6.08 6.02
FeO 1.68 1.88 1.85 2.05 2.06 2.08 2.61 2.58 2.42 2.86 0.95 0.94
K>,O 5.06 9.41 9.13 6.38 6.32 5.01 6.32 6.28 7.68 7.71 6.31 6.28
MgO 151 1.58 1.55 2.32 2.34 1.58 2.68 2.65 2.08 2.12 2.88 291
MnO 0.02 0.01 0.01 0.06 0.05 0.02 0.01 0.01 0.01 0.01 0.01 0.01
Na,O 4.2 0.71 0.68 2.62 2.58 4.06 0.35 0.36 0.62 0.65 0.19 0.18
P,Og 0.27 0.23 0.25 0.41 0.42 0.21 0.32 0.33 0.31 0.33 0.3 0.31
TiO, 0.41 0.42 0.41 0.58 0.55 0.38 0.51 0.51 0.48 0.51 0.52 0.51
LOI 0.32 0.01 0.02 2.98 2.81 0.32 0.01 0.02 2.58 2.31 0.01 0.02
Total 99.75 98.61 98.16 100.52 100.05 100.07 98.6 98.56 98.7 99.09 95 94.92
Ag 0.25 0.89 0.92 0.26 0.27 0.28 0.56 0.61 0.96 0.98 0.18 0.19
As
Au
Ba 1870 1671 1681 1117 1127 1886 1281 1282 1427 1431 1502 1517
Be
Bi 1 0.7 0.6 0.4 0.5 1.2 0.8 0.8 0.8 0.6 0.9 0.9
Cd 0.15 0.27 0.31 0.09 0.12 0.17 0.31 0.42 0.32 0.41 0.12 0.15
Ce 51.8 122 124 69.2 70.1 52.6 70.6 70.8 28.9 29.1 31.7 32.2
Co 8.3 2.3 2.5 11.2 114 8.8 7.1 7.3 9.4 9.6 294 29.7
Cr 38 35 37 61 64 41 61 63 52 54 79 81
Cs 1.3 1.6 1.8 1.1 1.3 1.2 3.3 3.4 3.7 3.5 0.9 1.1
Cu 578.6 11120 11210 197.6 200.5 580.9 6033 6037 5596 5592 1580 1591
Dy 1.56 1.06 1.07 1.94 1.96 1.57 1.43 1.45 1.36 1.34 0.96 0.94
Er 0.87 0.48 0.46 1.03 1.06 0.88 0.66 0.67 0.77 0.78 0.48 0.44
Eu 1.06 1.04 1.07 1.36 1.35 1.07 1.12 1.08 0.66 0.69 0.64 0.71
Ga 15 14 17 16 16 17 15.8 16.1 15.3 154 15.8 15.9
Gd 2.36 2.14 2.17 3.26 3.25 241 2.66 2.64 1.95 1.93 1.42 1.46
Hf 1.38 0.99 1.02 2.96 2.98 1.41 0.46 0.47 0.94 0.96 1.17 1.18

Ho 0.35 0.22 0.23 0.41 0.38 0.37 0.27 0.29 0.29 0.31 0.18 0.17
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Table 6. Cont.

