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Abstract: Illite is one of the main components in coal slime water and it sometimes makes the water
extremely difficult to clarify. In this study, the aggregation mechanism of coal and illite particles
was investigated using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and
settling experiments of slime water containing coal and illite. The results show that electrostatic
energy plays a dominant role and manifests repulsive force in the long-range (>4 nm). However,
the leading role becomes a hydrophobic force determined by the polar surface interaction energy
in the short-range (<4 nm). A coagulant (Ca2+) can lower the surface electric potential to make all
particles easier to coagulate, while the surface hydrophobicity of coal and illite determines whether
the particles aggregate. Cationic polyacrylamide (CPAM) can promote the sedimentation of particles
flocs effectively and makes the supernatant clearer due to attractive electrostatic forces while anionic
polyacrylamide (APAM) flocculates particles through the bridge mechanism. Although the hydration
shell on the hydrophilic surface of illite appears to be harmful for either coagulation or flocculation,
illite can accelerate sedimentation when it is attached to the coal due to its higher density.

Keywords: illite; coal slime water; coagulation; extended DLVO theory

1. Introduction

Coal slime water (slurry) is the waste-water produced during the wet processing of coal
preparations. In the slurry, particles of rock, clay and coal are too small to float or sink [1–3]. It was
reported that clay minerals [4], such as montmorillonite, kaolinite and illite [5–8], have a detrimental
effect on coal slime dewatering and cleaning [9–11]. However, the coal slime water must be clarified
and recycled in order to save water resources and reduce environmental pollution [12–14]. Hence, it is
vital to understand how clays affect the aggregation and sedimentation of coal particles in order to
make the clarification process more efficient.

It was reported in reference [7] that for coal-kaolinite suspensions, the addition of Ca2+ decreases
the repulsive electrostatic force between the kaolinite particles, thus allowing the attractive van der
Waals force to become the dominant interaction force. This allows the coal particles to aggregate with
each other easily, as well as with kaolinite particles. This was verified by Gui et al. [15] using atomic
force microscopy. Their study showed that the interaction forces between coal and kaolinite particles
changed from being weakly repulsive to strongly attractive and increased monotonously, resulting
in the occurrence of the kaolinite-coating phenomenon. As aggregation does not occur between
kaolinite particles, kaolinite-coating may cause coal particles difficulty in settling and aggregating.
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In coal-montmorillonite suspensions, a clay platelet network is formed by montmorillonite particles
in a “house of cards” model, and coal particles captured by the network then settle together with
montmorillonite particles [8]. These works indicate that clays affect the coagulation and sedimentation
of coal slime water depending on the added agents.

Illite content in slime water can be up to 20% of all clay particles and it seriously affects the
sedimentation of the slime water [11]. However, while most researchers have investigated the
impact of kaolinite or montmorillonite on coal slime water sedimentation, there are only a few
studies that examine the impact of illite. Therefore, studying the influence of illite on slime water
treatment is an important guiding significance in practical works. In this study, the coagulation of
coal and illites particles at different dosages of CaCl2 (as the coagulant) was studied according to
the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and experiments. Additionally,
flocculation-sedimentation experiments were conducted to understand the flocculation mechanism of
particles by using different kinds of polyacrylamide.

2. Materials and Methods

2.1. Materials and Instruments

Coal samples were provided by the Xuehu Coal Preparation Plant (Yongcheng, China) and coal
slime water was prepared by using high purity minerals, the methodology of which is provided
in Section 2.2. In the experiment, calcium chloride was used as the cationic coagulant; cationic
polyacrylamide (CPAM; molecular weight 10,000,000; charge density 40%; with an effective pH range
of 3–8); and anionic polyacrylamide (Xinbang Environmental Protection Technology Co., Ltd., Xinxiang,
China) (APAM; molecular weight greater than 10,000,000; charge density 25%; and an effective pH
range of 7–12) were used as flocculants. Illite was provided by an online supplier, and its purity and
mean diameter were 91.30% and 18 µm, respectively.

