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Abstract: Crushed waste rock can be used as backfill in goafs to allow re-use of otherwise solid
waste and to control surface subsidence. If a certain lateral stress is applied to crushed waste rocks
beforehand, they are densified. Therefore, this research investigated the effects of lateral stress on
compaction characteristics of waste rocks for backfilling by utilising a self-designed bidirectional
loading test system for granular materials. Furthermore, this study tested the changes in the
mechanical parameters on lateral and axial loading of waste rocks for backfilling and measured the
influence of lateral stress on lateral strain, axial strain, porosity, and lateral pressure coefficient during
compaction. The test results demonstrate that (1) lateral stress affects porosity, strain, and the lateral
pressure coefficient of crushed waste rocks for backfilling in lateral and axial loading. (2) In lateral
loading, the greater the lateral stress, the larger the lateral strain and the reduction in lateral porosity.
(3) Under axial loading, for the samples on which a high lateral stress is applied, because the porosity
of waste rocks is decreased in advance, the density increases, thus finally resulting in a lower axial
strain. (4) After compaction, the particle size distributions of the samples of the crushed waste rocks
under four lateral stresses all shift upwards compared with those before compaction, implying that
particles are crushed. However, lateral stress does not reach the crushing strength of waste rock
particles, which exerts only a small influence on the crushing of particles before and after compaction.

Keywords: lateral loading stress; waste rocks; backfilling mining; compaction characteristics;
particle distribution

1. Introduction

In large-scale mining of coal resources in China, solid waste rock is produced and the discharge
thereof accounts for about 10–15% of coal production [1–4]. There are many sources of waste rock:
roof and floor material, as well as partings in the mining of coal seams and that produced in roadway
tunnelling. In general, the processing thereof involves transporting waste rock and stockpiling it [5–7].
Waste rock dumps occupy large areas of land and pollute the air by spontaneous combustion, and
contaminate soil and underground water as a result of rainfall [8–11]. In addition, waste rock dumps
also lead to serious geological disasters, such as collapses and landslides [12–15]. To solve a series of
difficulties resulting from the discharge of waste rocks, scholars proposed backfilling goafs with waste
rocks [16,17]. Waste rocks are filled into underground goafs, which not only processes otherwise waste
but also controls stratum movement and surface subsidence [18]. Such a method for backfilling has
significant social, economic, and environmental benefits, so it is of wide interest. After filling crushed
waste rocks into goafs, crushed waste rocks are gradually deformed due to compaction under the
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pressure from overlaying strata. Therefore, compaction characteristics of waste rock play a decisive
role in the backfilling effect [19,20]. If a certain lateral stress is applied beforehand, the waste rocks
for backfilling are densified, thus improving resistance to deformation. Therefore, it is particularly
important to study the influence of lateral loading stress on compaction characteristics of waste rocks
used for backfilling.

Scholars have investigated the compaction characteristics of crushed waste rocks and obtained a
series of beneficial research results. For example, by studying compaction characteristics of collapsed
rock blocks in goafs, Pappas and Mark [21] obtained relationships linking tangent and secant moduli
to the stress applied during compaction of rock blocks. Moreover, by using Salamon and Terzaghi
formulae, they described the stress–strain relationship. By utilising a steel cylinder, Zhang et al. [22]
tested the crushing strength of samples with particle sizes of 15–20 mm, 20–25 mm, and 25–30 mm
under different pressures. Through compaction tests on an RMT-150B electro-hydraulic servo test
system, and by utilising a steel drum for compaction, Su et al. [23] obtained the stress–strain relationship
of crushed rocks in compaction test conditions and analysed the influence of rock strength, block
size, and compaction stress on the compaction characteristics of crushed rocks. Zhang [24] and
Zhang et al. [25,26] put forward a fractal model for compaction and crushing of waste rocks so as to
study the fractal characteristics of crushed waste rocks under compaction. Moreover, they conducted
compaction tests under different compaction stresses and particle size distributions, thus verifying that
the theoretical model is reasonable. By combining the YAS5000 testing machine (Kexin, Changchun,
China) with a self-designed compaction device, Li et al. [27] investigated the effects of particle size on
compaction characteristics of waste rocks used for backfilling. Based on this, they found that large
particles of waste rocks can form a skeletal structure when used as backfill while the small particles
can fill the gaps between larger particles. Therefore, a reasonable size distribution of large and small
particles is more beneficial to improving compressive performances of waste rock used for backfilling.
In addition, Ma Dan et al. [28] tested compaction characteristics of limestone particles by utilising an
MTS815.02 test system and self-developed test device to assess the effects of particle size distribution
on porosity changes during compaction. In conclusion, although the compaction characteristics of
crushed waste rocks are known, the influences of lateral loading stress on compaction characteristics
thereof have not been elucidated.

