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Abstract: The interaction of aqueous solutions bearing platinum-group elements (PGEs) with sulfides
is important for understanding the formation and weathering of PGE ore deposits, mineral processing,
and synthesis of nanomaterials. Here, the surface species formed upon the contact of the main
sulfide minerals (pyrite, pyrrhotite, galena, chalcopyrite and valleriite) with the solutions of H2PtCl6
(pH 1.5, 20 ◦C) have been studied using X-ray photoelectron spectroscopy (XPS). Uptake of Pt
increased gradually with increasing interaction time, and depended, as well as the composition
of immobilized products, on the mineral nature and the state of its surface, e.g., the chemical
pre-treatment. The highest rate of Pt deposition was observed on galena and valleriite and the lowest
on pyrite and pyrrhotite. The preliminary moderate oxidation of pyrrhotite promoted Pt deposition,
which, however, was hindered under harsh reaction conditions. The pre-oxidation of pyrite in all
cases resulted in a decrease of the Pt deposition. Initially, Pt(IV) chloride complexes adsorb onto
the mineral surface, and then the reduction of Pt(IV) to Pt(II) and substitution of chloride ions with
sulfide groups occur forming sulfides of Pt(II) and then, Pt(IV). The reduction of Pt species to the
metallic state was observed at valleriite after 24 h, probably due the negative charge of the sulfide
nanolayers of this sulfide-hydroxide composite mineral.
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1. Introduction

Platinum-group elements (PGEs) are widely used in various areas, first of all in catalysis;
their chalcogenides are also of interest for electrocatalysis [1–3]. The increasing industrial demand
for PGEs and their limited natural sources require the investigation of the genesis of PGE ores
and new approaches to the recovery technologies [4], secondary processes and environmental
behavior of engineered PGE species [5,6]. Platinum-group element ores are mainly associated
with ultramafic-mafic rocks and, little is known about the interaction of Pt-bearing aqueous
solutions with sulfide minerals [7–20]. Platinum-group element deposits of hydrothermal origin exist,
and mechanisms of hydrothermal transportation of PGEs [9–12], including the biological transport
and transformation [21–24] have been studied since the end of the 1980s.

Platinum-group elements are commonly associated with base metal sulfides, particularly
pentlandite, pyrrhotite, chalcopyrite, pyrite [15,25,26]. Palladium is hosted in base metal sulfides
(mainly pentlandite) and occurs both within the crystal lattice and as nanometer-sized inclusions of
discrete PGE minerals [27]. Platinum usually has low concentrations within base metal sulfides
and mainly forms discrete platinum-group minerals (PGMs). Most work has been focused on
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the experimental study and mathematical modeling of Pt dissolution, and stability of its complex
compounds with ligands such as HS−, Cl−, S2O3

2−, OH−, NH3 [11,12,17,18,22,28,29]. At low
temperature conditions, acidic pHs and high redox potential, Pt transport by chloride ions is the
most suitable [18,30].

In addition to the understanding of mobilization and deposition of PGEs, the interaction of
Pt-bearing solutions with base metal sulfides is important for mineral processing of PGEs by heap
leaching [31–37] and concentrator plants [35]. Platinum-group elements transfer into solution by
leaching (both under technological and natural conditions) can then be taken up on the surface of
sulfide minerals. However, in contrast to the vast literature devoted to the interaction of aqueous
solutions of gold and silver with sulfides (see, e.g., [38–40] and references therein), only limited
studies describe the deposition of PGEs, on the surface of pyrite, galena and sphalerite by X-ray
photoelectron spectroscopy (XPS) [16,41]. By the interaction of the Na2PdCl4 solution (pH 4) with
pyrite, sulfide species of Pd(II) are formed at room temperature along with retaining mixed aqua-
and hydrochloride complexes of Pd(II) [16]. Recently [41], the interaction of the acidic solution of
H2PdCl4 solution with pyrrhotite and pyrite before and after their preliminarily leaching under
different conditions was studied. Palladium-oxyhydroxides are not formed, though it is not completely
proved since the differences in the binding energies of the Pd 3d line of oxides and sulfides are not
significant [42,43]. So far, no studies analyzing Pt species immobilized from aqueous solutions onto
sulfide minerals, and kinetics of their interaction have been carried out yet.

