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Abstract: The southern margin of the Siberian craton hosts numerous Cu(Mo) and Mo(Cu)
porphyry deposits. This review provides the first comprehensive set of geological characteristics,
geochronological data, petrochemistry, and Sr–Nd isotopic data of representative porphyry Cu(Mo)
and Mo(Cu) deposits within the southern margin of the Siberian craton and discusses the igneous
processes that controlled the evolution of these magmatic systems related to mineralization.
Geochronological data show that these porphyry deposits have an eastward-younging trend evolving
from the Early Paleozoic to Middle Mesozoic. The western part of the area (Altay-Sayan segment)
hosts porphyry Cu and Mo–Cu deposits that generally formed in the Early Paleozoic time, whereas
porphyry Cu–Mo deposits in the central part (Northern Mongolia) formed in the Late Paleozoic–Early
Mesozoic. The geodynamic setting of the region during these mineralizing events is consistent with
Early Paleozoic subduction of Paleo-Asian Ocean plate with the continuous accretion of oceanic
components to the Siberian continent and Late Paleozoic–Early Mesozoic subduction of the west
gulf of the Mongol–Okhotsk Ocean under the Siberian continent. The eastern part of the study
area (Eastern Transbaikalia) hosts molybdenum-dominated Mo and Mo–Cu porphyry deposits that
formed in the Jurassic. The regional geodynamic setting during this mineralizing process is related
to the collision of the Siberian and North China–Mongolia continents during the closure of the
central part of the Mongol–Okhotsk Ocean in the Jurassic. Available isotopic data show that the
magmas related to porphyritic Cu–Mo and Mo–Cu mineralization during the Early Paleozoic and
Late Paleozoic–Early Mesozoic were mainly derived from mantle materials. The generation of fertile
melts, related to porphyritic Mo and Mo–Cu mineralization during the Jurassic involved variable
amounts of metasomatized mantle source component, the ancient Precambrian crust, and the juvenile
crust, contributed by mantle-derived magmatic underplating.
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1. Introduction

Porphyry Cu–Mo deposits occur in areas, which were involved in multiple magmatic events
and are temporally and spatially associated with porphyritic intrusions. The deposits of this type
were formed as a result of mantle–crust interaction and are usually associated with magmas varying
in composition from mafic to intermediate and felsic [1]. Understanding their source composition,
relationship, and role in ore formation is of primary importance in the modeling of the evolution of
porphyry Cu–Mo systems. However, there is no general consensus on the role of crust and mantle in
the evolution of ore-magmatic Cu–Mo porphyry systems and their metal fertility. The involvement of
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continental crust is regarded to be significant in the generation of Mo-rich porphyry systems [2]. On the
other hand, some researchers consider the subduction-metasomatized mantle lithosphere as a possible
source of Mo [3]. Copper is generally considered to be derived from the mantle [1,4]. Nevertheless,
some researchers suggest a hybridized lower continental crustal source of Cu [5].

Porphyry Cu–Mo deposits have been shown to be mainly related to calc-alkaline magmas,
generated in volcanoplutonic arcs in the active subduction zone [1,4,6–8]. The classical examples
are located within Western Pacific and Central Andes [7,9–12]. However, recent studies show that
a number of porphyry Cu–Mo deposits have been formed in collisional zones or intracontinental
tectonic settings in association with shoshonitic and high-K calc-alkaline magmas [13–16]. Examples
include Yulong and Gangdese porphyry Cu deposits in Tibet, China [13,14,17], Dexing porphyry Cu
deposit in South China [18], Sungun and Sar–Cheshmeh Cu–Mo porphyry deposits in Iran [7,19,20],
and Saindak and Reko Diq Cu–Au deposits, Pakistan [21,22].

The Central Asian Orogenic Belt (CAOB) is one of the world’s most important porphyry
copper–molybdenum belts. Numerous large porphyry Cu–Au/Mo deposits have been found in
the CAOB, such as the Bozshakol, Nurkazgan, Kounrad, and Aktogai porphyry Cu–Au deposits
in Kazakhstan [23–29], the Kal’makyr-Dalnee Cu–Au porphyry in Uzbekistan [27,30], the Oyu
Tolgoi Cu–Au porphyry in Mongolia [31], the Duobaoshan Cu–Au, and the Wunugetushan Cu–Mo
porphyry [27,32,33] in China. The representative porphyry Mo deposits are Baishan and Donggebi
in East Tianshan, China [34–36], a group of deposits along the Xilamulunhe area in Southeast Inner
Mongolia, China [37,38], and the Luming and Daheishan deposits in Northeast China [39,40].

A number of medium to large Paleozoic–Mesozoic porphyry Cu–Mo and Mo–Cu deposits
are located in the eastern segment of CAOB within the southern margin of the Siberian craton
on the territory of Russia and Mongolia, such as the Aksug porphyry Cu, Kyzyk-Chadr Cu–Mo,
Sora Mo–Cu, Bugdaya Mo–W, Zhireken Mo–Cu, Shakhtama Mo, and Erdenetiin Ovoo Cu–Mo [41–49].
The geological characteristics of most of these deposits have been reported in Russian literature.
Although numerous studies of magmatism have been made, details of the involvement of mantle
and/or crust components in their formation had been poorly understood until recent years, particularly
with respect to Sr–Nd isotopic characteristics and geochronology by zircon U–Pb dating. In this paper,
in combination with our previous recent studies [48,50–54] and other published data, we describe
and review the geological, geochemical, geochronological, and isotopic (Sr–Nd) characteristics of
representative deposits from Southern Siberia (Russia) and Northern Mongolia. These data provide
information on the source of magmas, as well as the relationship between magma and porphyritic
Cu–Mo mineralization. Despite some common features in the evolution of magmatic systems
and the associated mineralization under consideration, there are some peculiar petrogeochemical
characteristics of magmatic assemblages for individual deposits. These data allow for the definition of
common and specific features in the evolution of ore-magmatic systems, providing new constraints on
the role of the mantle–crust interaction in porphyritic Cu–Mo mineralization in the southern margin of
the Siberian craton.

2. Time–Space Distribution of Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern
Margin of the Siberian Craton

Porphyry Cu(Mo) and Mo(Cu) deposits are spatially distributed along the southern margin of the
Siberian craton (Figure 1). This region is the eastern segment of Central-Asian Orogenic Belt (CAOB),
situated between the Siberian craton on the north and the North China and Tarim cratons in the south.
The deposits vary in size, and Cu and Mo grades. The emplacement ages of porphyry intrusions related
to Cu(Mo) and Mo(Cu) mineralization in this region range from Cambrian to Middle-Upper Jurassic.
According to the ages of ore-bearing porphyritic intrusions and their spatial distribution, three ore
belts may be distinguished: the Early-Middle Paleozoic porphyry Cu(Mo) + Mo–Cu belt (Altai-Sayan
segment, Russia), the Late Paleozoic–Early Mesozoic porphyry Cu–Mo belt (Northern Mongolia),
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and the Mesozoic porphyry Mo(Cu) belt (Eastern Transbaikalia, Russia). In general, the deposits
delineate a younging trend with a decreasing Cu/Mo ratio from west to east.

Altai-Sayan area. Significant porphyry Cu–Mo and Mo–Cu mineralization occurred within the
Altai-Sayan segment of the Early–Middle Paleozoic porphyry Cu(Mo) + Mo–Cu belt. The Altay-Sayan
segment contains operating Sora porphyry Mo–Cu deposits, explored Aksug porphyry Cu,
and Kyzyk-Chadr porphyry Cu–Mo deposits (Figure 1). The Aksug and Kyzyk-Chadr deposits
are located in the Tuva region within the Southeast Altai-Sayan area, while the Sora deposit is situated
in the Kuznetsk Alatau Mountains within the Northwest Altai-Sayan area. Porphyry Cu and Mo–Cu
mineralization in this area is related to the emplacement of Cambrian to Early Devonian porphyritic
intrusions [42,55,56].
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Figure 1. Paleozoic-Mesozoic magmatism within the southern margin of the Siberian craton and
the location of principal porphyry Cu(Mo) and Mo(Cu) deposits. 1–3: Magmatic belts. 1—Early
Paleozoic; 2—Late Paleozoic to Early Mesozoic; 3—Mesozoic; 4—faults; 5—porphyry Cu(Mo) deposits;
6—porphyry Mo(Cu) deposits.

Northern Mongolia. Large Erdenetiin Ovoo and small Shand porphyry Cu–Mo deposits (Figure 1),
along with numerous porphyry Cu–Mo prospects and occurrences, are located on the territory of
Northern Mongolia. Thirteen of the 72 documented porphyry copper prospects in this region are
considered to be significant [57]. Most porphyry Cu–Mo occurrences in this belt constitute potential
for concealed deposits at depths of 200 to 300 m [58]. Porphyry Cu–Mo mineralization in this area is
related to a suite of Late Permian to Early Triassic porphyritic intrusions that range in composition
from diorite through granodiorite to granite [49,59].