The particle size, zeta potentials, and contact angles with liquid medium were analyzed by a LS
100Q laser particle size analyzer (Beckman Coulter, Inc., Brea, CA, USA); a ZetaPALS high-resolution
zeta potential analyzer (Brookhaven Instruments Corporation, Holtsville, NY, USA); and a optical
contact angle measuring instrument DSA100 (Kruss GmbH, Hamburg, Germany), respectively. A X-ray
Diffraction D8 Advance (Bruker AXS GmbH, Madison, WI, USA) was used to determine the purity of
the illite. Supernatant turbidities were determined using a WGZ-1A turbidity meter (Shanghai Xinrui
Instrument Co., Ltd., Shanghai, China).

2.2. Experimental Methods

2.2.1. Preparation of Coal Slime Water

After drying, grinding, screening and float-and-sinking in heavy-fluid (1.40 kg/L) consisting of
carbon tetrachloride and benzene, a high purity fine coal was obtained. This was then dried at 60 ◦C
for 3 h. The ash content of the coal sample was 3.74% and its average particle size was 36 µm.

In order to understand the aggregation mechanisms of coal-coal, illite-illite and coal-illite particles,
the coal sample and illite were mixed with deionized water (conductivity 93.1 µs/cm) to prepare three
kinds of coal slime water: (1) a slurry containing coal only; (2) a slurry containing illite only; and (3) a
slurry containing both coal and illite at a mass ratio of 2:1. All concentrations of were set to 60 g/L and
were used after soaking for half an hour.

2.2.2. Theoretical Calculation of Particle Aggregation

The XDLVO theory suggests that the aggregation or dispersion of particles is determined by
the total action potential energy VT. From a thermodynamic standpoint, the attraction or adhesion
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between two interacting surfaces occurs when VT is negative; repulsion occurs when VT is positive.
The VT is given by Van Oss [16] as:

VT = VE + VW + VH (1)

where VE is the electrostatic double layer repulsive energy; VW is the van der Waals attractive energy;
and VH is the polar surface interaction energy (hydrophobic energy). The calculation formulas of
energies are shown in Table 1.

Table 1. XDLVO theoretical calculation formulas.

Equation No. Formula Literature
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[16]

2.2.3. Coagulation and Flocculation-Sedimentation of Coal Slime Water

Dosages of 0.1 and 10 mM CaCl2 solution were added respectively to every 100 mL sample of
each kind of slime water prepared in Section 2.2.1. After mixing thoroughly, they were allowed to settle
for 2 h, and the clarification layer height recorded every 10 min. Finally, the turbidity of supernatant
0.5 cm from the free surface was determined.

Similarly, the same dosages of CaCl2 solution were added to every 100 mL of slime water.
In addition, the CPAM solution was added with a dosage of 4.5 mg/L. After mixing, it settled for
10 min with the clarification layer height recorded every 30 s before finally measuring the supernatant
turbidity was measured. These experiments were then conducted again, with the APAM substituting
the CPAM.

3. Results and Discussion

3.1. Interaction between Particles

The contact angles of three kinds of liquid (water, formaldehyde and glycerol) on solid samples
(coal and illite) are shown in Table 2. These were used to calculate the As and solid surface dispersion
parameters (rS

d, rS
+, rS

-) according to Equation (Ib) (where the liquid used was deionized water, and
the Hamaker constant was 4.84 × 10−20 J [20]) and Equation (IIIb) listed in Table 1. The zeta potentials
of the samples under different calcium ion concentrations are shown in Table 3, and were used to
calculate VE. The liquid surface energy parameters used in Equation (IIIb) are given in Table 4; the
h0 (= 0.158 nm) is the minimum separation distance due to the Born repulsion [21], which allows for
the calculation of VW and VH. These calculations allow the relationship between the three potential
energies (VE, VW and VH) and the particle distance to be obtained.
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Table 2. The contact angles of coal and illite in three liquid mediums at pH 8.2.

Particle
Contact Angles, o

Water Formaldehyde Glycerol

Coal 79.0 ± 3.8 75.3 ± 4.1 77.8 ± 3.0

Illite 25.5± 6.5 20.6 ± 4.9 17.5 ± 5.9

Table 3. The zeta potential of samples under different calcium concentration at pH 8.2.

