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Abstract: An effective method using hydrofluoric and sulfuric acid was proposed to enhance the
leaching of lithium from α-spodumene, without calcination that is subjected to 1000 ◦C for phase
transformation. The thermodynamic feasibility of the reactions was firstly verified. Dissolution
conditions were tested to maximize the leaching efficiency of lithium and with efficient utilization
of hydrofluoric acid (HF) served as evaluation criteria. The results showed that 96% of lithium
could be transferred into lixivium with an ore/HF/H2SO4 ratio of 1:3:2 (g/mL/mL), at 100 ◦C
for 3 h. Due to the fact that HF molecules were the main reaction form, the dissolution behaviors
were theoretically represented and investigated by dissolution in HF/H2SO4. When combined with
chemical elements analyses and characterizations, the results of the dissolution behaviors revealed
that α-spodumene and albite were preferentially dissolved over quartz. Insoluble fluoroaluminates,
such as AlF3, cryolite (Na3AlF6) and cryolithionite (Na3Li3Al2F12), were generated and might be
further partially dissolved by H2SO4. Fluorosilicates, such as K2SiF6, Na2SiF6, or KNaSiF6, were also
generated as a part of the insoluble residues. This work provides fundamental insight into the role
of HF/H2SO4 played in the dissolution of α-spodumene, and sheds light on a novel and promising
process to efficiently extract lithium.
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1. Introduction

Lithium, as a strategic metal, is widely applied in lithium-ion batteries and other electrochemical
devices due to its fascinating and rechargeable electrochemical properties [1,2]. Moreover, the
irreplaceable role of lithium in glass, the ceramic industry, and pharmaceutical applications makes the
extraction of lithium an important issue with respect to the rapidly increasing demand for lithium.
Generally, lithium is available from brine deposits and some commercial ore sources. Currently,
extracting lithium from brine is the dominant method due to the lower manufacturing costs and
massive reserves [3,4]. However, extraction from ore sources benefits from a shorter production cycle
(usually a matter of days) to lithium carbonate products, as opposed to brines, which often takes
months or years to form [5,6]. Therefore, lithium extraction from some commercially applicable ore
sources is still important, especially for the preparation of high-purity lithium compounds [5,6].

Spodumene (LiAlSi2O6), has attracted a great deal of interest as one of the most important
commercially-applicable lithium ores due to its high theoretical lithium content (up to 8.03% (wt %)
Li2O) [7,8]. Various processes, including traditional acid or alkaline digestion, or the recently-proposed
roasting using sodium or calcium salts via ion exchange, have been reported to successfully extract
lithium from spodumene [9–13]. These extraction processes are generally divided into two modules
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(Figure 1): One is to transfer lithium into lixivium via dissolution or leaching; while, the other is
separation and purification before concentration and conversion to Li2CO3 or other lithium products.
The purification principles of module 2 are similar in that pH is often adjusted to precipitate iron,
calcium, magnesium, or other metal ions, while in module 1, pretreatments, like calcination at > 1000 ◦C,
are usually used to transform α-spodumene into a much more reactive β phase, as the crystal structure
of the α phase is compact and resistant to almost all chemical agents, causing a great deal of energy
consumption. More effective strategies should be developed to maximize lithium leaching and reduce
production costs.
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Figure 1. Schematic diagram of fluorine sulfuric acid method to extract lithium from α-spodumene.

Hydrofluoric acid, which is capable of dissolving many materials, is specially used for etching
SiO2 or silicon compounds in the microelectronic industry [14–16]. The HF/HCl system (called
mud acid) is usually employed for acidizing in the petrochemical industry [17–19]. When combined
with the high efficiency of the sulfuric acid process [10], a method using hydrofluoric/sulfuric acid
(HF/H2SO4) mixture was proposed to extract lithium from α-spodumene using fluorite (CaF2) [20],
or other fluorides, as the source of HF. Figure 1 shows a schematic diagram of the proposed HF/H2SO4

method. This method attempted to directly dissolve α-spodumene without calcination for phase
transformation. Dissolution conditions were firstly optimized in the mixed lixivant HF/H2SO4 to
maximize the leaching efficiency of lithium. Moreover, the dissolution behavior, which theoretically
represented via dissolution in HF/H2SO4, was investigated due to the fact that HF molecules were
the actual reactant to dissolve the mineral [17–19]. Additionally, the effects on the formation of
insoluble intermediates were determined, and were combined with some qualitative and quantitative
characterization analyses. This HF/H2SO4 method achieved an efficient leaching of lithium without
calcination, and also has no strict requirements on ore grade and deserves intensive investigation.