The aim of this study to investigate the chemical species of Pt formed on the surface of sulfide
minerals, including the preliminarily oxidized ones, upon their contact with aqueous Pt(IV)-chloride
complexes. This knowledge is important for understanding processes leading to the loss of PGEs
in the processing of sulfide ores, affinage, and the behavior of PGEs in tailing ponds where they are
leached under near-surface conditions [5,6]. The interaction of metal sulfides with the solutions of
Pt-containing complex compounds is of interest for preparation of composite nanomaterials and their
potential use in (electro)catalysis, electronics [1–3].

2. Materials and Methods

For this study, natural sulfide minerals from Noril’sk are studied, i.e., pyrrhotite, [Fe9S10],
containing impurities of pentlandite, [(Ni,Fe)9S8] (up to 3 wt.%) and chalcopyrite, [CuFeS2] (1–2 wt.%),
and chalcopyrite. Pyrite, [FeS2], and galena, [PbS], originated from the Sukhoi Log deposit, and the
Sanzheevskoe deposit, respectively. Specimens of valleriite, [(CuFeS2)·1.5[(Mg,Al)(OH)2]] from the
Nadezhda deposit (Noril’sk provenance) contained about 50% of the target mineral and varying minor
quantities of pyrrhotite, chalcopyrite, magnetite, serpentine, pyrite; in more detail this material was
characterized in refs. [39,44–50]. Plates with the size of approximately 2 × 4 × 5 mm were cut from
the minerals, and the surface was polished with sandpaper, washed with distilled water and wiped
with wet filter paper to remove fine particles directly before Pt deposition. Further, the sample was
conditioned in the solution of 1 mmol/L H2PtCl6 + 30 mmol/L HCl, pH 1.5, unless otherwise stated,
without stirring at 20 ◦C for a time varying from 1 h to 48 h, then washed with distilled water and
transferred into the photoelectron spectrometer chamber. The Pt solutions were prepared by dissolving
of crystalline H2PtCl6 (Dragcvetmet, Moscow, Russia) in a HCl solution. All solutions were prepared
using analytical grade reagents and deionized water (Millipore).

For the preliminary oxidation the minerals were prepared in the same manner as for XPS.
To oxidize, leaching was made using the solution of 0.25 M FeCl3 + 1 M HCl during 30 min at
50 ◦C, and then, the sample was rinsed with the solution of 1 M HCl to remove Fe ions and,
consequently, to prevent the formation of the products of Fe(III) hydrolysis. Then, the sample was
rinsed with distilled water and placed into the H2PtCl6 solution for a specified period of time, usually,
2–4 h. The electrochemical oxidation was carried out using an Elins P30 SM potentiostat (Elins,
Moscow, Russia) in the 1 M HCl solution at a constant potential over 10 minutes. A Pt wire was
used as a counter electrode and a saturated Ag/AgCl electrode was used as the reference electrode;
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all potentials are given relative to that. After the electrochemical oxidation the mineral sample was
rinsed with distilled water and used further for depositing Pt.

The XPS were acquired using a SPECS spectrometer equipped with a PHOIBOS 150 MCD-9
analyzer (SPECS, Berlin, Germany) at an electron take-off angle of 90◦ employing monochromatic
Mg Kα radiation (1253.6 eV) of an X-ray tube operated at 180 W. The analyzer pass energy was
10 eV for narrow scans, and 20 eV for survey spectra. The C 1s peak at 284.45 eV from hydrocarbon
contaminations was used as a reference. The Pt 4f7/2,5/2, S 2p3/2,1/2 doublets were fitted, after the
subtraction of the Shirley-type background, with the coupled peaks with the Gaussian–Lorentzian
peak profiles, the spin–orbit splitting of 3.30 eV and 1.19 eV, and the branching ratios of 0.75 and 0.5,
respectively, using the CasaXPS software package (version 2.3.16, Casa Software, Teignmouth, UK).
The element concentrations on the surface were determined from the wide scan using the empirical
sensitivity coefficients. Some photoelectron spectra were measured at the Russian–German laboratory
at the dipole magnet beamline of the synchrotron radiation facility BESSY II (Berlin, Germany).
Tapping-mode atomic force microscopy (AFM) studies were conducted using a Solver P-47 multimode
scanning probe microscope (Nanotekhnologiya MDT, Moscow, Russia) in air at room temperature.
A silicon cantilever with the resonance frequencies of 150–250 kHz was used as a probe.