Concentration of Calcium, mM/L ζcoal, mV ζillite, mV

0 –19.33 ± 0.49 –21.93 ± 0.88

0.1 –14.98 ± 1.32 –13.32 ± 2.04

10 –6.41 ± 1.41 –7.91 ± 1.25

Table 4. The surface energy parameters of liquids (mJ/m) [8].

Liquid rL rL
d rL

+ rL
−

Water 72.8 21.8 25.5 25.5

Glycerol 64 34 4.92 57.4

Formaldehyde 58 39 2.28 39.6

As shown in Figure 1, the van der Waals attractive energy (VW) between all particles is always
negative, which is beneficial for the coagulation of particles. However, when the particle distance is
greater than 4 nm, it has little influence on collision and coagulation as its absolute value is much
lower than both that of the electrostatic energy (VE) and the polar surface interaction energy (VH).
This was also shown in the works of Nabweteme [22].

The VH depends strongly on surface properties of the particles. It was shown that the VH between
coal particles displayed hydrophobic attraction energy and is favorable for coagulation; while the VH

between the coal-illite and illite-illite particles manifest repulsive interaction energies. Furthermore,
the VH increased sharply at distances shorter than 60 nm and plays a leading role in the determination
of the aggregation state of the particles. These results were similar to the particle interaction force of
coal slurry containing montmorillonite [8].

The VE is related to the solution medium. The cationic coagulant can reduce the absolute values
of the particle surface potentials by compressing the electric double layer, which is beneficial to the
aggregation of the particles. The VE has a greater effect on the long range, and it displayed a dominant
influence when the particle spacing was greater than 2 nm.

With regard to the interaction energies between coal particles, it is known that the zeta potential
decreases when the calcium ion concentration is 10 mM and the VT between the coal particles is
negative, which results from the VE and VH when the distance is greater than 200 nm. The VE increases
with the reduction of particle spacing, which causes the VT to change from negative to positive and the
appearance of a maximum energy barrier at a distance of 30 nm. However, the VT becomes negative
again quickly due to the rapid increase of the VH, which is beneficial to coagulation. Thus, coal
particles may aggregate stably if they can overcome the energy barrier and become close to each other
by providing enough momentum. When the calcium ion concentration is 0.1 mM, the tendency of
the VT is similar and the dominant force is also VE, whereas the energy barrier is greater than that of
10 mM.

In the present work, due to the hydrophilic surfaces (which mainly react at short-range) and
the electrostatic negativity (which mainly work at long-range) of the illite particle surfaces, the VT

values of coal-illite and illite-illite are always shown as repulsive forces, which is not conducive to
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aggregation and makes it difficult to settle slime water mixed with illite. The repulsive forces between
the hydrophilic surface of illite can be attributed to the hydration layer, where hydration shells near
hydrophilic surfaces immersed in water have been reported [23,24]. When two hydrophilic surfaces
are close to each other, the shell tends to protect itself from being broken, so repulsive forces appear.
These hydrophilic repulsive forces can be much stronger than DLVO forces in the short-range [25].

It should be emphasized that these calculation results achieved using the XDLVO theory cannot
absolutely determine whether particles coagulate. Particle agglomeration is also related to the particle
hydraulic effect, which means that particles may adhere to each other only if the kinetic energy
provided by fluid flow is large enough to overcome the repulsive energy.

Minerals 2017, 7, 30  5 of 10 

 

repulsive forces appear. These hydrophilic repulsive forces can be much stronger than DLVO forces 
in the short-range [25]. 

It should be emphasized that these calculation results achieved using the XDLVO theory 
cannot absolutely determine whether particles coagulate. Particle agglomeration is also related to 
the particle hydraulic effect, which means that particles may adhere to each other only if the kinetic 
energy provided by fluid flow is large enough to overcome the repulsive energy. 

 

 

 
Figure 1. Predicted potential energy between particles with different calcium ion concentrations 
(coagulant) by XDLVO: (a) coal-coal; (b) illite-illite and (c) coal-illite. The absence of “Ca2+” in the 
legend means that no coagulant was added. 