Sample SPA1 SPA2 SPA3 SPA4 SPA5 SPA6 SPA7 SPAS SPA9 SPA10 SPA11 SPA12

La 27.8 132 134 36.7 37.1 28.1 39.6 39.5 15.1 15.7 16.7 16.9
Lu 0.65 0.29 0.31 0.22 0.24 0.66 0.11 0.13 0.12 0.12 0.1 0.11
Mo 1.9 12.8 13.1 2.6 29 2.2 253 256 23.7 24.1 2.9 3.2
Nb 18.2 5.7 5.8 20.8 21.1 18.6 6.9 6.7 8.9 9.1 7.4 7.7
Nd 21.6 26.9 26.6 29.1 29.4 21.8 27.7 279 13.5 13.3 13.6 13.9
Ni 25 24 25 47 45 27 37 36 35 33 53 55
Pb 214 15.3 15.7 30.9 31.1 21.7 5.7 5.9 42.1 429 43 4.7
Pr 6.01 9.51 9.57 8.05 8.01 6.07 7.88 7.91 3.46 3.49 3.66 3.69
Rb 104 122 121 87 88 107 122 124 105 107 43 45
Sm 3.05 2.94 2.97 427 4.29 3.03 3.67 3.65 2.27 2.21 1.88 191
Sn 1.9 4.7 4.8 14 1.3 1.7 3.2 3.3 3.7 3.9 4.1 4.6
Sr 929 308 310 768 762 931 156 159 248 251 88 89
Ta 2.24 1.15 1.17 1.87 1.89 2.27 0.76 0.77 1.18 1.16 1.27 1.28
Tb 0.33 0.27 0.29 0.44 0.42 0.35 0.34 0.36 0.25 0.27 0.21 0.22
Th 15.8 12.8 12.7 13.7 13.9 16.1 13.7 13.9 15.1 15.3 11.1 11.3
U 4.53 5.31 5.33 5.66 5.57 4.56 3.06 3.09 7.52 7.48 8.24 8.26
\% 59 58 61 81 83 61 16 72 67 69 79 82
Y 2.3 5.4 5.5 42 44 2.2 44 4.6 12.8 12.9 21.7 21.4
Y 114 5.27 5.31 11.3 11.5 11.6 6.61 6.63 7.94 7.98 4.04 4.1
Yb 0.85 0.42 0.44 0.86 0.88 0.87 0.51 0.53 0.64 0.66 0.41 0.44
Zn 21.8 22.6 23.1 44.8 443 22.2 11.9 11.7 72.7 72.9 7.8 7.9
Zr 18 23 25 98 99 21 17 18 32 33 41 43
Ge

In

Li

S

Sb

Se

Te

Tm
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Table 6. Cont.

Sample LAM1 LAM2 LAM3 LAM4 LAMS5 LAMS6 LAM? LAMS
5i0, 48.18 49.08 48.42 50.12 50.62 48.69 51.54 51.47
Al,O3 13.04 13.82 13.6 13.62 13.96 13.48 13.77 13.74
CaO 1.37 3.31 523 3.41 3.42 4.96 3.62 3.74
Fe, O3 4.39 3.82 3.88 3.87 53 5.61 5.65 5.32
FeO 591 5.32 47 5.02 53 4.59 522 532
K,O 6.69 4.67 6.6 4.61 4.72 6.42 517 4.92
MgO 8.27 7.26 7.58 7.44 8.34 8.54 7.38 7.57
MnO 0.01 0.02 0.04 0.03 0.03 0.04 0.03 0.04
Na,O 0.61 2.29 1.86 2.84 3.18 2.82 2.88 2.96
P,0s5 0.8 0.66 0.88 0.78 0.86 0.79 0.81 0.75
TiO, 0.71 0.65 0.86 0.78 0.67 0.89 0.76 0.84
LOI 3.61 4.02 3.82 3.67 3.71 3.82 3.98 3.66
Total 93.59 94.92 97.47 96.19 100.11 100.65 100.81 100.33
Ag 0.4 1.7 1.5 1.1 1.6 1.7 1.4 1.3
As 2.8 45 6.3 6.9 44 5.8 7.1 6.7
Au 0.08 0.09 0.07 0.08
Ba 870 673 814 981 282 396 562 524
Be 2.21 2.12 2.1 227 2.3 24 22 2.7
Bi 1.78 1.88 4.81 6.13 29 4.7 6.4 6.6
Cd 0.02 0.02 0.03 0.08 0.52 0.37 0.39 0.46
Ce 173 154 169 167 139 129 147 132
Co 15.6 15.9 16.1 21.2 15.7 16.8 20.7 19.5
Cr 322 273 280 288 178 185 162 182
Cs 5.54 3.12 4.61 5.12 1.7 1.4 23 1.9
Cu 3080 2245 2081 3121 2275 1988 1014 926
Dy 2.67 441 5.46 4.71 4.57 5.26 4.81 5.24
Er 1.1 1.82 2.32 1.78 1.92 213 1.98 2.16
Eu 2.11 1.87 243 2.53 1.97 2.23 2.83 2.37
Ga 25.7 264 249 29.1
Gd 5.13 7.75 9.79 9.03 7.85 9.46 9.24 9.16
Hf 2.1 1.9 2.29 1.8 0.82 1.19 0.86 0.93

Ho 0.46 0.51 0.47 0.49




Minerals 2018, 8, 588 25 of 38
Table 6. Cont.

