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Abstract: The Konos Hill prospect in NE Greece represents a telescoped Mo–Cu–Re–Au porphyry
occurrence overprinted by deep-level high-sulfidation mineralization. Porphyry-style mineralization
is exposed in the deeper parts of the system and comprises quartz stockwork veins hosted in
subvolcanic intrusions of granodioritic composition. Ore minerals include pyrite, molybdenite,
chalcopyrite, and rheniite. In the upper part of the system, intense hydrothermal alteration
resulted in the formation of a silicified zone and the development of various advanced argillic
alteration assemblages, which are spatially related to N–S, NNW–SSE, and E–W trending faults.
More distal and downwards, advanced argillic alteration gradually evolves into phyllic assemblages
dominated by quartz and sericite. Zunyite, along with various amounts of quartz, alunite, aluminum
phosphate–sulfate minerals (APS), diaspore, kaolinite, and minor pyrophyllite, are the main minerals
in the advanced argillic alteration. Mineral-chemical analyses reveal significant variance in the SiO2,
F, and Cl content of zunyite. Alunite supergroup minerals display a wide compositional range
corresponding to members of the alunite, beudantite, and plumbogummite subgroups. Diaspore
displays an almost stoichiometric composition. Mineralization in the lithocap consists of pyrite,
enargite, tetrahedrite/tennantite, and colusite. Bulk ore analyses of mineralized samples show a
relative enrichment in elements such as Se, Mo, and Bi, which supports a genetic link between the
studied lithocap and the underlying Konos Hill porphyry-style mineralization. The occurrence of
advanced argillic alteration assemblages along the N–S, NNW–SSE, and E–W trending faults suggests
that highly acidic hydrothermal fluids were ascending into the lithocap environment. Zunyite,
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along with diaspore, pyrophyllite, and Sr- and Rare Earth Elements-bearing APS minerals, mark the
proximity of the hypogene advanced argillic alteration zone to the porphyry environment.

Keywords: zunyite; alunite supergroup minerals; lithocap; porphyry-epithermal mineralization;
Greece

1. Introduction

Porphyry deposits are characterized by a zonation of mineralization and associated types of
hydrothermal alteration. In most deposits, this zonation comprises an inner, strongly mineralized part
hosted by potassic alteration, which is outwardly replaced by sericitic and more distally by propylitic
assemblages, the latter being commonly dominated by epidote and chlorite [1]. This spatial succession
of alteration types reflects the cooling of the hydrothermal fluids and, to some extent, their possible
mixing with meteoric fluids [2,3].

In many cases, advanced argillic alteration zones, or “lithocaps” [4], develop at shallow levels
above porphyry Cu–Au deposits (e.g., Lepanto-Far Southeast, Philippines [5]; Maricunga, Chile [6]).
Advanced argillic alteration mineral assemblages precipitate from SO2- and HCl-rich magmatic vapor,
which arises from an underlying intrusive source. The vapor condenses into near-surface fluids in a
relatively shallow environment [7,8], where leaching of the host rock by the most acidic condensate
leaves residual silica that recrystallizes to quartz and forms the core of the alteration [8]. In cases where
such fluids affect porphyritic magmatic rocks, commonly, the result is vuggy textures.

These lithocaps are favorable environments for exploration, as they can host high-sulfidation
ores and can be located spatially adjacent to porphyry-style mineralization [9,10]. Commonly, they
comprise various amounts of quartz, andalusite, pyrophyllite, topaz, kaolinite–dickite, diaspore,
corundum, zunyite, tourmaline, alunite supergroup minerals, and dumortierite [11–13]. Lithocaps are
usually zoned. In the deep parts, quartz and pyrophyllite occur, commonly transitioning downwards
to porphyry-related sericitic alteration [14], which hosts pyrite veinlets with silica–sericite selvedges
(described also as “D-type” veins) [6,9]. In shallow levels, quartz and alunite predominate [13].

Advanced argillic alteration zones commonly overlie or overprint earlier alteration styles in
many porphyry systems [15]. This telescoping has been attributed to rapid collapse of the isotherms,
due to the retreat of the magma interface [16] or to the waning convection from the magmatic body at
depth [17], with exogenic factors such as rapid uplift and erosion or collapse of the volcanic edifice
also playing important roles [18]. Advanced argillic alteration lithocaps have been described from a
number of porphyry-epithermal deposits and prospects worldwide, and coupled with the occurrence
of a transitional to sericitic alteration zone, they mark the change from the high-sulfidation epithermal
to the porphyry environment. Examples include the Hugo Dummett deposit in Mongolia [15], El
Salvador in Chile [10], and Rosia Poieni in Romania [19].

In Greece, several advanced argillic alteration lithocaps have been identified [20,21].
The best-known example is in the Kassiteres-Sapes district [22–24], where advanced argillic alteration
zones host significant, high-to-intermediate-sulfidation ores (e.g., the Viper Au–Cu–Ag–Te deposit [25]),
which overprint or form laterally to porphyry-style mineralization [23,26,27]. Other examples include
the Mavrokoryfi [28] and Melitena [29] prospects in the Thrace district, northeastern Greece, as well as
the Fakos and Stypsi prospects on Limnos and Lesvos islands, respectively [30–32].

Zunyite is a relatively rare mineral in advanced argillic alteration assemblages. It is a F- and
Cl-bearing aluminosilicate [Al13Si5O20(OH,F)18Cl] that was originally described from and named after
the Zuni mine at Anvil Mountain, CO, USA [33]. The presence of zunyite in Greece was documented
previously from Kos Island [34], where it occurs in advanced argillic-altered rhyolites and at the Konos
Hill porphyry Mo–Cu–Re–Au system [35]. The latter is the only known occurrence of zunyite in a
lithocap that occurs above a porphyry system in Greece.
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This study is an extended version of a paper by Mavrogonatos et al. [35]; it presents further
geological and mineralogical data regarding the Konos Hill lithocap and aims to expand previous
knowledge on the mineralogy and mineral chemistry of advanced argillic alteration zones in the Sapes
district. The study emphasizes in the mineral-chemical implications of phases such as zunyite and APS
minerals, because they may constitute an exploration tool for new mineralized centers in the adjacent
areas and can be used to define the physicochemical conditions of the transition from the porphyry to
the epithermal environment in the Konos Hill prospect.