2. Experimental Section

2.1. Materials and Reagents

The α-spodumene ore sample was obtained from Talison Lithium Pty Ltd., Greenbushes, Australia.
The Li2O content in the ore sample was about 5% (wt %) determined using AAS (atomic absorption
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spectroscopy) analysis. The ore was firstly ground using a planetary ball mill and sieved to a particle
size <75 µm prior to performing dissolution experiments. Concentrated sulfuric acid (18.2 M H2SO4,
98% (wt %)) and hydrofluoric acid (22.5 M HF, 40% (wt %)) were employed and were both of
an analytical grade. The concentrated sulfuric acid was pre-diluted at a 1:1 (mL/mL) ratio using
deionized water.

2.2. Experimental Procedures

The dissolution experiments were performed in a 100 mL Teflon crucible, equipped with a
magnetic stirring device, and kept at a preset temperature by an oil bath. A specific amount of ore
(10 g for the experiment), deionized water, and 1:1 H2SO4 were first mixed and stirred continuously
in a reactor. Once the desired temperature (50 to 125 ◦C) was reached, HF was added and stirring
was maintained at 150 rpm for a certain dissolution time. Subsequent water-leaching was carried
out at 50 ◦C with an ore/water ratio of 1:8 (g/mL) and was stirred at 150 rpm for 30 min. When the
slurry was cooled to ambient temperature, the liquid and solids were separated by filtration and were
subjected to analysis.

2.3. Analytical Methods and Charaterization

The leaching efficiency of lithium (L%) and the percentage of insoluble residues (R%) calculated
based on Equations (1) and (2) were used to evaluate the efficiency of the reaction system.

L(%) =
Qm ×V

106 ×more × wt%
× 100% (1)

R(%) =
mres

more
× 100% (2)

Qm: Lithium concentration in lixivium, mg/L; V: Lixivium volume, mL; more: Mass of ore sample, g;
wt: Mass fraction of lithium in ore sample, %; mres: Mass of insoluble residues obtained.

The lithium content in solution was determined using atomic absorption spectroscopy (AAS,
AA-6800, Shimadzu, Kyoto, Japan) with an uncertainty of 0.5%. Other major element contents in
the solids were determined semi-quantitatively via X-ray fluorescence (XRF, model ZSX Primus II,
Rigaku, Osaka, Japan) using the pressed bullet method for sample preparation. Major elements,
except for Li in lixivium, were determined using an inductively-coupled plasma atomic emission
spectrometer (ICP-AES, PS-6, Baird, Boston, MA, USA), with a deviation of 0.3%. X-ray diffraction
analysis (XRD, D/max-2550, Rigaku, Osaka, Japan), combined with major elemental analysis, was
employed to determine the compositions of the solid phase. Morphological changes during the
dissolution were observed and carried out using a field-emission scanning electron microscope
(FESEM, MIRA3 LMU, TESCAN, Brno, Czech Republic) equipped with an energy-dispersive X-ray
spectrometer (EDX, X-Max20, Oxford, Oxford, UK). Additionally, X-ray photoelectron spectroscopy
(XPS, ESCALAB 250Xi, ThermoFisher-VG Scientific, Waltham, MA, USA) was also employed to help
further determine the chemical bonds that were generated in the intermediates. Spectra of symbolic
elements, such as Al, F, and Si, were obtained, relative to the C 1s binding energy (284.8 eV). In addition,
thermo-gravimetric (TG) analyses were performed to determine the thermal decomposition behaviors,
using a simultaneous thermal analyzer (STA, STA8000, PerkinElmer, Waltham, MA, USA), which was
also important for the utilization of the residues.

3. Results and Discussion

3.1. Chemical Analysis and Characterization of Ore Samples

The ore was mainly α-spodumene (LiAlSi2O6, JCPDS 33-0786), and included some albite
(NaAlSi3O8, JCPDS 09-0466) and quartz (SiO2, JCPDS 65-0466). The chemical analysis of the ore
sample is listed in Table 1. The detailed XRF analyzed results of the ore sample are listed in Table S1.
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Table 1. Chemical analysis of α-spodumene ore sample.