Sample LAM1 LAM2 LAM3 LAM4 LAMS5 LAMS6 LAM?7 LAMS
La 86.4 78.6 80.9 79.6 74 89 76 82
Lu 0.12 0.13 0.15 0.11 0.15 0.13 0.12 0.16
Mo 2.35 3.88 2.95 291 3.78 2.99 2.86 2.75
Nb 18 30 38.2 38 35.6 38.9 37.4 36.7
Nd 66.9 60.7 67.3 65.8 61.9 67.6 66.8 65.7
Ni 138 85 113 121 89 93 129 124
Pb 6.9 11.9 8.6 6.2 35 34 28 31
Pr 19.1 17.3 18.1 17.9 17.29 18.42 17.93 17.68
Rb 210 182 202 195 216 192 207 189
Sm 8.91 8.69 9.01 8.41 7.45 8.96 8.54 8.21
Sn 4.8 59 6.2 49 5.7 6.4 4.8 52
Sr 198 468 494 435 465.8 496.4 437.3 442.6
Ta 0.84 1.02 0.98 1.16 3.29 3.68 3.74 2.56
Tb 0.54 0.76 0.95 0.84 0.79 0.95 0.87 0.83
Th 25.8 30.8 23.7 24.4 30.72 23.77 23.24 23.87

U 8 7.7 6.9 8.7 7.64 5.63 7.14 7.56
\'% 146 97 129 141 94 125 124 132
Y 19.9 274 17.1 16.7 17.6 9.3 7.2 12.3
Y 11.4 11.6 14.3 11.8 11.6 13.5 12.4 12.7
Yb 0.8 0.9 1.1 0.8 0.8 1.2 0.9 1.3
Zn 7 17 19 15 26 37 45 36
Zr 724 81.6 774 92.3 88.6 102.7 71.2 79.4
Ge 0.31 0.28 0.36 0.32

In 0.07 0.14 0.35 0.24 0.17 0.26 0.31 0.29
Li 18.3 17.2 16.8 19.2 7 8 8 9

S 66,300 44,185 29,661 38,529 33,169 29,674 38,824 32,742
Sb 0.32 2.31 0.98 2.26 2.6 2.4 2.1 2.3
Se 17.1 12 13.7 15.6 2.24 1.27 1.66 1.72
Te 151 1.16 1.92 1.34 0.76 0.96 1.37 1.12
Tm 0.15 0.21 0.28 0.17 0.22 0.31 0.27 0.19
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5.2.1. Trace Element Geochemistry

The chondrite-normalized rare earth element [39] patterns of the Sungun stock and post-mineralization
dykes show a steep slope from light rare earth elements (LREE) (LaN/SmN = 6.80) to the heavy rare
earth elements (HREE) (Gdyn /Ybn = 2.49) (Figure 13a), but do not have conspicuous Eu anomalies.
Their primitive-mantle normalized trace element diagrams display enrichment in large ion lithophile
elements (LILE) and depletion of high-field-strength elements (HFSE), with positive K, U, Pb, Nd,
and Cs and negative Nb, P, Zr, Pr, and Ti anomalies, consistent with a subduction-related setting
(Figure 13b). Their Nb, Ta, and Ti depletions are thought to be due to the absence of plagioclase and
presence of Fe-Ti oxides (e.g., rutile) as residue in the source area of the parental magmas [40]; Nb
and Ta depletion may also result from previous depletion events in the mantle source rocks [41,42].
Phosphorous also shows negative anomalies in the studied samples, which may be related to apatite
fractionation. These chemical properties are analogous to those of the Sungun Porphyry.
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Figure 13. (a) Chondrite-normalized REE patterns for the quartz-monzonite stock, diorite and
quartz diorite dykes [39]; (b) primitive mantle-normalized rare earth elements patterns for the
quartz-monzonite stock, diorite and quartz diorite dykes [43]; (c) chondrite-normalized diagram [39]
for the micro diorite dykes; (d) primitive mantle-normalized trace element diagram [43] for micro
diorite dykes; (e) chondrite-normalised REE diagram for the lamprophyre dykes [39]; (f) primitive
mantle-normalised multi element diagrams for the lamprophyre dykes [43].
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Rare earth element (REE) chondrite-normalized patterns for microdiorite dykes are displayed
in Figure 13c. Microdiorite dykes have LREE enrichment with weak negative Eu anomalies
(Eu/Eu* = 0.93-0.97) and shallow HREE slope (Figure 13d). The minor negative Eu anomaly is
likely related to the abundance and fractionation of plagioclase in the rocks. On a multi-element
primitive mantle normalized diagram [43], microdiorite dykes show enrichments in most large ion
lithophile elements (LILE), and a fairly regular depletion of high field strength elements (HFSE).