2. Materials and Methods

Twenty rock samples were collected from the advanced argillic-altered rocks of the Konos Hill
area for petrographic, mineralogical, mineral-chemical, and geochemical studies. From these samples,
sixteen polished-thin sections underwent detailed petrographical investigation using an Axio Scope.A1
(Zeiss) transmitted light microscope.

Powders from ten representative samples were analyzed by X-ray diffraction, using a
Siemens/Bruker 5005 X-ray diffractometer at the Faculty of Geology and Geoenvironment, National
and Kapodistrian University of Athens. Results were evaluated using the software package
DIFFRACplus, EVA (version 10.0). Alteration assemblages in selected rock chips were also
determined using short-wave infrared spectroscopy (SWIR) with a portable TerraSpec 4 Standard-Res
mineral analyzer.

The chemical compositions of selected minerals (alunite–natroalunite, APS, diaspore, zunyite)
were determined by electron probe microanalysis (EPMA) using a JEOL 8530F instrument at the
Institute of Mineralogy, University of Münster, Germany. Analytical conditions included a 15-kV
accelerating voltage, a 5-nA beam current, and counting times of 10 s for peaks and 5 s for the
background signal. Natural (for Na, Mg, Al, Si, Mn, Fe, Sr, Cl, Ba, K, Ca, P, and S) and synthetic
(for F, Ti, Cr, La, Ce, Nd, and Pb) mineral standards were used for calibration prior to quantitative
analyses. The phi-rho-z correction was applied to all data. Standard deviations of the major oxides
are within 1–2%. Oxides and elements that were analyzed and their average (1σ) detection limits are:
Na2O (0.046 wt %), MgO (0.43 wt %), Al2O3 (0.038 wt %), SiO2 (0.058 wt %), MnO (0.054 wt %), FeO
(0.057 wt %), SrO (0.082 wt %), Cl (0.021 wt %), BaO (0.094 wt %), K2O (0.032 wt %), CaO (0.038 wt %),
P2O5 (0.049 wt %), SO3 (0.063 wt %), F (0.14 wt %), TiO2 (0.13 wt %), La2O3 (0.25 wt %), Ce2O3 (0.20 wt
%), Nd2O3 (0.20 wt %), and PbO (0.047 wt %).

In addition, eight mineralized lithocap samples were analyzed commercially by inductively
coupled plasma mass spectrometry (ICP-MS package AQ251) at ACME analytical laboratories in
Vancouver, BC, Canada, in order to determine their metal concentrations.

3. Geological Setting

3.1. Regional Geology

The Hellenides are part of the Alpine orogenic system and form the link between the Dinarides
(e.g., Albania) to the NW and the Pontides in the east (e.g., Turkey). They comprise a SW-vergent
succession of tectonic units, which were integrated in three continental blocks (Rhdopes, Pelagonia,
External Hellenides/Adria) and two oceanic domains, the Vardar and Pindos, respectively [36,37].

Among these units, lithologies of the Rhodope Massif, located mainly in NE Greece (Figure 1),
record a long and rather complex tectonometamorphic history related to terrane accretion, subsequent
exhumation of deep-seated crustal rocks along major detachment faults, and formation of metamorphic
core complexes [38]. They are divided into three major lithological subdomains: (a) the North
Rhodope domain; (b) the Southern Rhodope Core complex (also including the Kerdyllion Unit);
and (c) the Chalkidiki block, which consists of the so-called Serbo-Macedonian Massif, with the
exception of the Kerdyllion Unit [36]. Core complex formation and associate exhumation of high-grade
metamorphic rocks in the Rhodope Massif occurred during two periods. The first (40–35 Ma) is
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related to the subduction of the Pindos ocean and accretion of the Pelagonian microcontinent to
the Eurasian margin [39,40]. The second, at ~35 Ma [41], is related to subduction and accretion
of the External Hellenides continental block with contemporaneous inception of subduction in the
Mediterranean ocean.
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Figure 1. Geological map of NE Greece (modified from [22]). The white diamond marks the location of
the study area.

The North Rhodope domain consists of (a) a lower high-grade unit of basement rocks, including
the metamorphic core complexes of Arda, Biala Reka-Kechros, and Kesebir-Kardamos; (b) an
intermediate unit comprising high-grade basement rocks; and (c) an upper unit consisting of low-grade
metamorphic sequences of the Circum-Rhodope belt and ophiolitic rocks [42]. The Southern Rhodope
Core Complex comprises Paleozoic orthogneisses (possibly equivalent to those of the metamorphic
core complexes of the North Rhodope domain [37]) and a thick succession of Triassic marbles, with
intercalations of amphibolitic and metapelitic rocks. Locally, anatectic conditions were achieved, as
evidenced by migmatites on Thasos island and within the Kerdyllion unit. Finally, the Chalkidiki block
represents a thrust system composed of NW-trending units, comprising various lithologies including
ophiolitic rocks.