Eastern Transbaikalia. Eastern Transbaikalia hosts numerous molybdenum-dominated Mo and
Mo–Cu porphyry deposits and occurrences, among them are the operating Zhireken and the mined
out Shakhtama deposits (Figure 1). Zhireken is located at the northward and the Shakhtama at the
southward from the Mongol–Okhotsk suture zone. Porphyry Mo(Cu) mineralization in this region is
related to the emplacement of felsic porphyritic intrusions of the Upper Jurassic age [52,60].
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3. Regional Geology

Available geological data indicate that CAOB was developed from the Neoproterozoic through to
the Early Mesozoic via the continuous accretion of oceanic components of the Paleo-Asian Oceanic
basin (oceanic islands, island arcs, and back-arc basins) to the Siberian continent [61–66]. As a result,
accretionary terranes were generated along the southern continental margin. Porphyry Cu–Mo
and Mo–Cu deposits in the Altai-Sayan area, Northern Mongolia, and the northern part of Eastern
Transbaikalia are hosted in terranes accreted to the Siberian continent in Cambrian [67].

The deposits are confined to transregional magmatic belts extending along the southern margin
of the Siberian craton. These belts are associated with magmatic events related to the subductions of
the Paleo–Asian Ocean in the Early Paleozoic [68], the west gulf of the Mongol–Okhotsk Ocean in
the Late Paleozoic–Early Mesozoic [69], and the collision of the Siberian and North China–Mongolia
continents during the closure of the central part of the Mongol–Okhotsk Ocean in the Jurassic [70].
From Paleozoic to Mesozoic, the western margin of the Paleo–Asian Ocean and the Mongol–Okhotsk
basin were shifted towards the east. As a result, the regional intense magmatic activities took place in
the western part in the Early Paleozoic, in the central area in the Early and Late Paleozoic, and in the
eastern part in the Early-, Late Paleozoic and Early Mesozoic period (Figure 1).

The largest Early Paleozoic magmatic belt started to form marginally to the Paleo-Asian Ocean
in Vendian and developed until the Silurian–Early Devonian. The porphyry Cu(Mo) and Mo–Cu
mineralization occurred at the northwest of the belt (the Kuznetsk Alatau Mountains and Northeastern
Tuva) but is absent in its southern and eastern parts, which were reactivated by tectonic and magmatic
events in the Late Paleozoic and Mesozoic. The deposits were formed in a young Phanerozoic
continental crust.

The Late Paleozoic–Early Mesozoic volcano-plutonic belt, related to the subduction of
Mongol–Okhotsk and Paleo-Thetys oceanic plates under the Siberian continent [67,71], contains
porphyry Cu–Mo mineralization. The large Triassic Erdenetiin Ovoo porphyry Cu–Mo deposits occur
within the western part of this belt in the territory of Northern Mongolia.

The porphyritic Mo(Cu) mineralization within the Mesozoic magmatic belt is concentrated in two
terranes separated by the Mongol–Okhotsk suture. The belt originated when the Mongol–Okhotsk
Oceanic plate was subducted beneath the Siberian continent (north of the Mongol–Okhotsk suture)
and the Mongolia–North China continent (south of the Mongol–Okhotsk suture).

It is considered that the major tectonic units of the Mongol–Okhotsk fold belt were formed
as a result of the collision between the Siberian and North China–Mongolian continents [67,72].
Though there is no general consensus of the closure time, the closure of Mongol–Okhotsk Ocean in
a scissors-like manner from east to west was generally agreed [67,71,73]. Collision of the Siberian and
Mongolia–North China plates and the complete closure of the Mongol–Okhotsk Ocean at its western
part (in the territory of present Transbaikalia) occurred in the boundary between the Early and Middle
Jurassic periods [73,74]. The closure of the Mongol–Okhotsk Ocean led to intraplate magmatic activity
in the Late Mesozoic [75]. Collision-related magmatism was followed by post-collisional rifting in
the Late Jurassic and the Early Cretaceous [71] with an accumulation of continental sediments in
extensional basins and with widespread alkali volcanism and plutonism.

3.1. Altai-Sayan Segment

The Aksug and Sora deposits are located within the terranes composed of the Vendian-Cambrian
oceanic, back-arc, and island-arc volcanic-terrigenous series [76]. The island–arc terrane in Kuznetsk
Alatau is composed of fragments of Late Riphean–Early Cambrian ophiolite series, an island-arc
complex of the Vendian–Early Cambrian age and carbonate-terrigenous sedimentary rocks of
intraoceanic arcs. The island-arc magmatic complex is composed predominantly of bimodal mildly
Na alkaline trachyrhyolite-trachyandesite suite with monzonite-diorite-gabbro intrusions [77,78].
The collision of the terrane with the Siberian continent in the Late Cambrian–Early Ordovician [76]
was accompanied with the emplacement of granitoid batholiths of diverse compositions varying
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from gabbro to leucogranites [79]. In contrast to Kuznetsk Alatau, the island-arc complex in Tuva is
represented by volcanic rocks of differentiated Na subalkaline basalt-andesite-rhyolite series, which
were intruded by Middle Cambrian collisional-related subalkaline granitoids [80]. Plutons during the
accretion-collisional stage are composed mainly of intermediate subalkaline rocks (predominantly
diorites and tonalities).

3.2. Northern Mongolia

The large Erdenetiin Ovoo porphyry Cu–Mo deposit is located in Northern Mongolia within
the Late Paleozoic–Early Mesozoic magmatic belt along the active continental margin of the Siberian
craton [67,71]. The arc was formed during oblique subduction of the Mongol–Okhotsk Ocean plate
under the Siberian continent margin and previously-accreted terranes [81]. The magmatic belt is
composed of calc-alkaline (andesite-dacite-rhyolite) differentiated volcanic rocks. Granitoid plutons
were formed at the time of closure of the Mongol–Okhotsk Ocean’s western gulf [69]. The belt’s
basement consists of Early-Middle Paleozoic magmatic complexes similar to those in the Tuva region
with the Aksug deposit [82]. The plutons in Northern Mongolia are composed of more alkaline
rocks with higher Na content compared to the Tuva granitoid plutons and are represented by more
differentiated varieties (predominantly amphibole-biotite granodiorites).

3.3. Eastern Transbaikalia

The northern margin of Eastern Transbaikalia is regarded as an active continental margin related
to the northward subduction of the Mongol–Okhotsk Ocean plate under the Siberian continent. The
timing of subduction is still under debate: the Devonian–Early Triassic [83], the Devonian–Permian [84],
the Late Carboniferous–Late Jurassic [85], the Early Permian–Middle Jurassic [71,74], the Triassic–Late
Jurassic [67], the Late Triassic–Middle Jurassic [86,87], and the Devonian–Jurassic [88].

Paleozoic and Mesozoic igneous activities widely occurred within the Eastern Transbaikalia.
The extensive occurrence of Mo, Cu, Au, Ag, and polymetallic mineralization in the region is
spatially and temporally associated with Mesozoic igneous activity. The intense early Mesozoic
magmatism in the southeast of Eastern Transbaikalia occurred in a complex geodynamic setting,
involving collision [89] and an influence of the mantle hot spot that was buried beneath the thick
continental lithosphere during the closure of the Mongol–Okhotsk Ocean [75,90]. Collision-related
magmatism was followed by post-collisional rifting, which continued until the end of the Early
Cretaceous [71]. Mesozoic intrusive rocks are predominantly composed of granite and granodiorite,
with minor granosyenite and diorite; subvolcanic rocks consist of granitic porphyry, granodioritic
porphyry, dioritic porphyry, and lamprophyre. Volcanic rocks are represented by rhyolites, dacites,
latites, andesites, shoshonites, and basalts [91].

The Mesozoic Zhireken and Shakhtama deposits were formed in an intraplate setting resulting
from the closure of the Mongol–Okhotsk Ocean and the collision between Siberian and Mongolia–North
China continents. In general, porphyry Mo and Mo–Cu deposits in Eastern Transbaikalia occurred
in a fashion similar to porphyry Cu–Mo deposits from the Tibet–Himalayas and North–China
craton–Yangtze collision zones [14,18]. In contrast to magmatic belts in the Altai-Sayan segment
and Northern Mongolia, the Mesozoic magmatic belt in Eastern Transbaikalia is located in a region
underlain with the Precambrian basement. Quartz monzonites and monzogranites predominate at
the Zhireken and Shakhtama deposits. Mafic rocks are rare and occur mainly as remnants among
the granitoids.