The chondrite-normalized REE patterns [43] of lamprophyres dykes are shown in Figure 13e.
These show high REE abundances (XREE mostly within 317-367 ppm) and negative Eu anomalies
(Eu/Eu* in the range 0.69-0.97) (Figure 13f).

5.2.2. Nd-Sr Isotopes

Sm-Nd and Rb-Sr isotopic data for six whole-rock samples of the mafic-intermediate dykes are
provided in Table 7 and the initial epsilon values (20 Ma); calculations made with the 8 Rb decay
constant recommended by Reference [44] are illustrated in Figure 14. The Sr/8¢Sr ratios range from
0.704617 to 0.706464 and 43Nd/*4Nd ratios range from 0.512648 to 0.512773.

Table 7. Results for Rb-Sr and Sm-Nd isotopic systems in samples of post-mineralization dykes from
Sungun. Initial values were calculated for an age of 20 Ma, using the 147gm decay constant of and the
87Rb decay constant of [45]. (* [25]).

Sample DKla DK1b DKlc DK3 LAM MDI SP*1
Sr ppm 608 725 662 298 198 234 681
Rb ppm 81.2 57.9 486 42 210 97.6
87Rb /865y 0.386 0.231 0212 0.041 3.068 1.207 0.67497
Error (20) 0.011 0.007 0.006 0.001 0.087 0.034
87Gy /865y 0.704874 0.704619 0.704617 0.705151 0.705722 0.706801 0.704467
Error (20) 3.00 x 1075 2.70 x 1075 240 x 1075 2.10 x 1073 2.30 x 1073 3.40 x 1075
(¥7Sr/%Sr); 0.704766 0.704554 0.704558 0.705139 0.704864 0.706464
Nd ppm 20.7 19.7 206 23.1 66.9 15
Sm ppm 3.29 3.17 3.71 3.08 8.91 3.67
147gm /144Nd 0.096 0.097 0.109 0.081 0.081 0.148 0.29235
Error (20) 0.005 0.005 0.006 0.004 0.004 0.008
Nd/14Nd 0512733 0512767 0512787 0.512659 0.512666 0.512767 051275
Error (20) 1.70 x 1075 1.70 x 1075 2.20 x 1075 1.70 x 1073 1.70 x 1073 1.70 x 1075
(9Nd/#Nd); 0512721 0.512754 0.512773 0.512648 0.512655 0.512748
eNdi 212 276 3.13 07 0.83 2.64
Sample
DK1a
& DKID
& DKic
u DK3
o % o Lo
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Figure 14. Plots of Sr-Nd isotopic compositions for the Sungun post-mineralization dykes. Initial
values of eNdi vs. 8Sr/808ri calculated for 20 Ma for the Oligo-miocene dykes [45].
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The variations in the 87Sr/86Sr and 3Nd /1#*Nd ratios of the Sungun dykes DK1, DK3, MDI, and
LAM is shown and compared with bulk Earth and the mantle array (Figure 14). Five samples from the
quartz diorite, dacite, and lamprophyre dykes plot just to the right of the mantle array with a potential
minor contribution from subduction derived fluid. The three DK1 samples plot very close to each
other and are therefore likely to have a common origin. These three samples together with LAM and
DK3 define a trend (red arrow on Figure 14).

The microdiorite dyke (MDI) has 8”Sr /3¢Sy initial ratio of 0.706464, which is higher compared
to the other samples (0.704554 to 0.705139) although its epsilon Nd value overlaps with those of the
quartz-diorite (DK1) samples.

According to the study by reference [27], the Sungun porphyry stock and the post-mineralization
dykes have unrelated origins. We show here, however, that based on trace elements and Sm-Nd
isotopic results [27], the dykes intruding the Sungun stock are genetically related to the porphyry.

The similarity in trace element characteristics between the Sungun porphyry and diorite and
quartz-diorite dykes within the area of the mine suggests that the dykes are comagmatic with the
quartz-monzonite. The quartz diorite dykes are also isotopically associated to the Sungun Porphyry.
Within the dyke suite a trend is seen from lower to higher 8Sr/86Sr. This could have two most
plausible explanations: (1) The samples would represent rocks whose parental magmas came from
a progressively more enriched mantle compared to DK1c to DKS3; or (2) assuming a single parental
melt (in which case, DK1c is the sample that more closely represents its isotopic signature) the isotopic
variation represent minor degrees of contamination, assimilation or mixing with crustal materials.