Lithologies of the Rhodope were exhumed during a late Cretaceous to Tertiary, syn- to
postorogenic collapse. The deep-seated metamorphic successions were uplifted along major
detachment faults, resulting in the formation of metamorphic core complexes and the opening
of several E–W-trending, structurally controlled basins [43,44]. Syn-extensional sedimentation,
which lasted from the upper Eocene to Miocene, resulted in the deposition of extensive sequences
of transgressive conglomerates, limestones, and sandstones [45]. During the orogenic collapse,
contemporaneous asthenospheric upwelling due to crustal thinning gave rise to widespread late
Eocene to Miocene, postsubduction magmatism. Igneous rocks formed outcrops extensively in the
Rhodope and Serbo-Macedonian domains [46]. Magmatic rocks have calc-alkaline to shoshonitic
and ultrapotassic affinities, and have mafic to felsic compositions [46,47]. In many cases, magmatism
was followed by intense hydrothermal alteration, which lead to the formation of abundant mineral
deposits, mainly in the Rhodopic, and to a lesser extent, the Serbo-Macedonian domains [43,48].

3.2. Local Geology

In the Kassiteres–Sapes district, lithologies of the Circum-Rhodope Belt crop out, especially in its
southern part. Metasedimentary lithologies of the Makri unit are most widespread (Figure 1). Eocene
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volcanosedimentary rocks discordantly overlie the metamorphic basement and occupy most of the
study area.

The Konos Hill area is part of a deeply eroded volcanic edifice built on the Eocene sedimentary
deposits [23]. This volcanic edifice comprises mostly subvolcanic intrusions of calc-alkaline to high-K
calc-alkaline affinities, as well as lava domes, flows, and pyroclastic rocks. Both magmatic and
pyroclastic rocks are characterized by intense hydrothermal alteration.

Konos Hill, its most prominent topographic feature, is located approximately 20 km N–NW
of Alexandroupolis and consists of a hydrothermally altered granodiorite which intruded the
volcanosedimentary rocks (Figure 2). Further to the ENE in the study area, a monzodioritic body
intruded the volcanosedimentary rocks and the granodiorite. Available geochronological data for
the monzodiorite yielded cooling ages of 31.9 ± 0.5 Ma (Rb/Sr on biotite [49]) and 32.6 ± 0.5 Ma
(40Ar/39Ar on biotite [50]). Recently, Perkins et al. [51] conducted a U–Pb zircon geochronological
study on the Kassiteres magmatic suite, showing that magmatism occurred between 32.05 ± 0.02 and
32.93 ± 0.02 Ma. Previous studies in this area have shown that the granodiorite hosts the Konos Hill
porphyry Mo–Cu–Re–Au porphyry prospect [22,26,27].
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Major faults in the Konos Hill area strike N–S, NNE–SSW, and E–W (Figure 2) and are usually
high-angle faults (dipping between 60–80◦). Zones of advanced argillic alteration mostly trend E–W
and are related to the previously mentioned fault directions, indicating that magma emplacement,
hydrothermal alteration, and associated mineralization were structurally controlled.

4. Results and Discussion

4.1. Alteration and Mineralization

Hydrothermal alteration and mineralization occurring in the Kassiteres–Sapes district have been
well-studied [23–26,35,52–54]. Advanced argillic-altered lithocaps have been recognized at a number
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of sites [23]. Among them, Konos Hill is located in the eastern part of the district and comprises the
highest topographic level of the area.

Advanced argillic alteration at Konos Hill is related to E–W, N–S, and NNW–SSE trending fault
lines. The latter direction is also related to porphyry-style stockwork outcrops, which are best exposed
at lower elevation (Figure 3a). In the uppermost part, acidic leaching of the granodiorite resulted in a
structurally controlled and spatially restricted zone, which comprises residual quartz with a vuggy
texture. This zone grades outwards and downwards into alunite-rich assemblages (Figure 3b–e),
which comprise alunite + APS minerals + quartz + zunyite ± pyrophyllite and quartz + alunite +
APS minerals + diaspore + kaolinite ± pyrophyllite. Hematite pseudomorphs after pyrite accompany
the abovementioned assemblages. The Konos Hill lithocap is deficient of any primary sulfides due
to extensive supergene oxidation; however, it hosts a low-grade Au mineralization (see Section 4.3).
On the contrary, nearby lithocaps at Agios Demetrios, Scarp, Viper, and Agia Barbara host significant
high-sulfidation epithermal, gold–enargite mineralization, which is generally found in the western
part of the study area [22–25,55–57]. Advanced argillic alteration assemblages evolve downwards
through a transitional zone of quartz + alunite + pyrophyllite + sericite into a typical sericite-rich
assemblage, which is the most widespread type of hydrothermal alteration in the district. The latter
hosts porphyry-style (A- and banded) quartz stockwork (Figures 3f and 4i) and D-type quartz–sericite
veins with a pyrite–molybdenite–chalcopyrite–rheniite mineralization [22,26,27]. Minor amounts of
enargite, colusite, tetrahedrite–tennantite group minerals, and galena occur both within the veins and
as disseminations in the sericitic-altered granodiorite and comprise a high-sulfidation mineralization
superimposed on the porphyry system.
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Figure 3. Field and hand-specimen photographs from Konos Hill, NE Greece. (a) Panoramic
view of Konos Hill; (b) Quartz–alunite–zunyite-bearing rocks on top of Konos Hill; (c)
Quartz–alunite–diaspore-bearing rocks in the NW slopes of Konos Hill; (d,e) Hand-specimens of
quartz–alunite (Alu + Qz) and quartz–alunite–zunyite (Qz + Alu + Znt) assemblages; (f) Quartz
porphyry stockwork veins in sericitic-altered granodiorite from Saporema Creek.
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(e) APS crystals form the core of pseudocubic alunite (crossed-polarized light); (f) Tabular alunite 
crystals in association with quartz (Qz, crossed-polarized light); (g) Alunite (Alu) aggregate replacing 
a phenocryst in the granodiorite (crossed-polarized light); (h) Alunite (Alu) crystals forming veinlets 
in the quartz (Qz)-dominated matrix (crossed-polarized light); (i) Sugary quartz (Qz) crystals in 
porphyry-style vein hosting pyrite–molybdenite–chalcopyrite ore (Py + Mol + Ccp) in sericite-altered 
granodiorite (crossed-polarized light). 