3. Results

3.1. Analysis of the Surface of Pyrite and Pyrrhotite Using X-ray Photoelectron Spectroscopy and Atomic
Force Microscopy

The XPS spectra show that both Pt and Cl can be detected on the surface of sulfide minerals after
the aqueous media treatment (Figure 1). Typically, Cl− ions are weakly adsorbed on the metal sulfide
surface and/or can easily be removed by washing with water [39]. Thus, Cl observed in the spectra
largely belongs to adsorbed Pt–Cl complexes.
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Figure 1. Fragments of the X-ray photoelectron survey spectra of pyrite and pyrrhotite after the
interaction with 1 mmol/L H2PtCl6 + 0.03 mol/L HCl solution for 4 h.

Atomic force microscopy (AFM) is used to visualize immobilized Pt products and shows strong
changes of the mineral substrate relief due to surface etching. Platinum species are hardly distinguished,
especially after the short periods of Pt deposition. Pyrite is a more convenient mineral for the AFM
study since its surface is to a lower extent subjected to changes by chemical attack. Figure 2 illustrates
regions with the particles of Pt-containing products, in which particles with the lateral size of 50–150 nm
cover about 50% of the surface area.
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Figure 2. Atomic force microscopy images of the pyrite surface after the interaction with the solution
of H2PtCl6 for 14 h; (a) relief, (b) phase contrast.

3.2. Deposition of Platinum Revealed by XPS

3.2.1. Pyrrhotite and Pyrite

Figure 3a,b presents the data on atomic concentrations of Pt, S, Cl, Fe and O on the surface of
pyrite and pyrrhotite after the interaction with 1 mmol/L H2PtCl6 solutions. The concentrations of Cl
and Pt increase with time. The Fe concentration on pyrrhotite gradually decreases with time but it
insignificantly changes on pyrite during 24 h.; this is due to various rates of oxidation of these minerals.
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Figure 3. Atomic concentrations of Pt, Cl, S, O and Fe on the surface of (a) pyrrhotite and (b) pyrite
and the atomic concentration ratios of (c) Pt/S and (d) Cl/Pt on pyrrhotite and pyrite after different
interaction time with the 10−3 M H2PtCl6 solution.
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Figure 3c shows that an increase of Pt concentration with time is similar on the surfaces of pyrite
and pyrrhotite. The deposition rate is relatively high over 3–5 h, and it gradually decreases but does
not drop to zero, so the Pt concentration does not reach saturation. The ratios Cl/Pt show the rate of
substitution of Cl− ions with sulfide ions and on the influence of this process on the Pt accumulation
on the mineral surface. The atomic ratio Cl/Pt is about 1.8 in the initial deposition stage and slightly
decreases to 1.5 after 48 h at pyrite. At pyrrhotite, the value of Cl/Pt of approximately 4.3 is apparently
higher in the initial stage, and it decreases down to 1.5 over 24 h.

3.2.2. Galena, Chalcopyrite and Valleriite

The results of the surface analysis for galena, chalcopyrite and valleriite are presented in Figure 4
and also in Table S1 (Supplementary materials). The deposition of Pt on galena and valleriite is
considerably higher than at pyrite and pyrrhotite. The amounts of the Pt normalized to the sulfide
phase, that is the ratios Pt/S (Figure 4b), suggest that valleriite accumulates Pt faster than galena and
other minerals. The deposition of Pt on chalcopyrite is 1.5 times slower than on galena, while it is
2 times slower on pyrite and pyrrhotite. The Cl/Pt ratios presented in Figure 4c implies a negative
correlation between the surface amount of Cl and the accumulation of Pt on the minerals.
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Figure 4. Atomic concentrations of (a) Pt, and the ratios (b) Pt/S, and (c) Cl/Pt at the surface of sulfide
minerals after 2 h interaction with 1 mmol/L H2PtCl6 solution.