Element Si Al Li O Na K Ca Fe

Content, wt % 32.63 11.43 2.56 41.04 0.35 0.68 0.45 0.54

3.2. Thermodynamic Analysis

The dissolution of β-spodumene in HF proposed by Rosales et al. [12], given by Reaction (3),
combined with further reaction with H2SO4 is expressed by Reaction (4), which can be used to estimate
the dissolution of α-spodumene in HF/H2SO4.

LiAlSi2O6(s) + 19HF(aq) → LiF(aq) + H3AlF6(aq) + 2H2SiF6(aq) + 6H2O (3)

2LiAlSi2O6(s) + 24HF(aq) + 4H2SO4(aq) →
Li2SO4(aq) + Al2(SO4)3(aq) + 4H2SiF6(aq) + 12H2O

(4)

The thermodynamic feasibility of Reaction (4) was verified using HSC Chemistry 6.0 software.
The thermodynamic properties were obtained from the HSC database [21] and Reference [22].
The results are presented in Table 2 for the temperature range from 0 to 125 ◦C.

Table 2. Thermodynamic calculation results of reaction 2 from 0 to 125 ◦C.

T, ◦C ∆H◦, kJ ∆S◦, J/K ∆G◦, kJ

0 −572.534 715.044 −767.848
25 −547.462 802.860 −786.835
50 −521.889 885.214 −807.946
75 −495.764 963.072 −831.058
100 −468.996 1037.314 −856.069
125 −441.461 1108.725 −882.900

Thermodynamic analysis (∆G◦ < 0) indicated that the dissolution α-spodumene by HF/H2SO4

could spontaneously occur in the temperature range 0 to 125 ◦C. However, more investigations should
be carried out in order to understand the dissolution process using the HF/H2SO4 method.

3.3. Investigation of Dissolution Conditions

The dissolution process mainly depends on mineral compositions and solution chemistry.
Therefore, it is essential to investigate the effects of different factors on the dissolution process
to maximize the leaching of lithium. A series of dissolution experiments were carried out under
different conditions: Ratio of ore/HF (g/mL), ore/H2SO4 (g/mL), dissolution temperature and time.
The stirring speed was set to 150 rpm due to the slight influence of stirring speed and the limitations
of the reactor. The subsequent water-leaching process was conducted according to the procedures
in Section 2.2. A high leaching efficiency of lithium served as the optimal criterion. Meanwhile,
efficient usage of HF and percentage of insoluble residues should also be comprehensively taken
into consideration before establishing the optimal dissolution conditions. The detailed AAS analyzed
results of the lithium contained in the lixivium under different conditions are listed in Tables S2–S6.

3.3.1. Effect of HF/Ore Ratio

The dissolution processes of feldspar or sandstones in HF or HF/HCl mixtures indicated that
the reactions were limited by hydrofluoric acid absorbing onto the mineral surface and forming
highly-stable complex fluorides, such as fluorosilicates and fluoroaluminates, due to the outstanding
electronegativity of F [17–19]. Experiments using different ore/HF (Figure 2) showed that the leaching
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efficiency of lithium increased with the increase in HF/ore ratio. About 90% of the lithium leached
when ore/HF ratio was 1:3, approximating the stoichiometric ratio according to Reaction (3).
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However, the increase in ore/HF ratio to 1:3.5 caused a decrease in L% and an increase in R%.
The XRD analysis of the residues obtained with ore/HF ratio of 1:3.5 (Figure 3d) showed that more
fluorosilicates, such as KNaSiF6 (JCPDS 43-1313) and Na2SiF6, were generated. Additionally, XRD
analysis showed that the peak intensities of quartz decreased. The detection of KNaSiF6 (JCPDS
43-1313) at ore/HF ratio less than 1:3, indicates the cleavage of Si–O and dissolution of which is
unfavorable due to a high concentration of HF. Rosales [12] deemed that albite starts to dissolve if the
amount of HF is over the required stoichiometric ratio, according to Reaction (3). However, peaks
of cryolithionite (Na3Li3Al2F12) (JCPDS 22-0416) were generated, even at HF additions under the
stoichiometric value. Thus, the selective dissolution of α-spodumene over albite did not take place
due to two reasons: (i) the low reactivity of α-spodumene, and (ii) the dissolution process was coupled
to the dissolution of albite. However, selective dissolution could still be achieved to a certain extent as
the dissolution of quartz can be limited by adjusting the amount of added HF. When considering the
leaching efficiency of lithium, along with the efficient utilization of HF, the suitable ratio of ore/HF
that could be added was determined as 1:3 (g/mL), and approximated the stoichiometric ratio of
Reaction (3).