4. Representative Deposits

Magmatic events, associated with significant porphyry Cu–Mo deposits within the southern
margin of the Siberian craton are characterized by long-term multi-stage evolution. The evolution was
initiated with barren plutonic granitoids and followed by repeated intermediate to felsic ore-bearing
porphyritic intrusions (in stocks and dikes). Evolved rocks are more abundant in the porphyry series.
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Major Cu–Mo or Mo–Cu mineralization is closely associated with porphyry rocks. The formation of
preceding granitic plutons was accompanied by minor sub-economic ore mineralization.

4.1. Sora Porphyry Mo–Cu Deposit

The economically important Sora (Sorskoye) Mo–Cu porphyry deposit was discovered in 1932
and has been exploited since 1956. After several decades of mining activities, remaining reserves
in 2013 were 111 kt Mo, grading 0.06% Mo [92]. Other economic metals include Cu (average grade
0.055%), Ag (average grade 2.3 g/t), and Au [93]. The Sora Mo–Cu porphyry deposit is hosted
in the northeastern Uibat pluton within the Kuznetsk Alatau Mountains (Figure 1). The collisional
(Cambrian–Ordovician) pluton is represented by a monzodiorite-granosyenite-leucogranite association
and includes rocks of three intrusive complexes (Figure 2).
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Figure 2. Geological map of the Sora deposit: 1—gabbro, monzogabbro, syenogabbro
(Kogtakh complex); 2—syenodiorite, syenite, granodiorite, diorite, monzonite (Martaiga complex);
3—leucogranite, aplite (Tygertysh complex); 4—K-feldspar metasomatites; 5–6: Ore-bearing porphyry
complex, 5—granite porphyries I, 6—granite porphyries II; 7—barren dikes; 8—faults; 9—contour of
the breccia ore; 10—quartz-molybdenite veins.

The gabbroid Kogtakh complex is represented by gabbro, monzogabbro, and syenogabbro, located
mainly in the marginal part of the pluton in the form of large xenoliths within granitoids. The Martaiga
complex is composed of syenodiorites, syenites, granodiorites, granosyenites, diorites, and monzonites.
The Tygertysh complex is represented by leucogranites and aplites. Minor Mo–Cu mineralization
in skarns is associated with the Martaiga complex. Stockwork and lenticular quartz-K-feldspar
metasomatic bodies accompanied by disseminated molybdenite-chalcopyrite mineralization are related
to the Tygertysh complex.

The major mineralization is related to the emplacement of a porphyritic complex including
monzodioriteic, dioritic, granosyeniteic, and granitic porphyries. The occurrence of numerous barren
Devonian dikes marked the end of the magmatic activity in the Sora ore district. The dikes are surmised
to have formed as roots of the riftogenic intra-plate effusives that fill the Minusa Basin [89]. This fact
probably indicates that the porphyries were formed during a transitional period from orogeny to
rifting [80]. The Sora deposit is related to the junction of a sublatitudal and NW-trending tectonic zones.
The latter controls the emplacement of breccia ore, and the occurrence of most quartz–molybdenum
veins, porphyry dikes, and numerous barren Devonian dikes.
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Two temporally separate pulses of ore-bearing magmatism related to porphyries I and II are
established at the Sora deposit. Major mineralization occurred after the emplacement of porphyries I,
which is represented by disseminations, stockwork, and breccia ores. The stockwork ore is the
most valuable economically. The breccia ore consists of intense K-feldspar- and albitite-altered
angular fragments of hosting rocks cemented by quartz-fluorite matrix containing molybdenite
(two generations), pyrite, and chalcopyrite. Mo contents in the breccia ore are in the range of 0.5%–1%.
Quartz-fluorite-galena-sphalerite veinlets hosted in sericitite- and pyrite-altered rocks are final products
of mineralization. Thin quartz-fluorite-pyrite and quartz-molybdenite veinlets were formed after the
emplacement of porphyries II.

The Cu grade is highest at the central zone of ore deposit and decreases outwards, whereas Mo
content remains relatively stable. The Cu/Mo ratio decreases with depth, but within the root levels
of the deposit, it increases again as Mo content drops sharply. A vertical extent of mineralization in
the center is about 1000 m, varying at the flanks from 300 to 500 m. Further down the mineralization
pinches out and forms separate zones.

Sotnikov et al. [55] reported 40Ar/39Ar ages for the monzonitic rocks (Kogtakh complex) as
480–460 Ma, for the leucogranites (Tygertysh complex) as 440–420 Ma, the preore dikes as 405–402 Ma,
and the ore-bearing porphyries as 389–388 Ma. The Re–Os ages for Mo mineralization at the Sora
deposit are significantly older [94] than those suggested by 40Ar/39Ar dating. Re–Os dating at Sora
indicates two distinct periods of mineralization at about 505 Ma and 470 Ma, respectively. The younger
Ar–Ar ages may reflect the later magmatic overprint. Therefore, new U–Pb isotopic dating is required
to constrain the age of magmatic events related to the generation of the Sora deposit.

4.2. Aksug Porphyry Cu Deposit

The Aksug (Ak-Sug, Aksugskoye) deposit is one of the largest porphyry copper deposits in
Russia discovered in 1952. The preliminary exploration and evaluation was operated from 1982 to
1985. For about 20 years, the exploration work was not active, as the region is difficult to access
by conventional means. In 2012, SPK Consulting indicated mineral resources of 236 Mt of ore with
0.67% Cu, 0.18 g/t Au, 0.019% Mo, and 0.29 g/t Re and inferred resources of 486 Mt of ore with
0.37% Cu, 0.07 g/t Au, 0.008% Mo, and 0.16 g/t Re [95]. The Aksug ores locally show elevated
platinum group elements contents (Pt + Pd) with the occurrence of Pd mineralization [96,97].

The Aksug deposit is situated within the Khamsara structural zone in the northeastern part of
Tuva republic (Russia) within East Sayan mountains (Figure 1). This zone is bordered by sub-lateral
deep strike-slip faults in the north and in the south. The Aksug pluton and associated porphyry Cu
mineralization are located in the Tuvinian terrane. The Tuvinian terrane is comprised of an island-arc
complex, including Early Cambrian low Na subalkaline basalts, andesites, and rhyolites, which were
intruded by Middle Cambrian collisional-related subalkaline granitoids [80]. Granitoids of the
collisional stage (Tannu-Ola series), comprising the giant Khamsara pluton (4500 km2), belong to
the diorite-tonalite-plagiogranite formation. The pluton is mainly composed of quartz diorites and
tonalites, whereas diorites and gabbro are rare (Figure 3). The ore-bearing Aksug porphyry series
is confined to the Kandat deep fault and includes stocks and dikes of sodic, calc-alkaline diorites,
tonalites, plagiogranites, and gabbrodiorite porphyries. The Aksug granitoid pluton is located near
the Dashtyg-Oy depression composed of Devonian volcano-sedimentary rocks. The contact between
magmatic rocks of the Aksug pluton and volcano-sedimentary rocks of Dashtyg–Oy depression
is tectonic.

The orebody resembles a truncated asymmetric cone with a barren quartz core. The stockwork
mineralization is confined to a porphyry stock and is localized in quartz-sericite altered rocks.
The commercial vein-stockwork and disseminated copper-molybdenum mineralization is related to the
granodioritic porphyries. Low-grade (0.1% to 0.2% Cu, ~0.003% Mo) molybdenite-pyrite-chalcopyrite
mineralization is related to the granodioritic porphyries of stage I. Emplacement of a second generation
of granodioritic porphyries (stage II) resulted in high-grade chalcopyrite-bornite-molybdenite ore
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(0.3% to 1.0% Cu; 0.01–0.02% Mo) by superimposition onto the low-grade proto-ore. A general time
sequence of mineral assemblages at the Aksug deposit is as follows: (1) quartz-pyrite with hematite;
(2) quartz-molybdenite with pyrite and chalcopyrite; (3) quartz-chalcopyrite with bornite, pyrite,
and molybdenite; (4) polysulfides with fahlore, enargite, galena, and sphalerite; (5) quartz-calcite.Minerals 2016, 6, 125 8 of 36 
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Figure 3. Geological map of the Aksug deposit (modified after Dobryanskiy et al. [41]). 1–5:
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The emplacement of the Aksug series was followed by taphrogenic magmatism, represented
by the formations of trachybasalt-trachyrhyolite volcanic rocks and subalkaline leucogranite
intrusions [44]. Granodiorite, granite, and aplite form dikes and small intrusions, which intersect at the
porphyry rocks. The weak pyrite-chalcopyrite mineralization is related to granite-aplite association.