Figure 4. Transmitted light microphotographs of alteration assemblages from the Konos Hill area, NE
Greece. (a,b) Euhedral zunyite (Znt) crystals in association with quartz and tabular alunite (Alu +
Qz, plane-polarized and crossed-polarized light, respectively); (c) Subhedral diaspore (Dsp) crystals
displaying concentric zonation patterns (crossed polarized light); (d) Subhedral diaspore (Dsp) crystals
set in an alunite (Alu) and quartz (Qz) matrix of altered granodiorite (crossed-polarized light); (e) APS
crystals form the core of pseudocubic alunite (crossed-polarized light); (f) Tabular alunite crystals in
association with quartz (Qz, crossed-polarized light); (g) Alunite (Alu) aggregate replacing a phenocryst
in the granodiorite (crossed-polarized light); (h) Alunite (Alu) crystals forming veinlets in the quartz
(Qz)-dominated matrix (crossed-polarized light); (i) Sugary quartz (Qz) crystals in porphyry-style
vein hosting pyrite–molybdenite–chalcopyrite ore (Py + Mol + Ccp) in sericite-altered granodiorite
(crossed-polarized light).

Extensive sericitic alteration also affected outcrops of the volcanosedimentary succession as well
as parts of the monzodiorite intrusion, especially along fault planes. It grades further outwards into
propylitic alteration that is characterized by varying amounts of epidote, chlorite, and carbonates.

4.2. Mineralogy and Mineral Chemistry

4.2.1. Zunyite

Zunyite forms euhedral crystals that are up to 300 µm in size (Figure 4a,b and Figure 5a). They
are commonly associated with quartz and tabular alunite–natroalunite crystals, with minor amounts of
spheroidal hematite, which along with goethite, formed after pyrite (Figure 4a,b). In rare cases, zunyite
contains submicroscopic APS inclusions (Figure 5b). Electron probe microanalyses show significant
compositional variations (Table 1). The SiO2 varies from 22.7 to 25.14 wt %, whereas the Al2O3 content
clusters tightly at 54.97 to 55.81 wt %. Fluorine and chlorine contents range between 4.07 and 5.93 wt
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% and 2.72 to 2.97 wt %, respectively. In some cases, traces of Na2O, BaO, TiO2, Na2O, Ce2O3, and
Nd2O3 were detected (up to 0.40, 0.26, 0.23, 0.34, and 0.21 wt %, respectively).Minerals 2018, 8, x FOR PEER REVIEW  8 of 18 
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Figure 5. Back-scattered electron images of alteration minerals contained in samples from Konos Hill,
NE Greece: (a) Euhedral zunyite (Znt) crystals in association with quartz, tabular alunite (Alu + Qz),
and hematite (Hem); (b) APS included in euhedral zunyite (Znt); (c) Diaspore (Dsp) crystals included
in an alunite and quartz (Alu + Qz)-dominated matrix; (d,e) APS pseudocubic crystals in the core of
tabular-shaped alunite; (f) Tabular alunite (Alu) in association with quartz (Qtz) and hematite (Hem).

Table 1. Representative EPMA data of zunyite (1–6) and diaspore (7–10) from the advanced argillic
alteration zone of the Konos Hill prospect, NE Greece.

wt % 1 2 3 4 5 6 7 8 9 10

SiO2 25.14 22.96 23.66 24.35 22.70 24.58 bd bd bd bd
TiO2 bd 0.11 bd 0.26 bd bd 0.18 bd bd bd

Al2O3 55.03 54.97 55.25 54.76 55.81 55.32 83.05 82.58 82.42 82.57
FeO bd 0.05 0.04 0.16 bd 0.08 bd bd bd bd

Na2O 0.40 0.11 0.34 0.09 0.39 0.19 0.02 bd 0.02 0.01
BaO 0.11 bd bd bd bd 0.23 0.98 bd bd bd

La2O3 bd bd bd bd bd bd bd bd bd 0.34
Ce2O3 bd bd bd bd bd 0.34 bd 0.38 0.24 bd
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Table 1. Cont.

wt % 1 2 3 4 5 6 7 8 9 10

Nd2O3 bd bd 0.21 bd bd bd bd 0.30 0.16 0.22
P2O5 0.05 0.51 0.27 0.25 0.70 0.11 0.05 bd 0.05 bd

F 5.93 4.56 4.82 4.07 5.08 4.32 bd 0.11 bd bd
Cl 2.90 2.82 2.97 2.91 2.72 2.75 bd bd 0.01 bd

Total 89.63 86.16 87.60 86.92 87.47 88.04 84.42 83.37 82.90 83.23

apfu 29.5 (O) 1.5 (O)

Si 5.013 4.679 4.787 4.895 4.596 4.920 0.000 0.000 0.000 0.000
Ti 0.005 0.017 0.000 0.039 0.000 0.000 0.001 0.000 0.000 0.000
Al 12.931 13.202 13.150 12.976 13.190 12.919 0.994 0.997 0.997 0.996
Fe 0.000 0.009 0.007 0.027 0.000 0.013 0.000 0.000 0.000 0.000
Na 0.016 0.043 0.134 0.033 0.154 0.072 0.000 0.000 0.000 0.000
Ba 0.001 0.005 0.002 0.001 0.000 0.018 0.004 0.000 0.000 0.000
La 0.002 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.002
Ce 0.000 0.011 0.002 0.003 0.000 0.027 0.000 0.000 0.001 0.001
Nd 0.000 0.000 0.015 0.000 0.000 0.000 0.001 0.001 0.001 0.001
P 0.008 0.089 0.046 0.043 0.120 0.019 0.000 0.000 0.001 0.000
F 3.224 2.956 2.704 2.305 2.837 2.431 0.000 0.004 0.000 0.000
Cl 0.844 0.860 0.891 0.884 0.817 0.830 0.000 0.000 0.000 0.000

bd: below detection; apfu: atoms per formula unit.