In view of this, after introducing the preparation method for samples of crushed waste rocks, we
tested the compaction characteristics of crushed waste rocks by utilising a self-developed bidirectional
loading test system for granular materials. Then, the influence of lateral loading stress on the
compaction characteristics was explored. Moreover, we analysed the effects of change in lateral
strain, axial strain, porosity, lateral stress, and lateral pressure coefficient of the samples of crushed
waste rocks used for backfilling in lateral and axial loading and established the relationship between
lateral loading stress and compaction characteristics thereof. This provides a theoretical base for
improving backfilling effects in goafs.

2. Sample Preparation and Test Equipment

2.1. Sample Preparation and Test Scheme

Samples of crushed waste rocks were mainly used in this study. The waste sandstone was
collected from coal mines and prepared to form samples of waste rock. Before testing, we crushed
the waste rock to a 50 mm downgrade and then further crushed to 30 mm down. Samples were then
graded through 5, 10, 15, 20, 25 and 30 mm (Figure 1) and the screened samples of crushed sandstones
with different particle sizes are seen in Figure 2.
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Figure 1. Square aperture sieves. (a) 5 mm. (b) 10 mm. (c) 15 mm. (d) 20 mm. (e) 25 mm. (f) 30 mm. 
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Figure 2. Samples of crushed sandstone with different particle sizes: (a) 0–5 mm, (b) 5–10 mm, (c) 10–

15 mm, (d) 15–20 mm, (e) 20–25 mm, (f) 25–30 mm. 
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The compaction characteristics of waste rocks for backfilling are mainly affected by four factors:
lithology, particle size distribution, lateral stress, and number of lateral loading cycles. This test focused
on the influence of lateral stress on compaction characteristics of waste rock used for backfilling. Based
on the situations encountered during backfill coal mining on site, lateral stresses were set to be 0,
1, 2 and 3 MPa and the samples used were sandstones with particle sizes ranging from 0 to 30 mm.
Five cycles of lateral loading were applied.

By keeping lithology, particle size distribution and lateral loading times of the samples constant
and only changing the lateral stress applied to the samples, the effects of lateral stress on compaction
characteristics of waste rocks used for backfilling were analysed.

2.2. Design of Test Equipment

By employing a self-designed bidirectional loading test system for granular materials, the
compaction characteristics of waste rocks used for backfilling were tested. This system comprises an
axial loading system and a lateral loading system, which can realise lateral and axial loading of the
crushed waste rock samples, as shown in Figure 3. The axial loading system consists mainly of the
WAW-1000D electro-hydraulic servo testing machine (Sinter, Changchun, China). The lateral loading
system includes a hydraulic pump unit, an oil cylinder for loading, a control box, a pressure sensor, a
displacement sensor, a laptop, and a data acquisition device (Figure 4).

The WAW-1000D electro-hydraulic servo testing machine (1) can offer continuous and stable
axial pressures at a maximum axial load of 1000 kN. The testing machine with a travel of 250 mm is
connected to the controller (2) and computer (3) to monitor and acquire pressure and displacement
data (under axial load) in real time. The loading box (4) provides effective loading space measuring
250 mm × 200 mm × 200 mm (length × width × height) for the samples. The hydraulic pump unit (6)
offers lateral loading pressures required in testing in the oil cylinder (5), thus realising lateral loading
and unloading of the samples. The whole process is controlled by the control box (8). The pressure
gauge (7) and the pressure transmitter (10) can display the oil pressure in the pump unit in real time.
Furthermore, pressure and displacement data during lateral loading are monitored in real time by
using the pressure sensor (11) and the displacement sensor (12) and are transformed into current
signals. Through the FX2N-5a analogue input and output modules (14), the signals are collected and
transmitted to the PLC controller (13), thus completing data acquisition in the lateral loading process.
Finally, by connecting the PLC controller to the laptop (9), a data transmission channel is established
to store data and import data into text files for post-processing.
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Figure 4. Schematic diagram of the structure of the test system. (1): Testing machine; (2): Controller;
(3): Computer; (4): Loading box; (5): Oil cylinder for loading; (6): Hydraulic pump unit; (7): Pressure
gauge; (8): Control box; (9): Laptop; (10): Pressure transmitter; (11): Pressure sensor; (12): Displacement
sensor; (13): PLC controller; (14): Analog input and output modules.