Sotnikov et al. [98] reported 40Ar/39Ar ages for amphiboles from the plutonic suite (gabbro,
diorites, quartz diorites) ranging from 497 to 462 Ma and for plagioclase from granodiorite porphyry I
as 403.7 ± 6.7 Ma. However, molybdenite Re–Os dating yielded a large discrepancy in Re–Os versus
40Ar/39Ar ages [94]. Re–Os ages of molybdenite from Aksug (511 ± 2 Ma) from one sample and
replicates of 516 ± 2 and 518 ± 2 Ma from another sample are all significantly older than the 40Ar/39Ar
ages for ore-bearing porphyries and even the precursor plutonic rocks that host ore-bearing porphyries
and Cu–Mo mineralization. Several high-resolution SHRIMP U–Pb zircon ages, recently obtained from
the Aksug rocks [56], provide further constraints on the time of formation of the deposit. Quartz diorite
from plutonic suite of Aksug has a SHRIMP zircon age of 504.1 ± 5.2 Ma, which is relatively close to
the 40Ar/39Ar age of 497 ± 1 Ma for diorite reported by Sotnikov et al. [98]. SHRIMP zircon dating
of the ore-bearing porphyry suite yielded ages of 500.4 ± 5.9 and 499.2 ± 6.3 Ma for granodioritic
porphyries of stage I and II, respectively. These ages disagree with the previous 40Ar/39Ar age for the
porphyry series by being significantly older. However, the molybdenite Re–Os ages are older than the
one for newly dated porphyry intrusions. At the same time, the U–Pb zircon ages of the Aksug rocks
are consistent with those recently reported for the rocks in the Kyzyk-Chadr porphyry Cu–Mo deposit,
located ~200 km SW from the Aksug and occurring in a similar geotectonic setting [42]. According to
Gusev et al. [42] the U–Pb SHRIMP zircon age for Kyzyk–Chadr granite that was intruded by porphyry
is 508 ± 7 Ma, and for the ore-bearing quartz diorite porphyry and the granodiorite porphyry is
507 ± 2 and 490 ± 4 Ma, respectively. In spite of some discrepancies between Re–Os and the new
U–Pb ages for the Aksug deposit, they show that the deposit was formed in the Cambrian period, not
in the Early Devonian as previously thought.
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4.3. Erdenetiin Ovoo Porphyry Cu–Mo Deposit

The Erdenetiin Ovoo is one of the largest Cu–Mo porphyry deposits in Mongolia, with estimated
metal reserves calculated in 1991 of 7.6 Mt Cu and 216,600 t Mo in approximately 1490 Mt of ore with
0.509% Cu and 0.015% Mo [49]. The Erdenetiin Ovoo deposit is located in the territory of Northern
Mongolia (Figure 1), within the Orkhon-Selenge volcano-sedimentary trough of magmatic belt, which
is characterized by Late Palaeozoic to Mesozoic calc-alkaline volcanism. The Precambrian and Early
Paleozoic basement rocks were intruded by the Late Permian Selenge plutonic complex. The Selenge
plutonic complex is composed of rocks ranging from gabbros to leucogranites, with a predominance of
granodiorites and granosyenites (Figure 4). Early Triassic porphyry complex subsequently intruded
the Selenge plutonic complex. The ore-bearing porphyry complex is dominated by dioritic and
granodioritic porphyries.
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The orebody of Erdenet deposit extends over an area of 2 × 1 km, with a maximum vertical
thickness of 560 m, including a 100 to 300 m-thick of secondary Cu enriched supergene zone at the
top [100]. Porphyry Cu–Mo mineralization is most closely related to dioriteiic and granodioritic
porphyries. Ore minerals consist of chalcopyrite, pyrite, molybdenite, and traces of sphalerite,
tetrahedrite, and hydrothermal rutile. The deposition sequence of mineral assemblage is as follows:
(1) quartz-pyrite; (2) quartz-pyrite-molybdenite with chalcopyrite; (3) quartz-pyrite-chalcopyrite;
(4) quartz-pyrite-galena-sphalerite with fahlore; (5) chalcedony with rare carbonate and anhydrite [101].
Quartz-sericite alteration is predominant at the deposit, while potassic and chloritic alterations
are weak.

40Ar/39Ar dating for the Erdenetuin Ovoo rocks yield ages of 259 ± 3 and 247 ± 4 Ma for
granodiorite and granosyenite from the Selenge complex [102]. The SHRIMP and LA-ICP-MS zircon
U–Pb data for quartz–diorite and granodiorite gave ages in the range 240–247 Ma [103]. The porphyry
series showed 40Ar/39Ar ages of 235 ± 2, 225 ± 1 and 220 ± 6 Ma [102]. Replicated Re–Os analyses
of molybdenite yield ages of 240.7 ± 0.8 and 240.4 ± 0.8 Ma [100]. Jiang et al. [103] reported a Re–Os
isochrones age of 241.0 ± 3.1 Ma for molybdenite.
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4.4. Zhireken Porphyry Mo–Cu Deposit

The Zhireken deposit was discovered in 1958 and explored from 1959 to 1967. The deposit has
been mined since 1986. The estimated metal reserves calculated in 1968 were 88 Kt Mo with a Mo grade
of 0.1% and 66 Kt Cu with a Cu grade of 0.068% [104]. The Zhireken Mo–Cu porphyry deposit is located
within the eastern segment of Central Asian Orogenic Belt, bordering the northern margin of the
Mongol–Okhotsk suture zone (Figure 1). The deposit includes two magmatic complexes: the precursor
plutonic and the ore-bearing porphyry complexes (Figure 5). Mineralization is temporally and spatially
associated with granitic porphyry stocks, which intruded the Middle Jurassic (J2) granitoids of the
plutonic complex.

The plutonic and porphyry complexes at Zhireken are represented by a series of high-K
calc-alkaline rocks similar in composition. The plutonic complex is dominated by coarse-grained biotite
granite and fine-grained leucogranite, along with trace gabbro. The subvolcanic porphyry complex
mainly consists of a granitic porphyry with subordinate monzonitic and quartz monzonitic porphyries.
Mafic rocks are rare and occur mainly as remnants among the granitoid rocks. Both plutonic
and porphyry complexes include adakite-like rocks with geochemical characteristics of K-adakites
associated with high-K calc-alkaline granitoids with typical arc-type characteristics.
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Recent studies of geology and geotectonics of Eastern Transbaikalia [75,91] together with
geochronological data [46,53] are consistent with the emplacement of plutonic complex at the final
stage of the collisional regime in the region; the formation of porphyry complex may have been
overlapped with a tectonic setting transited to extension.

The intrusion of Zhireken pluton has been dated at 188–168 Ma (40Ar/39Ar dating; amphibole),
the porphyritic stock at 160–158 Ma (40Ar/39Ar dating; K-feldspar) by Ponomarchuk et al. [46].
SHRIMP U–Pb zircon dating yielded ages of 164–161 Ma for the intrusion of Zhireken pluton, while
the porphyry complex showed ages of 161 ± 1.6 and 157.5 ± 2.0 [52]. The Re–Os dating of molybdenite
of three different samples from Zhireken deposit are 162 ± 1, 163 ± 1, and 163 ± 1 Ma [94].

4.5. Shakhtama Porphyry Mo Deposit

The Shakhtama porphyry Mo deposit is located at Eastern Transbaikalia (Russia) within the
Shakhtama granitic pluton (135 km2), bordering the southern margin of the Mongol–Okhotsk orogenic
belt (Figures 1 and 6). The deposit is medium in size, with ~50 Kt Mo resources with a grade of
0.1% Mo and ~50 Kt Cu resources with a grade of 0.1% Cu [53,101]. The Shakhtama pluton is hosted
within the Permian Unda granitoid complex [105] and terrigenous sediments (J1). The multiphase
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Shakhtama pluton is composed of rocks ranging from monzodiorite to granite in composition.
Porphyry rocks are dominated by quartz monzonite and granite porphyries that intruded into the
precursor of the multiphase Shakhtama pluton. The porphyries belong to the high-K calc-alkaline and
shoshonitic series.
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Geological features [90,91] and geochronological data [47,60,94] show that the Shakhtama pluton
was intruded synchronously with the final stage of the collisional tectonics in the region. The age of
ore-bearing porphyry complex is contemporaneous with the Late Jurassic transition from collisional to
extensional tectonics, when a number of rift basins filled with thick volcanic and terrigenous sediments
started to form in the region [83,106]. Voluminous Mesozoic granitoid batholiths occur within the
NE-trending zone, while the late Mo-bearing porphyry dikes distribute along the NW-trending
extensional structures stretching over a few tens of kilometers. The molybdenum mineralization is
represented by quartz-molybdenite veins, containing pyrite and rare chalcopyrite; this is genetically
related to the emplacement of shallow level porphyritic intrusions.