4.2.2. Diaspore

Diaspore is generally found as euhedral to subhedral crystals measuring up to 0.2 cm in size.
Commonly, it forms isolated grains scattered in a fine-grained matrix of tabular alunite crystals and
quartz (Figure 4c). Diaspore also forms aggregates of fine-grained subhedral crystals that replace
earlier mineral phases of the silicified rock such as feldspars (Figures 4d and 5c). In some cases,
diaspore crystals occur as euhedral grains in fissures or cracks in the matrix. Electron microprobe
analyses reveal near stoichiometric compositions with traces of TiO2, BaO, and REE, mostly Ce2O3

and Nd2O3 (up to 0.18, 0.98, 0.38, and 0.22 wt %, respectively; Table 1). Concentric zoning patterns
occur in some crystals (Figure 4c), but are apparently not associated with chemical variations.

4.2.3. Alunite Supergroup Minerals

Alunite supergroup minerals consist of four major subgroups, each one containing a varying
number of different members. These subgroups consist of the alunite (e.g., alunite, natroalunite),
beudantite (e.g., woodhouseite, svanbergite), plumbogummite (e.g., crandalite, florencite), and
dussertite groups (e.g., arsenocrandalite, segnitite) [58–61]. Microscopic examinations together with
EPMA data reveal a wide compositional range for alunite supergroup minerals in the Konos Hill area.
Based on in the distribution of data in Figure 6a, analyzed compositions comprise members of the
alunite, beudantite, and plumbogummite subgroups.

Aluminum phosphate–sulfate (APS) minerals occur mostly as euhedral pseudocubic inclusions
in zoned natroalunite in all types of advanced argillic assemblages at Konos Hill (Figures 4e
and 5d,e). EPMA data (Table 2) revealed varying amounts of CaO (up to 10.96 wt %), BaO
(up to 3.60 wt %), SrO (up to 9.54 wt %), Ce2O3 (up to 11.06 wt %), La2O3 (up to 4.90 wt %),
Nd2O3 (up to 4.72 wt %), and P2O5 (up to 29.55 wt %). In many cases, minor concentrations
of K2O and Na2O were detected (up to 0.99 and 0.83 wt %, respectively). It is notable that all
analyzed APS minerals contained small amounts of fluorine (up to 1 wt %). Chemical variations
of the APS minerals are summarized in Table 2 and shown in Figure 6a–d. The most common
compositions include woodhouseite and svanbergite. Crandallite and florencite are rare. Woodhouseite
is the most common APS and it was present with near end-member compositions, although
Ba- and Sr-rich varieties were also identified. The average compositions of woodhouseite and
svanbergite correspond to the formulae Ca0.63Ba0.05Na0.06Sr0.20Ce0.02Al3.07(SO4)0.87(PO4)1.17 and
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Sr0.37Ca0.20Ba0.07Ce0.03Al3.08(SO4)0.87(PO4)1.16, respectively. Crandallite is usually Sr-rich, whereas
florencite–(Ce) was also identified (Table 2).
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Figure 6. Chemical variation diagrams of alunite and APS minerals from the Konos Hill area, NE
Greece. (a) Ca + Sr + Ba + Ce + La vs. P plot (the line represents the occupancy of divalent and trivalent
cations in the A site relative to trivalent anions in the X site); (b) Ca + Sr + Ba + Ce + La vs. K + Na plot
(the line represents the occupancy of monovalent relative to divalent cations in the D site); (c) Na vs.
K in A sites; (d) Ternary K–Na–(Sr + Ba + Ca) plot of alunite supergroup minerals; (e) Back-scattered
electron image showing a zoned alunite crystal. Numbers indicate EPMA analytical spots; (f) Profile
depicting the chemical variations of alunite in terms of Al2O3, Na2O, and K2O (wt %). Numbers on the
x axis represent the analyzed spots shown in (e).
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Table 2. Representative EPMA data of APS minerals from the advanced argillic alteration zone
of the Konos Hill prospect, NE Greece. 1: Ba–rich woodhouseite; 2–4: Ca–rich svanbergite; 5:
Ce–Ba–Ca–rich svanbergite; 3,7,8: Sr–rich woodhouseite; 6: Ba–rich svanbergite; 9: Sr–rich crandalite;
10: florencite–(Ce).

wt % 1 2 3 4 5 6 7 8 9 10

Al2O3 33.59 34.10 34.22 35.41 36.67 34.88 34.48 38.09 32.79 32.31
FeO 0.09 0.06 bd bd 0.10 bd bd bd bd 0.07
CaO 10.96 3.36 7.11 3.93 2.11 0.97 5.86 5.91 5.94 0.66

Na2O 0.61 0.28 0.08 0.31 0.48 0.27 0.36 0.83 0.12 bd
K2O 0.48 0.37 0.21 0.59 0.99 0.78 0.74 0.89 0.43 0.11
BaO 1.47 1.52 0.87 1.61 2.10 3.60 1.09 1.06 0.97 3.92

La2O3 0.50 0.07 bd 0.19 0.43 0.91 bd bd bd 4.90
Ce2O3 1.42 0.32 bd 0.88 2.48 2.53 1.14 bd bd 11.06
NdO3 0.10 0.34 bd 0.10 1.45 3.48 0.30 bd bd 4.72
SrO 0.83 9.54 7.63 8.41 7.45 6.33 5.37 4.54 7.82 3.30
PbO bd bd bd 0.05 0.05 bd bd 0.22 bd bd
SO3 15.33 14.35 11.81 15.95 14.98 14.32 13.63 20.31 3.19 3.63