  

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

In
te

ra
ct

io
n 

en
er

gy
, 1

0-1
7

J

Separation distance, nm

V_W V_H
V_E, CaCl2 10 mg/L V_E, CaCl2 100 mg/L
V_T, CaCl2 10 mg/L V_T, CaCl2 100 mg/L

VW
VE, Ca2+  0.1 mM
VT, Ca2+  0.1 mM

(a)

VH
VE, Ca2+  10 mM
VT, Ca2+  10 mM

-0.05

0.15

0 100 200 300

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

In
te

ra
ct

io
n 

en
er

gy
, 1

0-1
7

J

Separation distance, nm

V_W V_H
V_E, CaCl2 10 mg/L V_E, CaCl2 100 mg/L
V_T, CaCl2 10 mg/L V_T, CaCl2 100 mg/L

VH
VE, Ca2+  10 mM
VT, Ca2+  10 mM

(b)
VW
VE, Ca2+   0.1 mM
VT, Ca2+   0.1 mM

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

In
te

ra
ct

io
n 

en
er

gy
, 1

0-1
7

J

Separation distance, nm

V_W V_H
V_E, CaCl2 10 mg/L V_E, CaCl2 100 mg/L
V_T, CaCl2 10 mg/L V_T, CaCl2 100 mg/L

VH
VE, Ca2+ 10 mM
VT, Ca2+  10 mM

(c) VW
VE, Ca2+  0.1 mM
VT, Ca2+ 0.1 mM

Figure 1. Predicted potential energy between particles with different calcium ion concentrations
(coagulant) by XDLVO: (a) coal-coal; (b) illite-illite and (c) coal-illite. The absence of “Ca2+” in the
legend means that no coagulant was added.
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3.2. Coagulation Sedimentation of Particles

All the experiments were conducted at a neutral pH. The results show that the pH wavered
around 8.2 very slightly and there were no obvious changes when coagulants or/and flocculants
were added.

The change rate of the clarification layer height represents the sedimentation velocity of the
particles. As shown in Figure 2, the change of the calcium ion concentration had no remarkable
effect on the sedimentation rate of all the groups; however, it is interesting that the sedimentation
rate of the slime water containing illite and coal was superior to that of the others. This indicates
that illite particles (2600–2900 kg/m3) may adhere to coal (less than 1400 kg/m3) and accelerate the
sedimentation rate by improving the average density of aggregation. Although this seems unlikely
due to the strong repulsive forces between coal and illite (as shown by the calculation results in
Figure 1c), similar phenomena were observed in the coal-kaolinite (calculated force attractive) and
coal-montmorillonite (calculated force repulsive) systems [8]. This is possibly due to the adhesion
of the coal surface and clay platelet edges as Marek [26] reported, where clay platelets attach to
hydrophobic (but not hydrophilic) surfaces by their edges as a result of the presence of nano-bubbles
existing on the edges of the clay crystals. The deviation between the calculations and experiments
was caused by using the general contact angles of illite on liquids. However, as illites infrequently
attach to each other due to the repulsion forces between the hydrophilic flat and the low frequency of
collision from edge to edge, they settled down more slowly (Figure 2). Coal particles tended to settle
more quickly than illite as they can adhere to each other due to hydrophobic attractive forces. When
sedimentation experiments on the three kinds of slurry in the absence of calcium were carried out, no
clarification layer could be observed. When comparing these results to Figure 2, it demonstrates that a
coagulant can improve particle aggregation by decreasing the electrostatic repulsion.
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Figure 2. The sedimentation rate of particles with different calcium ion concentrations, where
the interface height is the distance from the free surface to the interface between the supernatant
and suspension.

Supernatant turbidity after sedimentation is shown in Figure 3. It illustrates that the supernatant
turbidity decreased to different degrees with the increase in coagulation (CaCl2), which demonstrates
that a coagulant can increase the adhesion probability by decreasing the electrostatic repulsive forces
of the particles. For the three different water samples, the order of turbidity, illite-illite > coal-illite >
coal-coal, was exactly consistent with the theoretical results calculated by the XDLVO theory. This
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result proves that the VH plays a leading role in the coal-illite system. Although illite may be attached
to coal by its edge, it could not be captured fully and it made the supernatant more turbid than the
pure coal slurry.
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Figure 3. The supernatant turbidity of coal slime water after sedimentation using different agents; the
dosage of PAM was 4.5 mg/L, if available.