The intrusion of the Shakhtama pluton has been dated at 169–165 Ma and the porphyry
complex at 161–156 Ma (40Ar/39Ar dating; amphibole) [47]. Recent SHRIMP U–Pb zircon dating
yielded ages of 163–159 Ma for the plutonic complex, while the porphyry complex showed ages of
160–153 Ma. The Re–Os age for two molybdenite samples from the Shakhtama deposit is in the range
of 160–157 Ma [94].

5. Analytical Methods

Major and trace elements. Major element compositions of whole-rock samples were determined
using VRA-20R X-ray fluorescence at the Analytical Centre of the Institute of Geology and Mineralogy,
Novosibirsk, Russia. The analytical errors were generally less than 5%. Trace elements (including
rare-earth elements) were analyzed by inductively coupled plasma mass spectrometry (ICP-MS,
Element, Finnigan MAT) at the Analytical Centre of the Institute of Geology and Mineralogy,
Novosibirsk, Russia. The uncertainty of the analyses is generally 2%–7%. The details of the analytical
procedures were as described in [60]. The contents of trace elements in a few samples from Sora and
Erdenetiin Ovoo deposits, presented in Table 1, were determined by X-ray fluorescence analysis (Rb, Sr,
Zr, Nb, and Y), atomic absorption spectroscopy (Ba and Cs), and the neutron activation method (other
elements) at the Analytical Centre of the Institute of Geology and Mineralogy, Novosibirsk, Russia.

Whole-rock Sr and Nd isotopes. Strontium isotopic analyses were performed on an MI 1201AT solid
mass spectrometer at the Analytical Centre of the Institute of Geology and Mineralogy, Novosibirsk,
Russia, using analytical procedures as described in [52]. Samarium and neodymium isotope analyses
were performed at the Laboratory of Geochronology, Geological Institute of Kola Scientific Center
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of the Russian Academy of Sciences (Apatity) on a multi-collector Finnigan MAT-262 (RPQ) thermal
ionization mass spectrometer, operating in static mode. The precision for Sm, Nd, and 147Sm/144Nd
was ±0.2% (2σ). The details of the analytical procedures were as described in [52].

Zircon U–Pb dating. U–Pb isotopic analyses were performed using the Sensitive High-Resolution
Ion Microprobe (SHRIMP-II) at the All Russia Geological Research Institute (VSEGEI, St. Petersburg,
Russia). The data were processed with Ludwig SQUID1.0 and ISOPLOT programs. Instrumental
conditions and analytical details were as described in [52,60].

40Ar/39Ar dating. 40Ar/39Ar dating was performed on rock-forming minerals (amphibole, biotite,
and feldspars) at the Analytical Centre of the Institute of Geology and Mineralogy, Novosibirsk, Russia,
using an MI-1201B mass spectrometer. Analytical procedures are similar to those described in [55].

6. Geochemical Characteristics

The major and trace element compositions of representative rock samples from the causative
intrusions are presented in Table 1. In this section, we present a brief description of geochemical
characteristics of the samples from these intrusions. A more complete dataset and description of rock
compositions were reported in recent publications [48,50,52,53,60,107,108]. The plutonic and porphyry
rocks from the intrusions associated with porphyry Cu(Mo) and Mo(Cu) deposits along with the
southern margin of the Siberian craton display a relatively wide compositional range with low to high
silica contents, varying from ~47 to ~75 wt %.

Aksug. The Aksug magmatic rocks have moderate alkalis with Na2O + K2O varying from 3.84 to
7.52 wt %. Most of the Aksug samples fall within the field of tholeiitic affinity on the SiO2 vs. alkali
diagram (Figure 7A). In the K2O–SiO2 diagram, the Aksug samples plot predominantly within the
calc-alkaline field (Figure 7B). The contents of lithophile elements are relatively low with Sr varying
from 85 to 830, Rb from 10 to 110, Ba from 80 to 1200, and La from 6 to 16 ppm. The samples show
depleted HFSE (high field strength element) contents and REE (rare earth element) contents, varying
from 35 to 110 and from 35 to 160 ppm, respectively.

Sora. The Sora samples have relatively higher total alkalis ranging from 3.96 to 10.57 wt %. In the
(K2O + Na2O)–SiO2 diagram, most of the Sora samples plot within the alkaline and calc-alkaline
field. In the K2O-SiO2 diagram, most of the samples lie within high-K alkaline and calc-alkaline fields
(Figure 7B). The samples show relatively high contents of lithophile elements with Sr up to 2100 ppm,
Rb up to 160, Ba up to 1700, and La up to 80 ppm. The REE and HFSE contents range from 120 to
400 ppm and from 115 to 315 ppm, respectively.

Erdenetiin Ovoo. The Erdenetiin Ovoo samples show total alkali content varying from 4.63 to
9.52 wt %, with plots in the field of calc-alkaline and tholeiite series in the (K2O + Na2O)–SiO2 diagram
(Figure 7A); in the K2O–SiO2 diagram, the samples lie within high-K alkaline and calc-alkaline fields
(Figure 7B). Porphyry and plutonic rocks contain Sr up to 1000, Rb up to 100, Ba up to 1500, and La up
to 25 ppm. The REE and HFSE contents range from 40 to 370 ppm and from 70 to 510 ppm, respectively.

Zhireken and Shakhtama. The plutonic and porphyry rocks from Zhireken and Shakhtama
deposits show variable SiO2 contents ranging from 48.4 to 78 wt %. However, mafic rocks are rarely
present at Zhireken and Shakhtama Mo(Cu) porphyry deposits compared with previously described
Aksug Cu porphyry, the Sora Mo–Cu porphyry, and the Erdenetiin Ovoo Cu–Mo porphyry deposits.
The Zhireken and Shakhtama granitoids show total alkali contents ranging from 3.55 to 9.46 and 3.99
to 10.24 wt %, respectively. Most of the Zhireken and Shakhtama samples plot within calc-alkaline field
on the SiO2 vs. alkali diagram (Figure 7A). In the K2O–SiO2 diagram (Figure 7B), all samples from the
Zhireken deposit and most samples from the Shakhtama plutonic series plot in the high-K calc-alkaline
field, while samples from the Shakhtama porphyry series belong to both high-K calc-alkaline and
shoshonite series.

More detailed data on chemical composition of mafic, intermediate, and felsic intrusive rocks
from the causative deposits are provided and discussed below.
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classification of Peccerillo and Taylor [111] for plutonic and porphyry rocks from the Aksug, Sora,
Erdenetiin Ovoo, Zhireken, and Shakhtama deposits.
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Table 1. Major and trace elements for representative samples from the porphyry Cu–Mo and Mo–Cu
deposits within the southern margin of the Siberian craton.

Deposit Aksug

Series Plutonic Porphyry

Rock Gabbro Diorite Tonalite Plagiogranite Tonalite Porphyry Granodiorite Porphyry I Granodiorite
Porphyry II

Major element (wt %)

SiO2 51.30 58.55 67.31 71.51 66.48 65.83 67.08 67.39
TiO2 0.70 0.62 0.33 0.28 0.32 0.48 0.30 0.30

Al2O3 18.20 15.94 16.43 14.35 16.69 16.02 16.60 16.34
FeOt 8.94 7.88 3.08 2.49 2.91 2.99 2.73 2.57
MnO 0.14 0.15 0.03 0.03 0.03 0.04 0.04 0.04
MgO 4.25 3.37 0.33 0.55 1.05 1.55 0.95 0.93
CaO 8.01 5.87 2.69 2.62 2.37 2.78 2.98 2.77

Na2O 2.43 2.45 4.82 4.51 4.62 6.07 5.01 4.90
K2O 2.14 2.46 2.00 1.59 2.50 1.04 1.61 1.69
P2O5 0.16 0.14 0.10 0.07 0.11 0.20 0.35 0.10
LOI 1.76 1.83 2.19 2.39 1.88 1.84 1.43 2.10
∑ 98.05 99.26 99.31 100.39 99.30 98.85 99.07 99.15

Mg# 45.88 43.25 16.04 28.23 39.22 47.93 38.21 39.32

Trace element (ppm)