P2O5 16.72 17.35 21.57 18.26 19.27 18.53 20.26 15.58 29.55 23.03
F 0.49 0.97 0.51 0.25 0.98 0.17 0.67 0.83 0.56 0.41

Total 82.59 82.63 84.10 85.94 89.54 86.83 83.92 88.35 81.41 88.12

apfu 11 (O)

Al 3.022 3.034 3.037 3.098 3.067 3.139 3.060 3.180 2.996 3.076
Fe 0.007 0.004 0.000 0.000 0.006 0.000 0.001 0.000 0.000 0.005
Ca 0.858 0.282 0.574 0.313 0.161 0.080 0.473 0.445 0.488 0.057
Na 0.096 0.042 0.011 0.045 0.067 0.040 0.052 0.113 0.012 0.000
K 0.053 0.036 0.019 0.056 0.090 0.076 0.071 0.081 0.04 0.011
Ba 0.047 0.046 0.027 0.047 0.058 0.108 0.032 0.029 0.029 0.119
La 0.015 0.002 0.000 0.005 0.011 0.025 0.000 0.002 0.000 0.146
Ce 0.042 0.010 0.000 0.024 0.006 0.071 0.031 0.000 0.000 0.528
Nd 0.003 0.010 0.000 0.003 0.037 0.095 0.008 0.000 0.000 0.136
Sr 0.028 0.433 0.333 0.362 0.306 0.280 0.235 0.186 0.340 0.155
Pb 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.004 0.000 0.000
S 0.934 0.841 0.678 0.888 0.904 0.821 0.770 1.080 0.199 0.221
P 1.081 1.148 1.376 1.147 1.158 1.198 1.292 0.985 1.822 1.741
F 0.121 0.239 0.120 0.058 0.216 0.042 0.156 0.113 0.129 0.106

bd: below detection; apfu: atoms per formula unit.

The APS minerals studied here comprise solid solution members of the beudantite and
plumbogummite subgroups. They plot along the 1:1 line in Figure 6a and display a progressive
substitution of PO4

3− by SO4
2−, coupled with a substitution of monovalent (K, Na) by divalent (Ca,

Ba, Sr) cations in the D site. Compositions that plot further below this line display a significant
variation in P, whereas compositional variations in the D site are limited. This points towards
protonation of one of their trivalent anions to establish charge balance. Moreover, the APS minerals
that are devoid of monovalent cations (P > 1 apfu) are also characterized by a 1:1 substitution in the
monovalent-bearing D site by divalent cations (Figure 6b), whereas compositions that plot below
this line indicate significant vacancies due to charge balance. In addition, APS compositions that
exhibit elevated phosphate contents are, according to Scott [62], consistent with the appearance
of trivalent cations substituting in the A site of the minerals. This is mirrored by the presence of
Ce-rich varieties such as florencite–(Ce) in Konos Hill. This substitution is in agreement with the
findings of Voudouris [23] and Voudouris and Melfos [29], who studied the APS mineralogy of the
Kassiteres–Sapes and Melitena prospects, respectively.

Alunite and natroalunite are the most common representatives of the supergroup and are found
as minor constituents in the vuggy silica in both quartz + zunyite + kaolinite ± pyrophyllite and
quartz + diaspore + kaolinite ± pyrophyllite assemblages, as well as in the transitional zone to
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the sericitic alteration. They are generally found in tabular-shaped or rhombohedral crystals that
replaced earlier formed phenocrysts (e.g., feldspars, Figure 4g) or mafic minerals in the host rocks.
However, pseudocubic shapes were also observed (Figures 4e–h and 5). In other cases, tabular
alunite forms in small veinlets crosscutting the silicified matrix. Many alunites are K-rich, with K2O
values reaching up to almost 9 wt % (Table 3). This corresponds to an average chemical formula
of K0.39Na0.30Ca0.01Ba0.01Al3.06(SO4)1.96(PO4)0.01. Sodium-rich alunite is more common and usually
forms euhedral, tabular-shaped crystals with sizes up to 500 µm. In this case, the Na2O content
is higher than K2O and reaches up to 5.51 wt %, corresponding to the average formula Na0.61

K0.35Ca0.01Al3.01(SO4)1.98(PO4)0.01. Substitution between Na and K in the D sites of alunite is almost
ideal, leading to complete substitution of K by Na (Figure 6c). However, the majority of the analyzed
compositions deviate from the ideal 1:1 substitution, probably reflecting vacancies in the structure,
as proposed by Scott [62] and in accordance with the findings of Voudouris [23]. Moreover, a few
analyses plot above the 1:1 line and probably reflect a partial excess of K or Na in the D sites. Many
grains of alunite carry traces of CaO, FeO, SrO, BaO, La2O3, Ce2O3, and Nd2O3 (values up to 0.38,
0.46, 0.38, 0.75, 0.42, 0.36, and 0.33 wt %, respectively). In some cases, oscillatory zoning is present in
alunite crystals, as shown by alternations of concentric K- and Na-rich bands in Figure 6e,f. Many
alunite grains, especially the tabular-shaped, zoned natroalunite, include cores of APS minerals, mostly
woodhouseite or svanbergite.

