Next Article in Journal
The Influence of the Framework and Extraframework Content on the High Pressure Behavior of the GIS Type Zeolites: The Case of Amicite
Previous Article in Journal
Influence of Temperature on the Formation of Ag Complexed in a S2O32−–O2 System
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Minerals 2017, 7(2), 17; https://doi.org/10.3390/min7020017

Minor and Trace Elements in Natural Tetrahedrite-Tennantite: Effects on Element Partitioning among Base Metal Sulphides

1
School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
2
School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
*
Author to whom correspondence should be addressed.
Academic Editor: Antonio Simonetti
Received: 21 December 2016 / Revised: 18 January 2017 / Accepted: 23 January 2017 / Published: 29 January 2017
View Full-Text   |   Download PDF [5666 KB, uploaded 8 February 2017]   |  

Abstract

Minerals of the tetrahedrite isotypic series are widespread components of base metal ores, where they co-exist with common base metal sulphides (BMS) such as sphalerite, galena, and chalcopyrite. We used electron probe microanalysis and laser-ablation inductively-coupled plasma mass spectrometry to obtain quantitative multi-trace element data on tetrahedrite-tennantite in a suite of 37 samples from different deposits with the objective of understanding which trace elements can be incorporated, at what levels of concentration, and how the presence of tetrahedrite-tennantite influences patterns of trace element partitioning in base metal ores. Apart from Fe and Zn, Hg and Pb are the two most abundant divalent cations present in the analysed tetrahedrite-tennantite (up to 10.6 wt % Hg and 4 wt % Pb). Cadmium, Co and Mn are also often present at concentrations exceeding 1000 ppm. Apart from one particularly Te-rich tetrahedrite, most contained very little Te (around 1 ppm), irrespective of prevailing assemblage. Bismuth is a common minor component of tetrahedrite-tennantite (commonly > 1000 ppm). Tetrahedrite-tennantite typically hosts between 0.1 and 1000 ppm Se, while Sn concentrations are typically between 0.01 and 100 ppm. Concentrations of Ni, Ga, Mo, In, Au, and Tl are rarely, if ever, greater than 10 ppm in tetrahedrite-tennantite and measured W concentrations are consistently < 1 ppm. Taking into account the trace element concentrations in co-crystallizing BMS, the results presented allow the partitioning trends between co-crystallized sphalerite, galena, chalcopyrite, and tetrahedrite-tennantite to be defined. In co-crystallizing BMS assemblages, tetrahedrite-tennantite will always be the primary host of Ag, Fe, Cu, Zn, As, and Sb, and will be the secondary host of Cd, Hg, and Bi. In contrast, tetrahedrite-tennantite is a poor host for the critical metals Ga, In, and Sn, all of which prefer to partition to co-crystallizing BMS. This study shows that tetrahedrite-tennantite is a significant carrier of a range of trace elements at concentrations measurable using contemporary instrumentation. This should be recognized when establishing protocols for trace element analysis of tetrahedrite-tennantite, and when assessing the main hosts of trace elements in any given assemblage, e.g., for geometallurgical purposes. View Full-Text
Keywords: tetrahedrite-tennantite; trace elements; laser-ablation inductively-coupled plasma mass spectrometry; element partitioning tetrahedrite-tennantite; trace elements; laser-ablation inductively-coupled plasma mass spectrometry; element partitioning
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

George, L.L.; Cook, N.J.; Ciobanu, C.L. Minor and Trace Elements in Natural Tetrahedrite-Tennantite: Effects on Element Partitioning among Base Metal Sulphides. Minerals 2017, 7, 17.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Minerals EISSN 2075-163X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top