Method ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

Sc 23 28 5.6 1.4 5.1 9.8 4.3 4.0
V 255 207 72 22 62 72 54 48
Cr 20 20 31 28 16 38 4 7
Co 24 19.5 5.4 4.2 5.1 7.1 5 5.4
Ni 9 <5 <5 <5 3.5 10.7 2.7 3.9
Rb 51 57 32 24 38 20 22 25
Sr 490 380 690 155 665 380 830 680
Y 9.2 25 6.2 3.9 5.2 8.8 5.5 5.8
Zr 39 102 75 54 78 87 76 80
Nb 1.6 4.1 2.7 2.6 2.2 3.2 2.2 2.4
Cs 1.7 1.6 0.6 1.1 0.9 0.4 0.5 0.7
Ba 407 436 426 473 452 104 565 554
La 5 13 9 7 9 14 9 10
Ce 11 29 19 13 17 31 19 19
Pr 1.6 3.9 2.3 1.6 2.2 3.8 2.3 2.5
Nd 7.9 16.9 9.7 6.4 8.2 15 8.6 9.3
Sm 2 4.2 1.8 1.1 1.6 3 1.5 1.7
Eu 0.71 0.92 0.54 0.25 0.48 0.73 0.44 0.44
Gd 1.95 4.1 1.3 0.76 1.37 2.23 1.29 1.39
Tb 0.29 0.63 0.19 0.11 0.16 0.28 0.15 0.2
Dy 1.64 4.3 0.98 0.62 0.83 1.67 0.85 0.99
Ho 0.32 0.9 0.2 0.12 0.16 0.32 0.17 0.2
Er 0.9 2.6 0.52 0.34 0.48 0.94 0.51 0.57
Tm 0.13 0.43 0.09 0.06 0.08 0.14 0.09 0.08
Yb 0.87 2.6 0.62 0.40 0.55 0.88 0.57 0.56
Lu 0.13 0.42 0.09 0.06 0.08 0.13 0.09 0.09
Hf 1.25 3.7 2.2 1.99 2.24 2.77 2.47 2.47
Ta 0.21 0.7 0.14 0.26 0.15 0.17 0.14 0.14
Pb 3.0 8.4 3.9 1.2 3.8 4.8 4.7 8
Th 0.7 3.2 1.1 2.7 0.9 1.7 1.1 1.2
U 0.6 1.5 0.5 1.1 0.9 1.8 1 1

Sr/Y 53 15 111 40 129 43 151 117
(La/Yb)n 3.89 3.46 10.16 11.55 10.92 10.89 11.01 11.70
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Table 1. Cont.

Deposit Sora

Series Plutonic Porphyry

Rock Gabbro Monzodiorite Leucogranite Gabbro Porphyry Granite Porphyry Granite Porphyry

Major element (wt %)

SiO2 49.94 53.95 70.10 47.91 71.40 73.09
TiO2 1.23 0.90 0.24 0.97 0.06 0.15

Al2O3 18.51 16.16 15.98 16.48 15.26 14.26
FeOt 8.63 7.15 2.28 8.77 1.37 1.65
MnO 0.15 0.15 0.04 0.16 0.03 0.03
MgO 5.36 6.09 0.60 8.10 0.14 0.26
CaO 8.94 7.36 1.84 9.18 1.10 1.17

Na2O 3.77 3.90 3.76 3.28 5.58 4.55
K2O 1.10 1.82 3.36 1.53 3.66 3.76
P2O5 0.65 0.26 0.10 0.29 0.00 0.03
LOI 0.96 1.42 1.00 2.20 0.00 0.78
∑ 99.23 99.17 99.30 98.87 98.60 99.73

Mg# 52.54 60.28 31.91 62.21 15.38 21.90

Trace element (ppm)

Method ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS *

Sc 21 23 2.7 33 0.5
V 272 204 37 242 13
Cr 57 442 402 158 10
Co 32 29 3.9 35 0.5
Ni 29 74 38 107 <5
Rb 16 45 112 41 63 119
Sr 2070 770 520 520 280 645
Y 26 21 8.5 22.7 9.5 8.3
Zr 103 141 161 72 222 155
Nb 9.3 9.4 13.2 4.5 19.1 9.4
Cs 0.4 0.8 1.6 1 0.1
Ba 757 566 677 305 829 820
La 42 25 36 20 35 21
Ce 90 53 54 40 52 32
Pr 12.7 6.9 5.6 5.7 4.9
Nd 53 28 19 23.9 13.4 8.8
Sm 9.9 5.3 2.8 4.7 1.5 2
Eu 3.1 1.5 0.61 1.39 0.32 0.52
Gd 7.3 4.4 2.0 4.72 1.22 1.62
Tb 0.92 0.64 0.25 0.65 0.14 0.22
Dy 4.9 3.6 1.41 3.81 0.96
Ho 0.87 0.71 0.26 0.76 0.20
Er 2.3 2.1 0.77 2.18 0.77
Tm 0.32 0.31 0.12 0.31 0.15
Yb 1.91 1.89 0.83 2.18 1.20 0.6
Lu 0.26 0.26 0.12 0.27 0.20 0.08
Hf 2.7 3.7 4.7 2.27 6.25 3.1
Ta 0.44 0.71 0.84 0.24 1.33 0.79
Pb 6 7.4 15.8 4.9 12
Th 1.8 3 14.4 1.9 13.1 1.1
U 0.7 1.5 2.4 0.7 3.1 6.4

Sr/Y 79 36 61 23 30 78
(La/Yb)n 15.11 9.14 29.67 6.11 19.84 23.21
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Table 1. Cont.

Deposit Erdenetiin Ovoo

Series Plutonic Porphyry

Rock Monzogabbro Gabbrodiorite Granodiorite Granodiorite Monzogabbro
Porphyry

Diorite
Porphyry

Quartz
Monzonite
Porphyry

Granodiorite
Porphyry

Major element (wt %)

SiO2 50.60 57.60 68.27 69.05 48.89 58.31 64.5 67.70
TiO2 1.59 1.01 0.44 0.37 1.24 0.97 0.63 0.37

Al2O3 17.50 18.20 16.24 14.90 18.19 18.25 16.5 15.68
FeOt 9.19 7.02 2.66 2.63 8.38 6.05 3.74 3.19
MnO 0.12 0.12 0.04 0.05 0.13 0.06 0.08 0.07
MgO 4.86 2.79 0.96 1.32 4.94 2.65 1.81 1.49
CaO 6.90 5.83 2.50 2.43 6.94 4.47 3.5 2.19

Na2O 4.33 4.83 5.06 4.15 5.26 4.55 5.2 5.00
K2O 1.43 1.74 2.78 3.50 1.26 1.06 2 2.70
P2O5 0.58 0.38 0.14 0.11 0.43 0.34 0.19 0.14
LOI 2.41 0.93 0.68 0.63 3.4 2.63 1.15 1.51
∑ 99.51 100.45 99.77 99.14 99.06 99.34 99.30 100.04

Mg# 48.51 41.47 39.15 47.23 51.23 43.82 46.33 45.46

Trace element (ppm)

Method ICP-MS ICP-MS * * ICP-MS ICP-MS ICP-MS *

Sc 24 12.8 4.8 4.8 13.9 10.2 6.2 3.8
V 201 110 130 100 154 102 72 190
Cr 58 9 20 15 178 23 50 26
Co 21 16 24 22 29 10.4 11.4 22
Ni 42 16.7 31 29 95 16 35 48
Rb 30 29 68 87 16 26 37 44
Sr 1985 1030 930 420 1485 970 1216 1010
Y 23 17.5 14 19.3 7.7
Zr 73 137 99 144 292 114
Nb 3.6 4.6 4 5.8 5.3 2.4
Cs 2.5 1.3 1.7
Ba 568 699 827 857 678 501 1083 1180
La 20 26 15 14 22 20 17 17
Ce 49 52.63 32 33 48 44 34 33.8
Pr 8.4 6.8 6.8 5.8 4.5
Nd 39 26.1 13.3 15 28 22 17.3 14.3
Sm 8.4 4.6 2.7 3.2 5.1 4.1 3.2 2.7
Eu 2.3 1.42 0.73 0.68 1.63 1.32 0.77 0.68
Gd 6.8 4.12 9.8 9.1 4.2 3.7 2.3 1.6
Tb 0.9 0.58 0.26 0.41 0.5 0.56 0.32 0.25
Dy 4.5 3.22 2.8 3.3 1.55
Ho 0.83 0.64 0.5 0.64 0.26
Er 2.1 1.8 1.26 1.95 0.71
Tm 0.29 0.26 0.18 0.31 0.10
Yb 1.73 1.67 0.61 1.24 1.07 2.2 0.65 0.44
Lu 0.23 0.25 0.11 0.19 0.16 0.33 0.1 0.07
Hf 2.4 3.48 3.9 4.9 3.7 7.2 3.1 3.6
Ta 0.23 0.24 0.3 0.6 0.32 0.75 0.18 0.2
Pb 13.4 8.5 13.6 8.6 64
Th 2.4 1.7 2.9 7.7 1.7 5 1.6 2.8
U 0.6 0.5 1.3 1.4 0.6 1.5 0.5 1.3

Sr/Y 88 59 106 50 158
(La/Yb)n 7.65 10.40 16.37 7.78 13.97 6.18 17.69 26.71
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Table 1. Cont.