Table 3. Representative EPMA data of members of the alunite–natroalunite solid solution from the
advanced argillic alteration zone at the Konos Hill prospect, NE Greece.

wt % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Al2O3 37.90 37.66 39.47 36.54 37.19 37.40 37.65 36.80 36.96 38.08 42,41 36.95 38.24 40.44 39.95
FeO 0.46 0.30 0.23 0.12 0.28 0.17 0.02 0.10 0.07 bd 0.01 bd bd bd 0.12
CaO 0.01 0.02 0.05 0.38 0.03 0.07 0.02 bd bd 0.09 0.10 0.01 0.05 0.00 0.05

Na2O 4.63 5.12 2.57 3.07 4.58 5.01 2.79 1.78 1.97 5.51 5.31 1.97 1.64 1.33 2.18
K2O 3.52 3.59 3.02 4.91 3.90 3.41 5.75 7.10 6.86 2.6 1.95 7.02 4.71 4.44 3.69
BaO 0.15 0.37 0.21 0.21 0.10 0.21 0.16 bd 0.12 0.11 0.17 0.46 0.75 0.30 0.38
SrO bd bd 0.28 0.38 0.12 bd 0.19 bd bd 0.15 0.22 0.05 0.24 bd 0.07

La2O3 bd bd bd bd 0.37 0.25 0.26 bd bd bd 0.19 0.25 bd 0.42 bd
Ce2O3 0.11 bd 0.35 bd 0.13 0.11 bd bd 0.19 bd bd 0.36 bd bd 0.15
Nd2O3 bd bd bd 0.28 bd bd 0.33 bd bd bd bd 0.27 0.25 0.11 bd

SO3 34.74 35.16 36.72 34.05 34.24 34.57 34.73 33.69 34.52 34.46 35.48 33.66 33.93 36.46 35.05
Total 81.61 82.32 82.90 79.97 80.94 81.28 81.90 79.49 80.69 81.00 85.81 81.01 79.89 83.52 81.64

apfu 11 (O)

Al 3.218 3.177 3.238 3.106 3.198 3.190 3.218 3.231 3.302 3.241 3.391 3.229 3.223 3.309 3.391
Fe 0.028 0.018 0.014 0.01 0.017 0.01 0.000 0.006 0.004 0.000 0.000 0.000 0.000 0.000 0.007
Ca 0.001 0.001 0.004 0.029 0.002 0.005 0.001 0.000 0.000 0.007 0.007 0.001 0.004 0.000 0.004
Na 0.646 0.708 0.317 0.335 0.649 0.704 0.392 0.258 0.279 0.772 0.701 0.283 0.228 0.181 0.296
K 0.324 0.332 0.298 0.447 0.363 0.315 0.532 0.675 0.644 0.240 0.169 0.664 0.430 0.400 0.331
Ba 0.004 0.010 0.006 0.006 0.002 0.004 0.004 0.000 0.003 0.004 0.004 0.013 0.021 0.008 0.010
Sr 0.000 0.000 0.011 0.006 0.006 0.000 0.008 0.000 0.000 0.005 0.009 0.002 0.010 0.000 0.003
La 0.000 0.000 0.000 0.000 0.022 0.007 0.007 0.000 0.000 0.000 0.005 0.007 0.002 0.011 0.000
Ce 0.003 0.000 0.012 0.000 0.010 0.003 0.000 0.000 0.005 0.000 0.001 0.010 0.000 0.001 0.004
Nd 0.000 0.000 0.000 0.000 0.003 0.000 0.009 0.000 0.000 0.000 0.000 0.007 0.007 0.003 0.000
S 1.878 1.889 1.789 1.716 1.879 1.891 1.890 1.894 1.904 1.868 1.816 1.873 1.738 1.855 1.847

bd: below detection; apfu: atoms per formula unit.

4.2.4. Kaolinite–Pyrophyllite

Kaolinite and pyrophyllite are present as minor constituents and usually form small,
acicular aggregates that accompany quartz–alunite–APS–diaspore and quartz–alunite–zunyite–APS
assemblages. Their presence, in addition to microscopic examination, was verified by X-ray diffraction
and SWIR investigations.
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4.3. Bulk Ore Geochemistry

Bulk analyses of advanced argillic-altered samples reveal (Table 4) low concentration values of
Au and Ag, which reach up to 0.36 and 0.22 ppm, respectively. Pb concentration values reach up to
122 ppm, while a relative enrichment is also remarked in chalcophile elements such as Mo (up to
19 ppm), Bi (up to 13 ppm), and Se (up to 26 ppm), which mirrors the close genetic relation of the
lithocap to the underlying porphyry-style mineralization. Finally, Ga and Sn are also enriched, with
values up to 17 and 18 ppm, respectively.

Table 4. Metallic element concentrations of samples from the high-sulfidation mineralization at the
Konos Hill prospect, NE Greece (values in ppm).

Sample 1 2 3 4 5 6 7 8

As 15 18 34 18 4 6 67 66
Ag 0.19 0.16 0.13 0.23 0.22 0.04 0.12 0.13
Au 0.04 0.02 0.36 0.19 0.04 0.03 bd 0.05
Cu 10 7 7 5 32 9 14 13
Bi 2.03 2.97 2.42 2.08 6.79 1.79 13 9.22

Mo 3.56 2.36 2.37 3.76 19 5.95 1.30 4.55
Se 2.50 4.40 14 5.90 26 6.50 2.50 11
Te 0.23 0.12 0.16 0.21 0.71 0.16 0.78 1.83
Pb 110 116 122 93 169 59 93 87
Zn 4.40 2.50 2 4.30 5.80 7.40 12 6.60
Sb 5.07 1.88 1.93 5.34 4.89 0.56 4.91 7.35
Ga 5.12 4.22 6.72 11 14 17 17 16
Sn 3.70 2.10 2 1.60 4.60 18 1 2.50

bd: below detection; Au detection limit: 0.02 ppm.

4.4. Genetic Implications

Advanced argillic lithocaps form in higher topographic levels from the condensation of magmatic
vapors into surface waters, and slightly postdate the potassic alteration in the porphyry environment
and the advanced argillic alteration in the high sulphidation environment [8,63]. Field and
mineralogical data from the Konos Hill area are consistent with the concept of hypogene formation
of the advanced argillic alteration. This is in agreement with the findings of Voudouris [23] and
Voudouris and Melfos [29], who described similar assemblages from advanced argillic-altered rocks in
the Kassiteres–Sapes and Melitena districts, respectively. The occurrence of both advanced argillic and
transitional to sericitic alteration zones in the Konos Hill area is similar to other porphyry/epithermal
transitional systems (e.g., Lepanto-Far Southeast, Philippines [5]; Asarel porphyry Cu deposit,
Bulgaria [64]), and is the result of different degrees of hydrolytic alteration of the host rocks.