3.3. Species of the Deposited Platinum

3.3.1. XPS of the Reference Materials

Photoelectron spectra from reference samples Pt (chloride complexes, Pt sulfide and metallic
nanoparticles) precipitated onto highly oriented pyrolytic graphite (HOPG) were preliminarily
measured for the reliable assignment of components of Pt 4f spectra. Two components can be revealed
in the Pt 4f spectra of pure aqueous H2PtCl6 dried at HOPG, with the component at the binding
energy of 72.9 eV being attributable to Pt(II) binding Cl− anions, and the high-energy component at
75.0 eV corresponding to PtCl62− ions (Figure 5a). For the samples of Pt-sulfide hydrosol obtained by
mixing the solutions of Na2S and H2PtCl6, two signals with the binding energy of ~74 eV and 72.6 eV
can be assigned to Pt(IV)–S and Pt(II)–S compounds [51–53], respectively (Figure 5b). The binding
energies can vary in a small range, depending on the S species bound to Pt. Along with minor lines of
sulfite and sulfate which are likely to be products of Na2S oxidation, two low-energy doublets with
S 2p3/2 at 162.6 eV and 163.3 eV are found in the S 2p spectra (Figure S1, Supplementary materials).
These binding energies are typical for disulfide and polysulfide anions, respectively, or other S species
carrying similar local negative charges. In its turn, Pt bound with polysulfide could have the binding
energy by several tenth eV lower than Pt-sulfide species; this may result in a shift or broadening in the
corresponding Pt 4f spectra. The Pt 4f spectra of the metallic Pt particles obtained via the reduction by
formaldehyde show the binding energy of Pt0 metallic nanoparticles to have the value of about 71.5 eV
(Figure 5c). The same energy was found for these Pt nanoparticles deposited on pyrite, indicating
the absence of the substrate influence on the chemical shift (Figure 5d). The spectra also contain a
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minor component from Pt(II)–Cl complexes (73 eV) and a signal at ~72 eV, which is probably due to
unidentified product of incomplete reduction of H2PtCl6.

Minerals 2018, 8, x FOR PEER REVIEW  6 of 14 

 

from Pt(II)–Cl complexes (73 eV) and a signal at ~72 eV, which is probably due to unidentified 

product of incomplete reduction of H2PtCl6. 

 

Figure 5. X-ray photoelectron spectroscopy (XPS) Pt 4f7/2,5/2 spectra from reference Pt compounds 

deposited on highly oriented pyrolytic graphite (HOPG): (a) H2PtCl6, (b) H2PtCl6 + H2S, (c) metallic 

particles, and on pyrite, (d) metallic particles. 

3.3.2. Change of Platinum Species in the Deposition Process on Pyrite 

Figure 6 shows Pt 4f spectra for pyrite interacted with the 1 mmol/L H2PtCl6 solution. The fitting 

of the spectra suggests that Pt on the surface is in the form of Pt(II) and Pt(IV) bound both with S and 

Cl, the proportions of which depending on the deposition duration. The high energy component with 

the binding energy of 75.2 eV corresponding to the adsorbed complexes of tetravalent Pt is present 

during the first two hours of the reaction (~25% of total Pt), and then it almost vanishes. Amount of 

the Pt(IV) species is significantly lower on pyrite than on pyrrhotite (Figures 6 and 7). The share of 

Pt(II)–Cl species having the binding energy of about 73 eV stays in the range of 30–40%, and thus 

adsorbed chloride complexes prevail during a 24 h reaction. The Pt 4f7/2 component arising afterwards 

at 74.1 eV can be attributed to Pt(IV) sulfide, possibly PtS2 (about 18% of total Pt). The further course 

of the reaction results in a noticeable decrease of the Pt-chloride species and increase in the amount 

of Pt(II) sulfide (~72.5 eV). However, the photoelectron spectra acquired using synchrotron radiation 

with the photon excitation energy of 250 eV (Figure S2, Supplementary materials) having a higher 

surface sensitivity show slightly different composition of the surface products. The main difference 

consisting in the presence of the component at 75.0 eV from Pt(IV)–Cl species with the relative 

intensity up to 8%. Thus, independent of the reaction time, a small amount of the adsorbed PtCl62− 

ions seems to be always present on the mineral surfaces. 