Deposit Zhireken

Series Plutonic Porphyry

Rock Gabbro Gabbrodiorite Quartz
Monzonite Granite Monzonite

Porphyry
Granodiorite

Porphyry
Quartz Monzonite

Porphyry
Granite

Porphyry

Major element (wt %)

SiO2 47.68 51.60 66.80 69.50 56.12 59.00 64.10 65.05 72.35
TiO2 1.44 1.30 0.44 0.23 0.82 0.86 0.57 0.84 0.26

Al2O3 15.43 17.50 15.70 16.20 14.58 14.60 15.60 15.80 13.70
FeOt 7.69 9.27 3.33 2.43 8.81 7.02 3.60 2.88 1.80
MnO 0.234 0.11 0.05 0.03 0.047 0.06 0.03 0.03 0.02
MgO 8.84 4.91 1.17 0.40 5.57 4.91 1.89 2.85 0.48
CaO 10.50 9.09 2.64 2.15 3.39 3.02 2.85 1.75 1.55

Na2O 2.70 3.27 4.33 4.67 3.53 4.33 4.33 5.00 3.67
K2O 0.69 1.33 4.00 3.33 3.11 3.67 2.88 2.81 4.50
P2O5 0.26 0.19 0.10 0.04 0.25 0.22 0.19 0.36 0.05
LOI 2.06 1.50 0.74 0.54 2.49 1.62 2.83 1.36 0.83
∑ 97.53 100.07 99.30 99.52 98.71 99.31 98.87 98.73 99.21

Mg# 67.20 48.57 38.53 22.69 52.96 55.50 48.37 63.85 32.22

Trace element (ppm)

Method ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

Sc 52 30 5 1.9 10.8 7.1 9.3 2.8
V 278 320 58 14 133 80 110 27
Cr 216 48 25 18 290 39 34 11
Co 31 27 7.2 2 13.6 9.6 6 2.9
Ni 101 <2 <2 <2 169 26 6.8 <2
Rb 14 36 144 84 395 312 176 236 207
Sr 750 860 520 480 450 515 620 610 305
Y 22 14.3 11.8 7.2 15 22 13.0 18.1 13.1
Zr 138 48 108 97 283 101 128 146 89
Nb 4.8 2.7 7.8 3.5 6.8 6.2 5.9 7.5 10.5
Cs 1.3 3.9 5.8 2.9 57 23 36 30 7.3
Ba 129 310 633 1129 288 575 1377 644 1206
La 15 13 24 20 29 41 18 41 31
Ce 38 27 54 34 58 78 38 65 51
Pr 5.8 3.7 5.7 4.0 6.8 9.1 5.3 8.9 5.4
Nd 24 15.3 19.3 13.6 24 32 20 31 16.6
Sm 5.1 3.2 3.2 2.2 4.3 5.3 3.7 5.0 2.5
Eu 1.38 0.91 0.54 0.41 0.67 0.83 0.67 0.92 0.27
Gd 5.4 3.1 2.6 1.82 3.2 4.6 2.8 4.1 2.1
Tb 0.72 0.44 0.31 0.19 0.43 0.62 0.37 0.5 0.31
Dy 4.1 2.4 1.84 1.08 2.2 3.2 2.1 2.7 1.88
Ho 0.77 0.44 0.38 0.19 0.36 0.63 0.38 0.51 0.38
Er 2.2 1.21 1.08 0.57 1.11 1.7 1.13 1.53 1.25
Tm 0.32 0.17 0.16 0.09 0.16 0.24 0.18 0.26 0.20
Yb 1.99 0.95 1.02 0.64 1.06 1.7 1.13 1.53 1.32
Lu 0.27 0.13 0.15 0.1 0.16 0.25 0.16 0.24 0.21
Hf 4.3 1.36 3 2.5 6.1 2.7 4.1 4.8 2.9
Ta 0.37 0.3 0.83 0.23 0.38 0.45 0.83 0.63 1.27
Pb 78 13.9 17.3 23 25 18.1 56 19.1
Th 4.7 2.3 12.4 4.5 5.7 5.4 8.7 7.1 16.8
U 1.6 1 2.1 1.1 1.6 5.1 6.3 5.3 16.7

Sr/Y 34 60 44 67 30 24 48 34 23
(La/Yb)n 5.14 9.17 16.19 21.40 18.90 16.42 10.96 18.26 15.84
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Table 1. Cont.

Deposit Shakhtama

Series Plutonic Porphyry

Rock Diorite Monzonite Quartz
Monzonite Granite Monzodiorite

Porphyry
Monzonite
Porphyry

Syenite
Porphyry

Quartz Monzonite
Porphyry

Granite
Porphyry

Major element (wt %)

SiO2 56.40 61.37 61.92 69.47 53.36 59.8 60.5 63.5 69.2
TiO2 0.74 0.69 0.56 0.43 1.24 0.77 0.77 0.6 0.41

Al2O3 13.50 18.84 17.30 15.33 12.8 13.25 13.74 14.87 15.33
FeOt 6.85 4.65 4.10 3.10 8.50 5.09 4.77 3.74 2.00
MnO 0.09 0.12 0.08 0.06 0.08 0.06 0.05 0.05 0.04
MgO 8.40 2.14 2.66 1.21 9.26 7.12 6.54 3.27 1.81
CaO 6.06 5.15 4.75 2.67 4.98 4.42 3.03 3.46 2.2

Na2O 2.90 4.75 4.27 3.77 3.35 3.5 3.65 3.82 4.5
K2O 2.40 2.50 3.70 3.59 3.8 4.18 4.94 4.47 4
P2O5 0.04 0.21 0.17 0.08 0.3 0.09 0.1 0.14 0.06
LOI 2.40 0.59 0.46 0.95 2.46 1.57 1.29 1.21 0.71
∑ 99.78 101.00 99.97 100.65 100.13 99.85 99.38 99.13 100.26

Mg# 68.60 45.07 53.67 41.00 66.01 71.36 70.97 60.94 61.77

Trace element (ppm)

Method ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

Sc 22 11.9 5.8 5.2 19.6 11.3 10.6 6.6 4.0
V 147 82 40 44 145 91 66 63 33
Cr 768 228 108 15 498 429 301 116 83
Co 30 13.7 5.3 5 20 16.5 10.4 10 5.5
Ni 197 60 39 <5 247 260 157 73 24
Rb 117 192 237 139 407 214 249 160 128
Sr 480 425 300 485 590 560 410 890 930
Y 14.3 20 13.6 15 26 14.5 14.0 15.3 8.7
Zr 152 231 73 110 294 121 150 144 108
Nb 6.9 14 14.4 10 16 9.1 10.5 9.5 8.8
Cs 17.6 10.7 9.9 4.6 44 11 10.9 5.6 2.2
Ba 534 599 609 678 1106 844 719 1148 1178
La 26 33 21 23 72 34 32 61 29
Ce 51 64 48 49 141 66 67 116 60
Pr 6.2 7.8 6.4 6.0 18.2 8.4 7.9 14.6 7.3
Nd 23 28 23 22 67 31 29 53 26
Sm 4.2 4.8 3.8 3.5 11.6 5.4 5.1 7.7 4.0
Eu 0.99 0.85 0.61 0.87 2.6 0.94 1.20 1.76 0.74
Gd 3.4 3.6 3.2 3.3 8.3 4.2 4.2 5.6 2.8
Tb 0.44 0.51 0.44 0.41 0.95 0.50 0.5 0.63 0.32
Dy 2.5 2.8 2.3 2.1 4.8 2.6 2.5 2.9 1.6
Ho 0.45 0.58 0.44 0.44 0.83 0.44 0.44 0.44 0.26
Er 1.22 1.73 1.33 1.2 2.1 1.27 1.21 1.14 0.7
Tm 0.19 0.26 0.22 0.15 0.27 0.19 0.18 0.14 0.1
Yb 1.15 1.79 1.27 1.1 1.76 1.08 1.08 0.89 0.64
Lu 0.19 0.25 0.18 0.15 0.25 0.16 0.15 0.12 0.1
Hf 4.1 5.7 2.5 2.9 6.8 3.9 4.5 4.5 3.6
Ta 0.63 0.98 1.66 0.79 1.27 0.69 0.83 0.69 0.84
Pb 36 12.8 23 19 184 14.9 44 31 21
Th 10 12.5 19.4 2.9 17.5 10.2 11.6 14.1 10.3
U 3 4.3 6.7 1.4 5.6 3.4 3.8 2.7 2.7

Sr/Y 34 21 22 33 23 39 29 58 107
(La/Yb)n 15.28 12.40 11.25 14.39 27.56 21.28 20.17 46.58 31.30

Note: Mg# = Molar 100 × MgO/(MgO + FeO). The contents of trace and REE elements were predominantly
determined by ICP MS. The contents of trace and REE elements in a few samples from Sora and Erdenetiin
Ovoo deposits, marked with asterisk symbol (*), were determined by X-ray fluorescence analysis (Rb, Sr, Zr, Nb,
and Y), atomic absorption spectroscopy (Ba and Cs), and the neutron activation method (other elements).