3.3.2. Effect of Dissolution Temperature

Experiments were conducted under different dissolution temperatures, from 50 to 125 ◦C; Figure 4
shows that lithium leaching accelerated with increasing temperature. However, the XRD analyses of
the residues in Figure 5 show that different phases were detected at different temperatures. For instance,
typical peaks of Na3Li3Al2F12 at 60.9◦ were detected at 75 ◦C, but not at 100 ◦C, indicating that the
formation of residues was dramatically influenced by the temperature. In other words, temperature
could influence complexing among ions, such as Li+, Al3+ with F−, which are insoluble fluorides,
such as Na3Li3Al2F12, K2AlF5, or AlF3, and were generated under different temperatures (Figure 5).
Therefore, the dissolution temperature should be strictly controlled due to its significant effect on
dissolution behavior. The residue obtained at 125 ◦C was viscous and could not be compressed for
XRD analysis. When considering that the azeotropic system of the HF/H2O mixture has a boiling point
of 113 ◦C [23], the dissolution temperature should not exceed 113 ◦C. Therefore, a suitable temperature
of 100 ◦C was employed to conduct the dissolution process.
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3.3.3. Effects of H2SO4/Ore Ratio

The introduction of H+ by strong acid was reported to play the role of catalysis in the dissolution
process by absorbing onto the mineral surface and decreasing the bond strength of Si–O and Al–O by
hydroxylation of Si–O and Al–O [17]. More importantly, H2SO4 also plays another important role in
converting insoluble fluorides into soluble sulfates (Reaction (5)). The insoluble Li–O, therefore, can be
converted into lixivium, as a sulfate, leaving less insoluble residues with the increase of H2SO4/ore
ratio. The release of HF is also useful for the recycling and utilization of HF.

2LiF + H2SO4 → Li2SO4 + 2HF (5)

Figure 6 shows that the increase of H2SO4 promoting lithium leaching (L %), at with sufficient
(Figure 6a) or insufficient (Figure 6b) HF was added, according to the stoichiometric of Reaction (3).
The leaching efficiency of lithium reached a relative maximum when the ratio of ore/H2SO4 was 1:2.
The dissolution of the generated insoluble fluorides by H2SO4 takes place due to the release of release
of some HF, which slightly accelerates the dissolution according to Reaction 5. However, the release of
HF caused more Al3+, Na+, K+, or even Li+ to be involved in a competition for complexing with F−,
causing a certain degree of fluctuation in the leaching efficiency of Li (Figure 6a). This assumption
could also be verified by the percent of insoluble residues in Figure 6a. Moreover, the XRD analysis
(Figure 7) also indicated that higher H2SO4 affected the compositions of intermediates, especially for
the complex formed between Al and F. The formation of Na3Li3Al2F12 with a ratio of ore/H2SO4 of
1:2.5 resulted in a decreased leaching efficiency of lithium. Moreover, enhanced the generation of
fluosilicates, such as KNaSiF6, were not beneficial for the utilization of HF. A suitable ore/H2SO4 ratio
was, therefore, selected as 1:2 to maximize the leaching efficiency of lithium and efficient usage of HF.
Additionally, it should be mentioned that the effect of H2SO4 on lithium leaching was not obvious
(Figure 6b) when there was insufficient HF, confirming the conclusion that the degree of dissolution
was mainly determined by ore/HF ratio.
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The dissolution time has a slight effect on both L% and R% when the dissolution lasted longer than
2 h (Figure 8). To ensure that dissolution was complete, 3 h was chosen as a suitable dissolution time.

As a brief conclusion, the results of the optimal investigations suggested that the appropriate
conditions to dissolve α-spodumene in lixiviant HF/H2SO4 were 100 ◦C with an ore/HF/H2SO4 ratio
of 1:3:2 (g/mL/mL) for 3 h.
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3.4. Dissolution Kinetics

In previous studies, the metal cations from silicate-containing feed materials underwent a leaching
rate faster than the degradation rate of silica lattice, resulting in an incongruent dissolution between
the leaching of cations and the destruction of the lattice [24]. In addition, adsorbed hydrogen or
hydroxide ions were able to polarize the mineral surface and to weaken the cation–oxygen bonds to
accelerate the dissolution. Therefore, it is essential to carry out further investigation to understand
the dissolution behavior for technology design purposes. Therefore, experiments were conducted
under optimal conditions for different dissolution times (15–180 min) (Figure 9). The AAS analyses
of the lithium contained in the lixivium for different intervals are listed in Table S7. The particle size
distribution (D90 22.56 µm) was determined using a laser particle size analyzer (Omec LS-POP(6)).
Residues were obtained by sequentially water leaching and heating to dry (at 60 ◦C) before being
analyzed and characterized.
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3.5. Characterization of Solids