3. Test Procedure

To study the influence of lateral stress on compaction characteristics of these crushed waste rock
samples, compaction tests were conducted on waste rocks used for backfilling under four lateral
stresses (0, 1, 2 and 3 MPa) in combination with the bidirectional loading test system for granular
materials. Moreover, the influence of lateral stress on the compaction characteristics of waste rocks
used for backfilling was analysed. The specific test steps are shown in Figure 5.
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The test included five main steps: preparing the samples of crushed waste rocks, layering
the prepared samples of crushed waste rocks into the loading box, lateral loading, axial loading
and screening the samples after loading. The compaction test method of solid backfill materials
promulgated by China’s National Energy Administration [29] was adopted to test the compaction
characteristics of crushed waste rocks used for backfilling.

(1). Preparing the samples of crushed waste rocks.
The preparation scheme for the samples is described in Section 2.1.
(2). Layering the prepared samples of crushed waste rocks into the loading box.
Before loading the samples, the loading box needed to be assembled and the displacement and

pressure sensors reset to zero. Then, the prepared samples were divided into 3–6 layers and placed
in the loading box. After loading each layer, the surface of each layer was not very smooth; thus, the
samples needed to be pre-compacted. Pre-compaction can make the surface of each layer smooth, and
the experimental error can be greatly reduced. The total height of the loaded samples in each group of
tests was 200 mm and the mass of each group of samples was recorded. After the whole loading box
was fully loaded, the upper cover plate was bolted on and the loading box placed on the test bench of
the WAW-1000D electro-hydraulic servo testing machine.

(3). Lateral loading.
The power to the equipment was switched on and the MCGS software was run to monitor pressure

and displacement data. According to the lateral stress set in this test scheme, the corresponding oil
pressure was calculated. The oil pressure was adjusted on the pressure gauge and the lateral loading
was applied to the samples through the control box. Furthermore, the lateral pressure and displacement
during lateral loading were monitored and recorded in real time.

(4). Axial loading.
After lateral loading, the upper cover plate was removed. At this time, due to the small elastic

rebound of the waste rocks, the height of the samples was slightly higher than 200 mm (the height of
the loaded samples). The upper press plate was placed on the samples and pre-compaction conducted
by using the testing machine to restore the height of the samples to 200 mm. Then, the pressure applied
during axial loading was set and an axial load applied to the samples (Figure 6). Lateral pressure, axial
pressure, and axial displacement data under axial loading were monitored and recorded in real time.
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(5). Screening the samples after loading.
After completing the axial loading of the samples, the samples were graded. The particle crushing

and the particle size distribution of the samples before and after loading were obtained (Figure 7).
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4. Calculation of Compaction Parameters

4.1. Lateral Strain and Porosity

(1). Transformation from lateral stress to oil pressure in lateral loading.
For the oil cylinder for loading, lateral loading was performed on the samples through oil pressure.

Lateral stress here refers to the compressive stress applied to the samples. Therefore, it was necessary
to transform the lateral stress into an oil pressure and apply lateral loading to the samples under
different lateral stresses. The relationship between oil pressure σo and lateral stress σh is expressed as:

σo =
σh Ah

Ao
=

σhLhhh

πr2
o

(1)

where Ah, Lh and hh indicate the area, length and height of the side-push plate, respectively; Ao and ro

represent the cross-sectional area and the radius of the oil cylinder, respectively.
By substituting these known parameters, such as the length of the side-push plate, the height of

the side-push plate and the radius of the oil cylinder into Formula (1), the oil pressure was calculated
to be 3.3, 6.5 and 9.8 MPa when the lateral stress was 1, 2 and 3 MPa, respectively.

(2). Calculating lateral strain of the samples under lateral load.
Lateral stress σh on the samples under lateral loading is the ratio of the lateral loading pressure to

the area of the side-push plate:

σh =
Ph
Ah

=
σo Ao

Ah
=

σoπr2
o

Lhhh
(2)

where Ph represents the lateral loading pressure of the samples. The lateral strain εh in the samples
under lateral loading is the ratio of the lateral loading displacement to the length of the loaded region,
as given by:

εh =
∆Lh
Ls

(3)

where ∆Lh and Ls denote the lateral loading displacement of the samples and the length of the loaded
region, respectively.

(3). Calculating lateral porosity of the samples under lateral load.
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When performing lateral loading of the samples, the porosity changes constantly. Under lateral
load, the lateral porosity φh of the samples is

φh =
Vh − V0

Vh
= 1 − ms

ρs(Ls − ∆Lh)lshs
(4)

where Vh, V0, ms and ρs indicate the volume of the samples in lateral loading, the volume of the
samples before crushing, the mass of the samples, and the mass density of the samples, respectively; ls
and hs denote the width of the loaded region and the height of the loaded samples, separately.