5.2.3. Interpretations and Discussion

Tectonic Setting of the Sungun Stock and Post-Mineralization Dykes

Potassic rocks are found in several tectonic environments, such as cratons, post-collisional setting,
and active orogenic belts and, to a lesser extent, oceanic intraplate settings [46] and have moderate
abundances of LREE, LILE, and HFSE [47]. Shoshonitic rocks in particular are associated with many
continental and oceanic arcs [48]. The tectonic affinities of ancient and altered /mineralized rocks can be
investigated with the use of immobile trace elements. A significant feature of volcanic arc magmatism
is the depletion in HFSE relative to other incompatible elements as well as their LILE enrichment
(e.g., [49,50]). At Sungun the average Ba/Nb and Rb/Nb ratios are 37.5 and 10.5 in felsic dykes and
62.5 and 7.6 in the intermediate-mafic dykes, respectively, which is a feature of arc environments [51].
The Th/Yb versus Ta/Yb diagram [52] highlights the Shoshonitic character of the Sungun rocks with
the Th enrichment indicative of subduction fluids input (Figure 15a). Based on the diagram of [53],
high Th/Yb ratios correlated with high values for La/Yb are consistent with continental arc magmas
(Figure 15b), in agreement with the Y vs. Zr plot (Figure 15c). Based on the Ce/P,Os5 vs. Zr/TiO,
diagrams of [47] the studied samples plot in the post-collisional arc related fields (Figure 15d).

In summary, the combination of field, petrographic and geochemical data of the Sungun stock and
post-mineralization dykes shows that they formed during a post-collisional stage. This is in agreement
with previous reports on the petrogenesis of igneous rocks in the Urumieh-Dokhtar magmatic
belt [54-56]. Indeed, recent tectono-magmatic reviews have suggested that the Eocene magmatic
event may have been a consequence of the geometrically complex subduction of the Neotethys oceanic
crust underneath Central Iran, with the Sungun post-mineralization dykes intruding in the late
stages of continental collision. The negative Eu anomalies can be generated by melting of a source
rich in residual feldspar and/or plagioclase fractionation during ascent and emplacement of these
intrusions [57]. The steep REE slope on the other hand is indicative of residual garnet in in the mantle
source [58,59], hence precluding the presence of plagioclase as the aluminous phase in the mantle. The
generally steep REE slope of the multi-element patterns is also typical of lamprophyres generated by
small degrees of partial melting. The primitive mantle-normalized patterns of lamprophyre dykes
(Figure 13f) show the characteristic enrichments in Th, Rb, K, Pb, Nd, Sm, and Dy, and depletion in Ba,
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Ce, Nb, Ta, Sr, Zr, and Ti, which are compatible with a geodynamic environment involving subduction
zone magmatism [60]. This enrichment in incompatible elements implies that the melt source from
which the magmas were derived was likely to be metasomatized lithospheric mantle enriched in K
and incompatible elements [61].
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Figure 15. (a) Th/Yb vs. Ta/YDb diagram [52] for the Sungun post mineralization dykes. Tho is
tholeiitic, CA is calc-alkaline, Sho is shoshonitic; (b) La/Yb vs. Th/Yb geotectonic discrimination
diagram after [53]. The sungun stock and late dykes plot in the Continental Margin Arc fields; (c) Y vs.
Zr geotectonic discrimination diagrams of [47], for within-plate and from arc related and (d) Ce/P>0s5
vs. Zr/TiO, geotectonic discrimination diagrams of Reference [47], samples plot mostly in the PAP
field. PAP is post collision arc and CAP is active continental margin.

Petrogenesis of Quartz Monzonite Stock, Quartz Diorite and Diorite Dykes

The 8Sr/36Sr and *3Nd/*4Nd vs. SiO, diagrams of the Sungun dykes are used to examine
any roles of crustal contamination superposed to the principal fractional crystallization control of
magmatic evolution. The isotope ratios do not show any obvious correlation with SiO;, contents
(Figure 16a,b) and incompatible elements abundance, such as Th (Figure 16c). Hence, we suggest that
crustal assimilation did not play an important role during the magmatic evolution of the quartz diorite
and diorite magmas, whereas the high 8Sr/%Sr of the microdiorite dykes suggests that it may have
been affected by such processes.
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Figure 16. Variation diagrams. (a) 875y /86Sr versus SiOy; (b) 1*3Nd /1*4Nd vs. SiO,; and (c) 8 Sr/8Sr
versus Th [62].