3.5.1. XRD Analyses

The results in Figure 9 showed that the dissolution proceeded to completion as the time increased.
The XRD analyses (Figure 10) showed that α-spodumene and albite in the ore sample were gradually
dissolved, and that some insoluble fluorides were formed. Typical peaks of quartz remained even after
a 3 h leaching period, which indicated that selective dissolution was achieved to a certain extent, and
that α-spodumene and albite were preferentially dissolved over quartz. Based on the XRD analysis,
we concluded that an extended dissolution time >30 min had a slight effect on lithium leaching due to
the fact that differences in the diffraction peaks did not vary obviously from 30 to 180 min. About 85%
of the lithium was leached at 30 min; therefore, the dissolution time should last longer than 30 min but
not exceed 3 h to maximize lithium leaching and utilize HF efficiently, which was consistent with our
previous investigations on the time effects on lithium leaching efficiency in Section 3.3.4.
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3.5.2. XPS Analyses

However, other characterization analyses, except for XRD, should be carried out in order to
determine the compositions of insoluble intermediates for a further understanding of the dissolution
process. The XPS spectra (Figure 11) of some typical elements in residues were analyzed to confirm
the generated intermediates. The photoemission peaks were fitted with the Gaussian-Lorentzian (GL)
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curve-fitting method. The Shirley method was employed to model the spectral background. The C 1s
at 284.8 eV was identified using a careful curve-fitting procedure and was used as the binding energy
reference. Binding energies of relating elements were fitted using XPS data.
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The Al 2p spectrum of residues at 180 min, fitted at 76.49 eV of Al–F [25] (Figure 11d), which was
obviously different from 74.39 eV of Al–O contained in the ore sample (Figure 11a) [26]. The three
peaks at 74.20, 75.38, and 76.18 eV were fitted with the Al 2p spectrum at 15 min (Figure 11b). Moreover,
curves of K–F (683.64 eV), Al–F (685.53 eV), Li–F (686.39 eV) and Ca–F (684.58 eV) were fitted with
the F 1s spectrum at 15 min (Figure 11c) [27–30]. In addition, peak area ratios among K–F, Li–F and
Al–F were 0.09:0.82:1; therefore, it can be concluded that aluminum was partially fluorinated at 15 min.
As for the F 1s spectrum of residues at 180 min (Figure 11e), two peaks of Al–F and Si–F in Na2SiF6 [31]
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were fitted. The Si–F bond was fitted with the spectrum of Si 2p at 180 min, except for some unreacted
Si–O [32] (Figure 11f).

3.5.3. SEM-EDX Analyses

The SEM-EDX images also showed that some insoluble salts were generated and were found
around the surface of particle at 15 min (Figure 12d,e), indicating that H+ and HF were first absorbed
onto the surface, then penetrated, and gradually reacted with the ore. When combined with the XRD
analyses (Figure 10), XPS (Figure 11) and SEM-EDX (Figure 12f), some fluorides, such as Na3AlF6,
Na3Li3Al2F12, CaF2, and K2AlF5, were generated. As the reaction continued, the insoluble products
attached to the particle surface were gradually dissolved by H2SO4, and this was verified using
morphological changes determined with the SEM-EDX analysis of residues at 15 min and 30 min
(Figure 12), which were obviously different from the SEM images (Figure 12a,b) of the ore sample with
regular surfaces and edges.
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3.5.4. TG-DSC Analyses

The thermal decomposition behavior was investigated in an N2 atmosphere (40 mL/min) using
TG-DSC, which was important for both confirmation of generated intermediates and comprehensive
utilization of insoluble residues. The TG analysis of the ore sample showed that an obvious
endothermic peak (Figure 13a) occurred at 1038.2 ◦C due to a phase transformation from α-spodumene
into the β phase [9]. The phase transformation occurred at 849.4 and 848.4 ◦C, in residues at 15 min
(Figure 13b) and 180 min (Figure 13c), respectively, which could be attributed to the partially-destroyed
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crystal structure, resulting in a much easier phase transformation at about 800 ◦C. The endothermic
peaks at 521.4 ◦C of the ore sample, and 516.8 ◦C of the residues, at 15 min, belonged to the phase
transform of albite. The endothermic peaks at 312.9 and 372.6 ◦C at 180 min could be distributed to
the decomposition of Na2SiF6 and KNaSiF6 [33]. The mass decrease at 644.0 ◦C was mainly caused
by the decomposition of AlF3 [34]. The thermal decomposition behaviors were consistent with our
speculation on the generated intermediates. The subsequent process of defluorination and utilization
of the insoluble residues should pay attention to the temperature.
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3.6. Chemical Analysis under Optimal Conditions