4.2. Axial Strain and Porosity

(1). Calculating axial strain in the samples under axial load.
The axial stress σv on samples under axial load is the ratio of the axial loading pressure to the

area of the upper press plate. The area of the upper press plate can be determined in combination with
lateral displacement as follows:

σv =
Pv

Av
=

Pv

Lvlv
=

Pv

(Ls − ∆Lh)lv
(5)

where Pv and Av represent the axial loading pressure of the samples and the area of the upper press
plate separately. Lv and lv indicate the length and the width of the upper press plate, respectively, and
the former is determined by lateral loading displacement of the samples.

Axial strain εv in samples under axial load is the ratio of the axial loading displacement to the
height of the loaded samples:

εv =
∆hv

hs
(6)

where ∆hv denotes the axial loading displacement of the samples.
(2). Calculating axial porosity of the samples under axial load.
When axial load is applied to samples of waste rock used for backfilling, the porosity constantly

changes. The axial porosity φv of the samples in axial loading is:

φv =
Vv − V0

Vv
= 1 − ms

ρs(Ls − ∆Lh)ls(hs − ∆hv)
(7)

where Vv denotes the volume of the samples in axial loading.

5. Test Results and Discussion

5.1. Influence of Lateral Stress on Lateral Strain and Porosity

In accordance with the test data from the lateral loading tests and the results calculated using
Formulae (2) to (4), changes in strain and porosities of the samples under different lateral stresses
under lateral load were obtained (Figure 8).

Based on the analysis of Figure 8:
(1). After the first lateral loading, the increase rate of the lateral strain of the samples was the

highest. Then, with an increase in the times of lateral loading, the increase rate of the lateral strain and
lateral porosity of the samples constantly decreased. The lateral loading reduced the porosity of the
samples, and the anti-deformability was improved greatly.

(2). For samples under higher lateral stress, the reduction in lateral porosity was larger.
For instance, the lateral porosity of samples under a lateral stress of 3 MPa decreased by 0.067
from 0.475 to 0.408, while lateral porosities of the samples under lateral stresses of 1 and 2 MPa were
reduced by 0.021 and 0.033, separately. This indicates that the samples under a lateral stress of 1 MPa
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showed smaller lateral deformation under lateral loading, while the lateral deformation of samples
under a lateral stress of 3 MPa was greater.

(3). Samples under lower lateral stress presented smaller lateral strain. Three lateral stresses were
ranked as 3, 2 and 1 MPa from large to small according to the lateral strain suffered by the samples.
For example, under a lateral stress of 1 MPa, the lateral strain in the samples was 0.031, while that at
a lateral stress of 3 MPa reached 0.092. The reason is that the higher the lateral stress applied on the
samples, the more work is done by the test system on the waste rock. Therefore, under lateral loading,
the particles of the samples under a lateral stress of 3 MPa were more easily crushed and could slip
and rotate, thus generating greater lateral deformation.
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Figure 8. Changes in lateral strain and porosity of samples under lateral load. (a) Lateral strain;
(b) Lateral porosity.

5.2. Impact of Lateral Stress on Axial Strain and Porosity

Based on test data obtained under axial loading and results calculated using Formulae (5) to
(7), changes in strain and porosity of the samples at different lateral stresses under axial load were
obtained (Figure 9).
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Figure 9. Changes in axial strain and porosity of the samples under axial load. (a) Axial strain;
(b) Axial porosity.

According to the analysis of Figure 9:
(1). The samples under higher lateral stress suffered smaller axial strain. Samples were ranked

from large to small in accordance with axial strains at 0, 1, 2 and 3 MPa. For instance, for the samples
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under a lateral stress of 3 MPa, the axial strain was only 0.251, while that in samples at a lateral stress of
0 MPa reached 0.328. The reason for this is as follows: owing to the lateral deformation of the samples
at a lateral stress of 3 MPa being larger, the porosity of waste rocks used for backfilling decreases,
while the density thereof increases. Therefore, under axial load, samples under a lateral stress of 3 MPa
suffered less axial deformation.

(2). For samples under a lower lateral stress, the reduction in axial porosity was greater.
For example, the porosity of samples under a lateral stress of 0 MPa fell from 0.476 to 0.225. For samples
under lateral stresses of 1, 2 and 3 MPa, the axial porosities fell by 0.223, 0.216 and 0.211, respectively;
these differences can be characterised as significant. This demonstrates that samples at a lateral stress
of 0 MPa under axial load showed greater axial deformation, while smaller lateral deformation was
found in samples under a lateral stress of 3 MPa.