The presence of zunyite in the Konos Hill lithocap [35] reflects the availability of F and Cl in
the hydrothermal fluid and can be used to constrain the conditions of formation of the studied
assemblages. Estimations can be made based on similar advanced argillic alteration assemblages
reported in the literature. A low-temperature limit is set by the coexistence of zunyite with pyrophyllite,
which according to Reyes [65,66], is not stabilized at temperatures below 200 ◦C. Based on isotopic
and microthermometric data, Watanabe et al. [10] reported formation temperatures of 260 to 350 ◦C
for an assemblage of zunyite + topaz + diaspore + pyrophyllite in the Kobui area of Hokkaido,
Japan. A similar temperature range (~250 to 380 ◦C) was reported for the assemblage of topaz +
alunite + diaspore + APS + pyrophyllite from the Koryphes Hill area, where topaz, not zunyite,
is the F-carrier [24]. Based on similarities between the studied occurrence and the Hugo Dummett
porphyry Cu–Au deposit, a T range of 280–350 ◦C is likely, based on the data of Khasgherel et al. [15].
Further constraints can be made since alunite at Konos Hill contains APS minerals, which according
to Hedenquist et al. [5] are formed in a high-temperature environment at the margins of a magmatic
intrusion, compared to APS-free alunite. Chemical zonation in the alunite supergroup minerals in the
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current study, according to Stoffregen and Alpers [12], reflects fast changes in the physicochemical
variations in the hydrothermal fluid (decrease in pH and temperature). In addition, the widespread
presence of Na-rich alunite versus its K-rich counterpart may suggest either higher temperatures of
formation or a higher concentration of Na during the formation of the assemblages. This hypothesis is
in accordance with the findings of Chang et al. [67], who stated that high Na/(Na + K) ratios in alunites
from the Mankayan area in the Philippines mark the proximity of the assemblage to the intrusive
body. In addition, the chemical composition (e.g., Sr/Pb and La/Pb ratios) of alunite can be used as
exploration tools, since Pb is highly soluble in higher temperatures and is preferably incorporated in
the alunite structure in distal assemblages, where the hydrothermal fluid is cooler, as is the case for the
Mankayan deposit [67]. However, at the Melitena prospect, Pb-rich APS minerals are associated with
the porphyry-style mineralization [29]. The studied alunites from the Konos Hill prospect are Pb-free,
similarly to alunites from the broader Kassiteres–Sapes district [23], thus precluding any application of
Pb as an exploration tool, according to Chang et al. [67]. In contrast, the elevated concentrations of Sr
and REE in the studied alunite supergroup minerals, as expressed by the presence of woodhouseite
and REE-bearing APS minerals (e.g., florencite–Ce) suggest the proximity to the causative intrusion
and could be used as an exploration tool in the study area.

Bulk ore analyses from lithocap samples yielded low concentrations of Au and Ag, but significant
enrichment in chalcophile elements such as Mo, Se, Bi, and Pb, which were probably introduced after
the early event of acid leaching. Similar element anomalies are also reported from the advanced argillic
alteration lithocap of Agia Barbara, in the broader Kassiteres–Sapes district, by Voudouris [23].

The fact that advanced argillic zones in the Konos Hill area display a more-or-less E–W trend,
which follows the major tectonic orientation of the granodiorite emplacement, suggests that the SO2-
and HCl-bearing magmatic vapor may have ascended through these fault planes.

Close to the paleosurface, it condensed into surficial water and formed the advanced argillic
alteration assemblages in a typical HS environment, in accordance with the findings of Holley et al. [68],
who studied the Veladero Au–Ag HS epithermal mineralization. Moreover, the presence of the
Konos Hill lithocap suggests that detailed mapping and mineralogical studies in hypogene advanced
argillic alteration zones are critical, due to their common cogenetic and close spatial relations with
porphyry-style mineralization in many prospects in Greece [23,29]. The presence of F-bearing phases
such as zunyite, alunite, APS minerals, diaspore, and pyrophyllite at Konos Hill provides a potential
vector towards possible hidden intrusions that may host porphyry-style mineralization.

5. Conclusions

The Konos Hill prospect represents a porphyry system genetically related to an intensively
altered granodiorite intrusion and is overprinted by deep-level high-sulfidation mineralization.
Alteration styles recognized include deep sericite and sodic–sericite assemblages associated
with a quartz stockwork, which is overprinted by hypogene advanced argillic alteration.
Quartz–alunite–APS–diaspore–kaolinite ± pyrophyllite and quartz–alunite–APS–zunyite–kaolinite
± pyrophyllite assemblages predominate. Transitional zones are typified by the presence of sericite.
Electron microprobe data reveal wide variations in the composition of the alunite supergroup minerals.
Alunite and natroalunite are widespread and are associated with APS minerals, which comprise
members of the beudantite and plumbogummite subgroups and usually form in the cores of Na-rich
alunite crystals. Common compositions include woodhouseite and svanbergite, whereas crandallite
and florencite are quite rare. Mineralization in the lithocap is characterized by a relative enrichment
in chalcophile elements such as Bi, Mo, and Se, supporting the hypothesis of a spatial and temporal
connection between the lithocap and the underlying porphyry-style mineralization. The presence
of zunyite indicates that a F- and Cl-vapor ascended from the intrusive body under decreasing
temperature conditions. Based on paragenetic relations and available literature data, a temperature
of formation between 280–350 ◦C is likely for the studied assemblages. Zunyite (or other F-bearing
phases, such as topaz) along with the presence of diaspore, pyrophyllite, and Sr- and REE-bearing
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APS minerals, could be used as an exploration tool, since they mark the proximity of the hypogene
advanced argillic alteration zones to the porphyry environment.
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