3.3. Flocculation Sedimentation of Particles

The curves presented in Figure 4a demonstrate that the sedimentation velocity of all particles
increased significantly and sedimentation times were shortened from more than 120 min (Figure 2) to
10 min after adding the CPAM, while APAM presents little influence (Figure 4b). This may be primarily
attributed to electrostatic forces. As the particles carry negative charge over the studies, minerals can
be attracted to the cationic group of CPAM and repulsed by the negative charge group of APAM. As the
PAMs are macromolecules, large flocs were formed when flocculation was conducted, which means
that the sedimentation velocity can be greatly improved. Furthermore, the shortened sedimentation
time could be responsible for the relatively higher supernatant turbidity when adding CPAM, both
in the coal-coal and coal-illite samples shown in Figure 3. Figure 4a also shows the sedimentation
velocity order of illite-illite > coal-illite > coal-coal, which can be attributed to the different densities of
the minerals we mentioned in Section 3.2.

The reported results that APAM is effective when used in combination with metal ions [10,27]
did not agree with the results shown in Figure 4, where additional sedimentation experiments were
carried out in conditions with added calcium (10 mM) and APAM (1.0, 1.5, 2.0 mg/L). In the pure
coal and mixed coal-illite samples, the optimal supernatant turbidities (4.6 NTU for coal-coal and
9.8 NTU for coal-illite) were obtained when 1.5 mg/L APAM was added, with the turbidity increasing
as more APAM was added. This demonstrates that calcium ions acted as bridges between particles
and the anionic groups of flocculant when a suitable dosage of APAM was used; excessive APAM may
increase repulsive electrostatic forces, which may be adverse to flocculation [26], as Figure 4b shows.
Of interest is the fact that no obvious sedimentation was observed in the pure illite samples in all of
the additional experiments. It appears that the hydration shell on illite can stop the bridge mechanism
of the illite-calcium-anionic group of APAM.
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Figure 4. The sedimentation rate of particles when both calcium and PAM were added: (a) cationic
PAM; (b) anionic PAM. The dosage of the two kinds of PAM was 4.5 mg/L.

4. Conclusions

Particle surface hydrophobicity plays a predominant role in sedimentation. Coal particles are
likely to settle due to hydrophobicity, while illite particles are difficult to coagulate due to hydrophilicity.
However, illite particles may adhere to coal particles on their hydrophobic edges, and their higher
density is conducive to improving the settling velocity of coal slurry. The repulsive electrostatic forces
play an important role when the particle distance is greater than 4 nm, which is detrimental to particle
aggregation. Increasing the concentration of cations can increase the probability of particle adhesion as
it reduces the negative charge on the particle surface. CPAM can attract particles with negative charges
and form big flocs to accelerate sedimentation, while adsorption bridging is the main mechanism for
promoting particle flocculation with APAM. Although the hydration shells on the hydrophilic surfaces
of illite appear to be harmful for either coagulation or flocculation, illite can accelerate sedimentation
when attached to coal particles due to its higher density.
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Nomenclature

A
Hamaker constant, A132 represents the effective Hamaker constant of the interaction between
substance 1 and 2 in medium 3, A11 is the Hamaker constant for substance 1 in vacuum, so as A22.

c Concentration for amount of substance of ions, mol/L
e elementary charge, 1.602 × 10−19 C
H surface distance between particles
h0 relaxation length
K Boltzmann constant, 1.38 × 10−23 J/K
NA Avogadro’s number, 6.022 × 1023

R particle radius
r+ surface energy electron acceptor component
r− surface energy electron donor component
T absolute temperature
VH

0 interfacial polar interaction energy constant
Z ionic valence in solution
θ contact angle
rd surface energy dispersive component
εα absolute dielectric constant of dispersion medium, F/m, the absolute dielectric constant of water

is 7.172 × 10−10 F/m. [28]
κ−1 length of Debye, m
ψ surface potential. It was replaced by zeta potential in this study
ψ surface potential. It was replaced by zeta potential in this study
Subscripts
1,2 particles can be coal or illite in the present work
3 disperse medium (water here)
L Liquid
S Solid
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