5.3. Changes in Lateral Stress and Lateral Pressure Coefficient Under Axial Load

In accordance with test data for samples under axial load and results calculated using Formula (2),
the changes in lateral stresses and lateral pressure coefficients of samples under different lateral stresses
and axial loads were attained (Figure 10). The lateral pressure coefficient of the samples is the ratio of
the horizontal stress to vertical stress.
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Figure 10. Changes in lateral stress and lateral pressure coefficient of samples under axial load.
(a) Lateral stress; (b) Lateral pressure coefficient.

According to the analysis of Figure 10:
(1). The four lateral stresses were ranked 3, 2, 1 and 0 MPa according to the lateral stress generated

under axial load. For instance, the lateral stress at 3 MPa reached 4.35 MPa, while that in samples
under a lateral stress of 0 MPa was only 3.12 MPa. This is because the larger lateral deformation of
the samples under a lateral stress of 3 MPa reduced the porosity of the samples while increasing their
density. Therefore, under axial load, there is no need for axial stress to do work continuously to reduce
porosity, thus resulting in the samples under a lateral stress of 3 MPa transferring more stress in the
lateral direction than those samples without an applied lateral stress.

(2). The samples under higher lateral stress in lateral loading had a larger lateral pressure
coefficient. For instance, the lateral pressure coefficient of the samples under a lateral stress of 3 MPa
reached 0.219, while those of samples under lateral stresses of 0, 1 and 2 MPa were 0.161, 0.178 and
0.192, respectively. This shows that the samples under a lateral stress of 3 MPa transferred more stress
in the lateral direction, while a smaller stress was applied under a lateral stress of 0 MPa.

(3). The four lateral pressure coefficients first increased and then decreased and eventually seem
to have stabilised. This is because the axial loading stress passed to the lateral at first, and when the
axial loading stress reached the breakage strength of crushed waste rock, most of the axial stress was
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used to break the waste rock and reduce the porosity. Finally, with an increase in the axial stress, the
porosity was difficult to reduce and the lateral pressure coefficient seems to have stabilised.

5.4. Changes in Particle Size Before and After Compaction

After completing the compaction test, samples were graded (Figure 11).
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Figure 11. Particle size distributions before and after compaction.

According to the analysis of Figure 11, after compaction, the particle size distribution of the
samples of crushed waste rock under the four lateral stresses all shifted upwards in comparison
with those before compaction. This indicates that particles were crushed and the proportion of small
particles constantly rose. However, because the applied lateral stress was low and did not reach
the crushing strength of the particles, the increase in lateral stress could reduce the porosity of the
waste rocks used for backfilling while only slightly affecting the crushing of particles before and
after compaction.

6. Conclusions

We investigated the influence of lateral stress on the compaction characteristics of waste rock
used for backfilling. By changing the lateral stress on the samples, the effects of lateral stress on lateral
strain, axial strain, and porosity were analysed and the changes in lateral compressive stress and lateral
pressure coefficient under axial load were tested. Furthermore, the particle size distribution of the
samples before and after loading were measured. The following conclusions may be drawn:

(1). The larger the lateral stress on the samples, the greater the decrease in lateral porosity and the
higher the lateral strain. For samples under lateral stresses of 1, 2 and 3 MPa, lateral porosities fell by
0.021, 0.033, and 0.067, respectively, and the lateral strain increased from 0.031 under a lateral stress of
1 MPa to 0.092 under a lateral stress of 3 MPa.

(2). The smaller the lateral stress on the samples, the larger the decrease in axial porosity and
the higher the axial strain. The porosity of the samples increased from 0.0211 under a lateral stress of
3 MPa to 0.251 under a lateral stress of 0 MPa; corresponding axial strains rose from 0.251 to 0.328.

(3). The greater the lateral stress, the higher the lateral pressure coefficient under axial load.
When the lateral stress on the samples in lateral loading was 0 MPa, the lateral stress on samples under
axial load was 3.12 MPa and the lateral pressure coefficient was 0.161. When the lateral stress in lateral
loading was 3 MPa, the lateral stress and lateral pressure coefficient under axial load reached 4.35 MPa
and 0.219, respectively.
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(4). With an increase in lateral stress, the porosity of the samples decrease. However, as the lateral
stress did not reach the crushing strength of the samples, the increasing lateral stress only slightly
affected the extent of particle crushing before and after compaction.
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