To determining the degree of enrichment or depletion in the samples from the study area we
used the ratios of incompatible elements Y vs. Zr [63] (e.g., Figure 15¢c). These elements are useful
to interpret the petrogenesis of igneous rocks, even in highly altered rocks, due to their very low
mobility [64]. Based on their incompatible element characteristics (Figure 15) the magma of Sungun
porphyry and post-mineralization dykes originated from mantle enriched by subduction processes.

Previous studies on the genesis and evolution of Neotethys show the different opening ages.
Different ages are due to uncertainty in the transition from extensional tectonics to the onset of
contraction. Moreover, different researchers considered the time for oceanic closing and collision
events to range from upper Cretaceous-Paleocene (Laramie phase) [55,65,66], Oligocene [67], and late
Miocene-Pliocene [68-71]. Due to these complexities in Neotethys evolution more data are needed to
clarify its tectonic history and particularly its closing stages.

It can be said, in summary, that some researchers have related the Neotethys closing to the
upper Cretaceous, emphasizing the oceanic extension from the Kermanshah to the Esphandeqeh
and Neyriz [65]. They relate the Eocene and Oligocene magmatic activities of Central Iran and the
Alborz-Azerbaijan crust to the tectonic and petrogenetic evolution after the collision [65].

On the other hand, other researchers do not consider the origin of the Upper Cretaceous Ophiolite
mélanges as resulting from collision of the Arabia plate with Iran. They argue this because Ophiolite
mélanges are also present in Makran, where there is continent collision and the subduction is still
ongoing. S-type granites, such as the Alvand Granite, adjacent to the ophiolites strongly support
collision occurrence and end of subduction in this area, whereas no S-type granites occur in the Makran
area. Considering these evidences it can be argued that this extended basin with NW-SE trend, closed
during the Upper Cretaceous and Laramie phase of the Arabia Plate and Iran block collision. After
that, during the Pyrenean phase, various fractures have been created in Central Iran, Alborz, and
Azerbaijan while subduction fluids influenced the mantle wedge [6] imparting a clear subduction
geochemical signature on it. In the last stages of Arabian Plate and Iran block convergence, the
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Pyrenean phase induced a strong compressive regime, which caused early formed mafic melts to pond
in the crust, providing favourable conditions for melting the thick continental crust and generating
hybrid magmas [65].

The sialic back arc basins contracted after the closing of the main oceanic basin, causing the
generation of thrusts and inverse faults [65]. Subsequently these basement fractures were reactivated
in Central Iran during tensional events. This caused localized upwelling in the metasomatized mantle
wedge, leading to partial melting that formed the Tertiary magmatism of the Urmia-Dokhtar and
Alborz-Azerbaijan zones. Due to the subduction, Neotethys Ocean closing and the post collision
processes, several porphyry copper deposits were formed [65]. The important Iran copper belt
(Urmia-Dokhtar), contains volcanic and plutonic rocks and extends in a NW-SE direction. Its SE and
NW extensions are known as the Kerman copper belt and Arasbaran copper belt, respectively.

The Sungun porphyry stock and associated dykes were derived from partial melting in the
lithospheric mantle metasomatised and enriched by the release of fluids from the Neothetys oceanic
crust and subducted pelagic sediments, causing enrichment of LILE and LREE and depletion of HFSE.
Sr and Nd isotopic data, as well as trace elements, indicated magmas feeding the post-mineralization
dykes were generated in the LILE and LREEe enriched lithospheric mantle. Magma generation and
ascent was therefore likely promoted by tectonic tensions after continental collision.

Based on the overall trace element and isotopic similarities, we consider that the Sungun Porphyry
and dioritic dykes (DK1 and DK3) all evolved from a common parent melt. Thermo-barometric
models [28] of the dioritic parent suggest the presence of a magma chamber at a maximum of 19 kbar
(approximately from 57 to 60 km). Secondary magma chambers existed up to depth of 12-14 km
(6 kbar), where magma underwent gravity settling and differentiation [28].