Figure 5. X-ray photoelectron spectroscopy (XPS) Pt 4f7/2,5/2 spectra from reference Pt compounds
deposited on highly oriented pyrolytic graphite (HOPG): (a) H2PtCl6, (b) H2PtCl6 + H2S, (c) metallic
particles, and on pyrite, (d) metallic particles.

3.3.2. Change of Platinum Species in the Deposition Process on Pyrite

Figure 6 shows Pt 4f spectra for pyrite interacted with the 1 mmol/L H2PtCl6 solution. The fitting
of the spectra suggests that Pt on the surface is in the form of Pt(II) and Pt(IV) bound both with S and
Cl, the proportions of which depending on the deposition duration. The high energy component with
the binding energy of 75.2 eV corresponding to the adsorbed complexes of tetravalent Pt is present
during the first two hours of the reaction (~25% of total Pt), and then it almost vanishes. Amount
of the Pt(IV) species is significantly lower on pyrite than on pyrrhotite (Figures 6 and 7). The share
of Pt(II)–Cl species having the binding energy of about 73 eV stays in the range of 30–40%, and thus
adsorbed chloride complexes prevail during a 24 h reaction. The Pt 4f7/2 component arising afterwards
at 74.1 eV can be attributed to Pt(IV) sulfide, possibly PtS2 (about 18% of total Pt). The further course
of the reaction results in a noticeable decrease of the Pt-chloride species and increase in the amount of
Pt(II) sulfide (~72.5 eV). However, the photoelectron spectra acquired using synchrotron radiation with
the photon excitation energy of 250 eV (Figure S2, Supplementary materials) having a higher surface
sensitivity show slightly different composition of the surface products. The main difference consisting
in the presence of the component at 75.0 eV from Pt(IV)–Cl species with the relative intensity up to
8%. Thus, independent of the reaction time, a small amount of the adsorbed PtCl62− ions seems to be
always present on the mineral surfaces.
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Figure 6. (a) Normalized Pt 4f spectra of pyrite treated with 1 mmol/L H2PtCl6 solution for 2 h, 4 h,
24 h and 48 h, and (b) distribution of the surface Pt species.

3.3.3. Change of Platinum Species in the Deposition Process on Pyrrhotite

About 80% of Pt immobilized on the pyrrhotite surface (Figure 7) is represented by divalent Pt
bound to Cl and S, with the former being dominant for short deposition (e.g., 60% vs. 22% after 2 h),
and the latter increasing with time and prevailing after 24 h reaction (36% vs. 40%). The amount
of Pt(IV) tends to decrease within the range of 30% to 20% with increasing the interaction time.
Concurrently, the component at 75.2 eV shifts towards 74.1 eV, suggesting that the Pt(IV)–Cl adsorbates
transform to Pt(IV)–S species.
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Both the reduction and sulfidization of immobilized Pt(IV)–Cl species are faster on pyrite than
pyrrhotite, despite pyrite being much more chemically inert. At the same time, it should be taken in
mind that the total uptake of Pt is somewhat higher at pyrrhotite.