The analyses of the chemical elements of lixivium and the residues under optimal conditions are
listed in Table 3. The detailed XRF analyzed results of the residues are listed in Table S8. The dissolution
of α-spodumene proceeded thoroughly for about 96% of lithium was leached with less than 10%
of insoluble residue remained. About 1.51 g/L of lithium was contained in the lixivium before
evaporation and precipitation were employed to produce Li2CO3, which was comparable to previous
research. Considerable Al was contained in the lixivium, which could be removed and utilized by
alum formation according to the processes proposed in our previous works [35,36].

Table 3. Chemical analysis of residues and lixivium under optimal conditions.

Element Residues, wt %
Lixivium

Concentration, g/L * Leaching Efficiency a, %

Si 20.32
Al 15.39 7.83 89
Li 1.51 96
O 23.82

Na 0.12 0.21 91
K 0.36 0.58 95
Ca 0.19

a Calculated based on the element concentration in lixivium; * equivalent to molar concentration were
c(Al) = 0.29 mol/L, c(Li) = 0.216 mol/L, c(Na) = 0.0091 mol/L and c(K) = 0.015 mol/L.

To verify the reliability of the analytical data, the dissolution experiment at 30 min was taken for
an example to balance the lithium element during the process. Related data and analytical results are
listed in Table 4. The deviation calculated was accredited to 1.3%.

Table 4. Lithium elemental balance taken the 30 min for example. *

Ore Sample Lixivium Residues

Lithium content, g 0.2566 0.2214 0.0319
Deviation, % 1.3%

* more: 10.0239 g; volume of lixivium: 173.0 mL; mres: 1.8853 g with 1.69% Li contained.

4. Conclusions

A promising strategy was presented to accelerate the leaching of lithium from α-spodumene,
using mixed acid HF/H2SO4 as a lixiviant without a phase transformation. More lithium (96%, about
1.5 g/L) could be transferred into lixivium under much more moderate conditions (at 100 ◦C) as
compared to previous methods, before evaporation and precipitation to produce Li2CO3. Additionally,
the investigated dissolution behaviors help to understand the role that HF played in the dissolution of
silicate. The proposed method achieved an efficient leaching of lithium without strict requirements on
ore grade, and has potential applications in the extraction of other valuable elements from silicates.

Supplementary Materials: The following are available online at www.mdpi.com/2075-163X/7/11/205/s1,
Table S1: XRF analyzed results of the ore sample; Tables S2–S6: AAS results of lithium contained in the lixivium for
the optimal dissolution investigations; Table S7: AAS results of lithium for the dissolution kinetics investigations:
Table S8: XRF analyses of insoluble residues under optimal conditions.

Acknowledgments: The authors appreciate the Changsha Research Institute of Mining And Metallurgy for AAS
analyses. The research was supported by the National Natural Science Fund of China (Grant No. 51474237)
and the National Key Technology R&D Program of China during the 12th Five-year Plan Period (Grant
No. 2012BAB10B02).

Author Contributions: Hui Guo, Ge Kuang and Haidong Wang conceived and designed the experiments;
Hui Guo, Haizhao Yu and Xiaokang Zhao performed the experiments and analyzed the results; Hui Guo wrote
the paper.

www.mdpi.com/2075-163X/7/11/205/s1


Minerals 2017, 7, 205 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

List for different phases in XRD analyses:
symbol phase

α-Spodumene, LiAlSi2O6, JCPDS 33-0786
3 Albite, NaAlSi3O8, JCPDS 09-0466
# Quartz, SiO2, JCPDS 65-0466
F Cryolithionite, Na3Li3Al2F12, JCPDS 22-0416
5 Cryolite, Na3AlF6, JCPDS 82-0216√

K2AlF5, JCPDS 52-0735
� AlF3, JCPDS 44-0231
P KNaSiF6, JCPDS 43-1313
} Na2SiF6, JCPDS 72-1115
� CaF2, JCPDS 48-9812
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