The chemical composition of younger dykes is more mafic than older ones. The more felsic
member of the magmatic system is represented by the Sungun quartz-monzonite (SP) porphyry,
and was likely the more evolved and higher portion of a layered magma chamber (Figure 17). The
more mafic member, DK3, was being stored at the base of the chamber. The DK1 magma represent
intermediate levels within the layered magma chamber (Figures 18 and 19), which were extracted after
the emplacement of the Sungun porphyry, and prior to the emplacement of the lower mafic portion as
DK3 dykes.

Petrogenesis of Lamprophyre Dykes

Lamprophyre dykes cross cut the Sungun copper deposit and various other rock units. According
to the results of borehole logging in this mine and geothermometry results [29], these dykes were
intruded at least after the Oligo-Miocene. In order to evaluate the source of magma, and the degree
of partial melting of the mantle, we can use a diagram of La/Sm vs. La [72] (Figure 18). All the
samples have a high La/Sm ratio, which is consistent with an enriched mantle source, and less than
5% partial melting of garnet-lherzolite (Figure 18a). Trace elements can also give us information on
the influence of hydrous mineral phases on the melting process, as elements such as Ba and Rb are
compatible in phlogopite, whereas Ba, Sr, Rb, are only moderately compatible in amphibole [59]. As
a consequence, melts in equilibrium with phlogopite will have high values of the Rb/Sr and lower
values of Ba/Rb compared to melts in equilibrium with amphibole (Figure 18b). The data illustrate
how the lamprophyre magma was likely formed from mantle with residual phlogopite.

The lamprophyre dykes are homogeneously characterized by high abundances of incompatible
trace elements (LILE and LREE) and they are distinguished by significant negative Ti, Zr, Sr, Ta, Nb,
and Ba anomalies (Figure 13e,f), indicating that they were not derived from normal MORB or OIB
source mantle (e.g., [73,74]). Moreover, the average Ce/Pb ratios (~11) of the most primitive samples
are considerably different from those of oceanic basalts (~25; [75]), suggesting that these rocks are not
derived from normal asthenospheric mantle.
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Figure 17. Model showing the Three-stage emplacement of the post-mineralization dykes.
(a,b) Neotethys closure in the upper Cretaceous and the onset of metasomatism in the asthenosphere
and the lithosphere; (c) enplacement of the Sungun Porphyry 21 million years ago; (d) injection of the
first (DK1a) and oldest post-mineralization dykes; (e-h)Simplified cartoons showing the geodynamic
and petrogenetic evolution of the post-mineralization dykes within the Sungun porphyry deposit.
(e) quartz diorite dykes injection in the Sungun porphyry; (f) further injection of quartz diorite
dykes; (g) the emplacement of the inclusion-rich quartz diorite; and (h) schematic diagram shows the

post-emplacement geometry (cross-section) of the Sungun porphyry and post mineralization dyke in
Varzaghan, NW Iran.
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Figure 18. (a) Plots of La/Sm vs. La showing modeling of REE abundances and ratios to constrain the
source characteristics of the alkaline magma in terms of REE concentrations, source mineralogy and
degree of partial melting [72]. The continuous and dashed lines represent different values of partial
melting of spinel- and garnet-lherzolite mantle respectively. The lines have numbers indicating the
degree of partial melting. Models run for N-MORB and E-MORB; and (b) variations in Rb/Sr vs.
Ba/Rb ratios that may constrain source mineralogy [59].

Furthermore, reference [76] as well as reference [77] showed that HFSEs such as Nb and Ta are
depleted in the lithospheric mantle compared to LREEs. For instance, the ratio of Nb/La > 1, indicates
an OIB-like asthenospheric mantle source for basaltic magmas, whereas a ratio lower than 0.5 indicate
a lithospheric mantle source (Figure 19). In the Sungun calc-alkaline Lamprophyres Nb/La is between
0.49 and 0.20, confirming their origin from the lithospheric mantle. On the other hand, the low amount
of Nb/La may be a consequence of mantle metasomatism by subduction fluids, introducing more La
with respect to Nb due to its greater mobility in subduction fluids.
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Figure 19. Nb/La versus La/Yb variation diagram. Average OIB is after [51] and average lower
crust is after Reference [78]. Dashed lines separating fields of the asthenospheric, lithospheric and
mixed mantle are plotted based on data given in Reference [77]. The HIMU-OIB area is reported in
Reference [79].