3.4. Influence of the Preliminary Modification of the Mineral Surface on the Platinum Deposition

One can expect that the state of a mineral surface is modified, for example, the weathering and
mineral processing could affect the interaction with Pt-bearing solutions. The preliminary oxidative
leaching of pyrrhotite in the 0.25 M FeCl3 + HCl solution (30 min at 50 ◦C) leads to a significant
increase in the amount of the deposited Pt (Figure 8a). The pre-treatment in 1 M HCl under the
non-oxidative dissolution conditions (−50 mV, 10 min), which produces a massive metal-deficient
layer on the pyrrhotite surface [44], also results in an increased amount of Pt on the surface but to a
smaller extent than after the oxidative treatment (Figure 8). After the anodic pre-oxidation at 0.5 V
(region of potentials of the passive dissolution of pyrrhotite) a significant decrease in the Pt deposition,
with Pt/S being two times lower as compared to unreacted pyrrhotite is observed.
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Figure 8. Pt/S and Pt/Cl atomic ratios for pyrrhotite (left panels) and pyrite (right panels) after
various chemical pre-treatment followed by 2 h interaction with 1 mmol/L H2PtCl6 solution.

Figure 9 shows the Pt 4f spectra and forms of Pt deposited on the preliminarily oxidized pyrrhotite;
the Pt concentration on the oxidized pyrite is low, so the spectra were of poor quality and are not
shown here. On the base of these data, we hypothesize that the enhanced uptake of Pt at pyrrhotite
mainly as the sulfide species is due to excessive S in the Fe-depleted surface layers produced by the
chemical pre-treatment [44,45]. The Fe depletion and S enrichment of the reacted pyrite are much
lower [44], and the oxidation promotes mainly increasing surface concentration of adsorbed chloride
ions, which probably retard the adsorption of the Pt complex ions.
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Figure 9. (a) Normalized XPS Pt 4f spectra of pyrrhotite after the deposition of Pt from 1 mmol/L
H2PtCl6 solution onto unreacted surface and onto the surface preliminarily treated in 0.25 mol/L FeCl3
+ HCl during 30 min, 1 mol/L HCl at the potential of −50 mV, and at the potential of 500 mV (10 min),
and (b) corresponding diagram of the distribution of the Pt forms.

3.5. Platinum Species on Different Sulfide Minerals

In the Pt 4f spectra of galena (Figure 10) two distinct components are shown one with the
binding energy of 72.3 eV and contribution of 65%, and another at 73.4 eV amounting of 35%,
almost independent of the deposition time. The first component corresponds to Pt(II)–S species,
and the second originates from Pt(II) atoms bound to Cl−, apparently in adsorbed PtCl42− ions.
Neither tetravalent Pt nor metallic Pt were observed on galena under the given conditions.
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The spectra of Pt collected from valleriite after 4 h of interaction with the H2PtCl6 solution are
rather similar to galena, with the two doublets being somewhat wider and contribution of the chloride
complex being lower. Surprisingly, metallic Pt of ~60% from the entire amount of Pt, is found to form
on valleriite as the reaction progresses, which is evidenced by the appearance of the Pt 4f7/2 peak at
71.5 eV. The remainder is Pt(II) bound with sulfur (the binding energy of 72.3 eV), while contributions
of Pt–Cl species is lower. Noteworthy, the Pt 4f bands are overlapped with Cu 3p band at ~75 eV,
which is weak for valleriite. Chalcopyrite, has almost the same composition as sulfide nanolayers in
valleriite, but the uptake of Pt is much lower, with Pt–Cl species dominating and Pt(IV) species notably
contributing especially in the initial stages; rather intense Cu 3p line overlaps the Pt 4f spectra, making
difficult their unanimous fitting.

4. Discussion

The process of Pt immobilization onto sulfide minerals appears to proceed via a sequence of stages.
The first is the adsorption of Pt-chloride complexes. The following stages include the substitution
of chloride ions with sulfide (and, maybe, di- and polysulfide) anions and reduction of tetravalent
Pt to divalent Pt, and to metallic state in the case of valleriite. It is possible that there exist more Pt
products in addition to those described above, including intermediates of the substitution reactions,
involving some OH− or/and H2O ligands, etc. However, exact compositions of the Pt species cannot
be unequivocally derived from the above XPS data because of contributions of numerous surface S-,
Cl-, O-bearing entities at the sulfide substrates and errors of the fitting procedures.

As it was demonstrated for pyrrhotite and pyrite, the total and relative contents of Pt products
differ as a function not only of the reaction time but also of mineral nature, the state of its surface,
in particular, a measure of oxidation and composition of the modified metal sulfide. The key factor
seems to be the activity of the surface sulfur anions involved in the reduction of Pt(IV) and the
substitution of Cl− ions in the coordination sphere of Pt. In a number of cases, e.g., for galena and
pyrrhotite, Pt complexes may be reduced by aqueous bisulfide ions (hydrogen sulfide) formed due to
acidic dissolution of the metal sulfides. Both these effects are related with reactivity of metal sulfide
minerals, which is commonly known to increase in the order pyrite < chalcopyrite < valleriite < galena,
pyrrhotite, that generally agrees with increasing the uptake of Pt (Figure 5). Furthermore, oxidation of
pyrrhotite, including in ambient air, results in its passivation [54–56], while both non-oxidative and
oxidative preliminary leaching causes the formation of more active over-stoichiometric sulfide, di- and
polysulfide anions, which facilitate the fixation of Pt via the reduction and sulfidization reaction.

The formation of Pt(IV)–S species in the next stages can be explained by oxidation of the Pt(II)–S
by di- and polysulfide groups as reported in refs [57,58]. The oxidative capability of the -S–S- species
arising at the sulfide mineral surfaces upon their prolonged oxidation seems to be in fact mediated by
Fe(III) entities and oxygen.

The largest uptake of Pt was observed at valleriite, the most important mineral of so-called
“coppery” ores of the Noril’sk deposits (about 7% of the total resources), which form veins in
sedimentary and metamorphic rocks on the margins of the massive magmatic ores and is known
for increased contents of PGEs [59,60]. Valleriite is a sulfide-hydroxide composite mineral where
the sulfide nanolayers with the composition CuFeSn close to chalcopyrite alternate with brucite-like
hydroxide nanolayers [Mg,Al(OH)2] [61–63]. The hydroxide layers are believed to have positive
charge due to the substitution of Mg2+ for Al3+, and so the sulfide nanolayers are negative to support
electro neutrality [54], but this has not been confirmed experimentally yet. We believe that the
localization of electron density at the sulfide layers makes them a strong reducing agent, which is
capable of transforming Pt compounds to the metallic state over its immobilization. This mechanism
corroborates with the fact that chalcopyrite being the structural analogue of the sulfide nanolayers
and a precursor of valleriite in the geochemical processes, exhibits much weaker reducing properties
towards Pt(II,IV) species.
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5. Conclusions

1. The interaction of the aqueous solutions of H2PtCl6 with the surface of sulfide minerals results in
the deposition of Pt on their surface. The amount of the deposited Pt increases with time.

2. The highest rate of Pt uptake is observed on galena and valleriite.
3. The preliminary moderate oxidation and non-oxidative leaching of pyrrhotite creating

metal-deficient surface layers usually promotes Pt deposition. In the case of pyrite, the preliminary
oxidation decreases the amount of the deposited Pt.

4. The main Pt phases immobilized on sulfide minerals are sulfides and chloride complexes of
Pt(II), and, to a smaller extent, chloride complexes of tetravalent Pt; no Pt(IV) was observed on
galena and valleriite. As the reaction progresses, the amount of Pt(IV) usually decreases while
the amount of the sulfide forms increases.

5. Metallic Pt was found to form only on valleriite, probably owing to the negative charge localized
at sulfidic nanolayers.

6. The di- and polysulfide surface species arising on sulfide minerals upon their oxidation are
capable of oxidizing immobilized Pt(II)–S to Pt(IV)–S species.
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s1, Figure S1: XPS the S 2p spectra from a droplet of sol formed in the reaction H2PtCl6 + H2S dried on pyrolytic
graphite, Figure S2: SR photoelectron Pt 4f spectra of the surfaces of pyrrhotite (a) and pyrite (b) after the
interaction with solution of 1 mmol/L H2PtCl6 + 0.03 mol/L HCl for 12 h. Table S1: Atomic concentrations of the
elements on the surfaces of different sulfide minerals after 2 h interaction with 1 mmol/L M H2PtCl6.
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