Overall the major and trace elements and Sr-Nd isotopic characteristics of lamprophyre dykes
are similar to previously intruded SP and post-mineralization dykes, suggesting they derived from a
similar source. Our data suggests that the lamprophyres dyke originated from a low degree of partial
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melting of an enriched lithospheric mantle source and were emplaced in a post collisional tectonic
setting. The fluxing of the mantle wedge by the subduction fluids caused the formation of phlogopite,
which was likely a residual phase during melting to form the lamprophyre.

Petrogenesis of Microdirite Dykes

Isotope data of the microdiorite (MDI) sample are typical of rocks that underwent hydrothermal
alteration, which may affect the Sr isotopic signature without changing the Nd isotopic ratio. Therefore,
the MDI parental melt could have derived from the same mantle source as the quartz diorite (DK1)
samples, but the rock could have been subjected to hydrothermal alteration, causing an enrichment in
crustal Sr (with higher 87Sr /8 Sr) and the shift to the right on the Nd-Sr isotopic diagram (blue arrow
in Figure 14).

The chemical composition of magma can be modified through assimilation of crustal materials
during ascent and storage leading to the modification of selected trace element ratios diagnostic of arc
and subduction environments. The microdiorite (MDI) dykes cross cutting the Sungun stock have high
Ba/Nb (>28), which is a common feature of arc magmas (e.g., Reference [51]), and high La/Nb ratios
(1.9-2.30) indicating crustal involvement [80]. Furthermore, prevalent low Ce/Pb (1.64-2.1), Rb/Ba,
Nb/U, Nb/Y, and high La/Nb and La/Ta ratios also suggest lithospheric contributions. On primitive
mantle-normalized multi-element diagrams, however, MDI dykes have similar signatures to those of
the Sungun stock and other late dykes (Figure 13). Menzies et al. [81] have argued that Zr/Ba values
can be used to distinguish lithospheric (0.3-0.5) from asthenospheric sources (Zr/Ba 0.5-0.7). The
microdirite dykes have low Nb/La (0.43-0.51) and high Ba/NDb (172-269) values, but their Zr/Ba ratios
(0.03-0.04) suggest generation from the lithospheric sources. Therefore, these observed differences may
instead result from heterogeneous chemical composition in the source region, or changes in melting
degree or post-crystallization alteration, rather than the direct crustal involvement.

Other chemical parameters can be used to assess the levels of crustal contamination. For example,
basaltic rocks have been affected by crustal contamination have ratios La/Ta > 22 and La/Nb > 1.5 [82].
These ratios in the studied microdioritic dykes are 34—41 and 1.90-2.30, respectively, suggesting the
influence of crustal contamination.

6. Conclusions

The mineralized porphyry and post-mineralization dykes at Sungun have a composition
of quartz-monzonite, quartz diorite, gabbrodiorite, microdiorite, granodiorite, and lamprophyre.
Generally, the post-mineralization dykes of the Sungun copper mine are subdivided into eight groups
based on relative time of intrusion and into six groups according to their composition. The dykes trend
sub-parallel to joints within the mine area, indicating intrusion and emplacement of dykes within
previous fractures and crustal weaknesses.

Our data allowed us to relate all the igneous rocks occurring within the Sungun Cu-Mo mine
area. The Sungun quartz-monzonite can be related through fractional crystallization processes to the
quartz diorite and diorite dykes as they all have analogous chemical characteristics, such as light
rare earth elements enrichment and HFSE depletion, and have similar Sr-Nd isotopic ratios. We
propose a scenario where these intrusions belong to a single magmatic system that evolved in the
middle crust. The mineralized Sungun porphyry was the first to be emplaced in the upper crust, with
associated fluids forming Cu-Mo mineralization. Further portions of the evolving magmatic system
were subsequently injected as dykes, becoming progressively more mafic with time due to the tapping
of a zoned magma chamber.

Microdiorite and lamprophyric dykes are also related to the sample geodynamic environment
as they share similar subduction signatures, such as depletion of Nb, Ta, and Ti. These dykes were
intruded at a later stage. The microdiorite magma had a greater influence of crustal contamination
compared to the other Sungun suite. The lamprophyre magma was likely derived from residual
low-degree melts in equilibrium with mantle phlogopite, following the main subduction-related pulse.
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