7. Petrogenesis and Sources of Magmas

Porphyry Cu(Mo) and Mo(Cu) mineralization that occurred within the southern margin of the
Siberian craton include two groups of deposits: (1) deposits that were formed from the Early Paleozoic
to Late Paleozoic–Early Mesozoic in accretion-collision zones along the margin of the Siberian continent
(Aksug porphyry Cu, Sora porphyry Mo–Cu, and Erdenetiin porphyry Cu–Mo); and (2) deposits that
formed in the collision zone of Siberian and North China–Mongolia continents during the Mesozoic
(Zhireken porphyry Mo–Cu and Shaktama porphyry Mo).
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7.1. Paleozoic–Early Mesozoic Deposits

7.1.1. Geochemistry of Mafic Rocks

Aksug. The gabbroic rocks from both plutonic and porphyry suites from the Aksug deposit
are calc-alkaline and characterized by relatively low SiO2 (from 50.35 to 54.12 wt %), TiO2 (average
0.94 wt %), MgO (average 4.71 wt %), Mg# (average 43), and high Al2O3 (average 17.61 wt %). They
have K2O/Na2O with an average of 1. The contents of compatible elements are low (Ni < 21,
Cr < 25 ppm). The contents of Rb, Sr, and Ba are lower than 100, 600, and 500 ppm, respectively.
The gabbroic rock show depleted total REE contents, ranging from 34 to 62 ppm.

Sora. The gabbroic rocks of Sora deposit are high-K calc-alkaline with SiO2 contents ranging
from 48.85 to 53.3 wt %. They are enriched with MgO (average 6.19) and TiO2 (average 1.50 wt %),
and show elevated Mg# values (52) relative to the Aksug gabbroic samples. They are characterized by
significantly lower K2O/Na2O ratios (0.44) compared to the Aksug, and elevated Ni and Cr contents
ranging from 20 to 133 and from 56 to 442 ppm, respectively. The Rb contents are low (<70 ppm),
while Sr and Ba are highly variable in contents, ranging from 517 to 2333 and from 305 to 2100,
respectively. The average total REE content in gabbro is 172 ppm and in gabbro porphyry is 216 ppm.

Erdenetiin Ovoo. The gabbroic samples from Erdenetiin Ovoo are calc-alkaline to high-K
calc-alkaline, and they show SiO2 abundances ranging from 50.60 to 53.95 wt %. Average TiO2

(1.16 wt %) and MgO (5.75 wt %) contents are lower relative to the Sora gabbroic rocks, but higher
compared with the Aksug mafic samples. Trace elements contents are generally comparable to those
from Sora mafic samples. The gabbro and gabbroic porphyries show average Ni of 31 and 95 ppm,
Cr of 278 and 178 ppm, Rb of 39 and 17ppm, Sr of 998 and 1484 ppm, Ba of 441 and 678 ppm, and total
REE of 178 and 123 ppm, respectively.

7.1.2. Origin of Mafic Rocks

Rocks of porphyry Cu–Mo and Mo–Cu deposits from the Altai-Sayan segment and Northern
Mongolia show positive εNd(t) values and (87Sr/86Sr)i ratios close to the mantle values (Table 2).
εNd(t) and (87Sr/86Sr)i values were calculated to the age of rock formation from U–Pb zircon and
40Ar/39Ar dating [55,56,102]. In the εNd(t)–(87Sr/86Sr)i diagrams, the Sr and Nd isotope compositions
of the deposits lie close to the mantle array (Figure 8A–C). The εNd(t) and (87Sr/86Sr)i values for
igneous rocks of Aksug are +8.0–+6.1 and 0.7011–0.7035, respectively. The estimated Nd model ages
TNd(DM1st) for Aksug is 0.57–0.85 Ga. The rocks from the Sora and Erdenetiin Ovoo deposits show
lower εNd(t) values and slightly higher (87Sr/86Sr)i ratios. The εNd(t) and (87Sr/86Sr)i values of
the Sora samples range from +3.4 to +0.3 and from 0.7040 to 0.7046, respectively. The Erdenetiin
Ovoo rocks show εNd(t) ranging from +4.1 to +1.5 and (87Sr/86Sr)i ranging from 0.7041 to 0.7047.
The estimated TNd(DM1st) ages for the rocks of the Sora and Erdenetiin Ovoo deposits are 0.79–1.11
and 0.65–0.98 Ga, respectively. Low (87Sr/86Sr)i ratios and positive εNd(t) values in these mafic rocks
indicate that their parental magmas were likely derived from mantle.

Typical arc magma characteristics for the Aksug, Sora, and Erdenetiin Ovoo samples such as the
enrichment in large-ion lithophile elements (LILE) and light rare-earth elements (LREE), depletion
in heavy rare-earth elements (HREE) and high-field-strength elements (HFSE) and negative Nb, Ta,
and Ti anomalies (Figure 9A,B) indicate that magmas parental for these mafic rocks were derived from
a lithospheric mantle previously metasomatized by slab fluids/melts. High Ba contents relative to
Th support mantle enrichment by slab-derived fluids for the magmas of mafic rocks at Aksug, Sora,
and Erdenetiin Ovoo deposits. Low La, Ce, Zr, and Hf (<10 ppm) contents in Aksug mafic rocks and
their elevated contents in Sora and Erdenetiin Ovoo (>10 ppm) point to a more depleted mantle source
for porphyry Cu-rich Aksug deposit relative to the Sora and Erdenetiin Ovoo deposits with higher
molybdenum proportion in ores. Relatively low contents of compatible elements in gabbroic samples
suggest their petrogenesis via crystal fractionation of mantle-derived melt.
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Table 2. Summarized isotopic and geochronological data for the plutonic rocks and ore-related
porphyries from representative porphyry Cu(Mo) and Mo(Cu) deposits of the southern margin of the
Siberian craton.

Deposit Lithology Age (Ma) (87Sr/86Sr)i εNd(t) TNd(DM1st) (Ga) References

Aksug,
Altai-Sayan

segment, Russia

plutonic series: gabbro,
diorite, tonalite,
plagiogranite

504.1 ± 5.2
(SHRIMP U–Pb zircon) 0.70216–0.70347 +6.1–+8.0 0.57–0.85

[54,56]
porphyry series: tonalite
porphyry, granodiorite

porphyries

500.4 ± 5.9; 499.2 ± 6.3
(SHRIMP U–Pb zircon) 0.70110–0.70298 +6.6–+7.7 0.59–0.68

Sora,
Altai-Sayan

segment, Russia

plutonic series: gabbro,
monzodiorite,
leucogranite

480–420
(40Ar/39Ar dating) 0.70399–0.70436 +0.9–+3.4 0.8–1.1

[43,51,55]
porphyry series:

monzodiorite, syenite,
granite porphyries

405–370
(40Ar/39Ar dating) 0.70407–0.70460 +0.3–+2.4 0.79–1.0

Erdenetiin Ovoo,
Northern
Mongolia

plutonic series: diorite,
monzonite, granodiorite

258–247
(40Ar/39Ar dating) 0.70413–0.70437 +1.9–+4.1 0.67–0.98

[54,102]
porphyry series: diorite,

granodiorite porphyries
235–220

(40Ar/39Ar dating) 0.70418–0.70465 +1.5–+4.0 0.65–0.77

Zhireken,
Eastern

Transbaikalia,
Russia

plutonic series: diorite,
quartz monzonite, granite

164–161
(SHRIMP U–Pb zircon) 0.70501–0.70542 −10.3–−1.4 1.1–1.5

[46,52,54]porphyry series:
monzonite, monzogranite,

granite porphyries

161–158
(SHRIMP U–Pb zircon) 0.70451–0.70633 −3.7–+1.0 0.75–1.1

Shakhtama,
Eastern

Transbaikalia,
Russia

plutonic series: diorite,
monzonite, granodiorite

163–159
(SHRIMP U–Pb zircon) 0.70712–0.70732 −2.7–−0.3 0.89–0.95

[53,54,60]porphyry series:
monzonite, granite

porphyries

160–153
(SHRIMP U–Pb zircon) 0.70741–0.70782 −1.4–+2.1 0.67–0.94

According to the Sr–Nd isotopic data, the Aksug gabbro show depleted signatures with a high
εNd(t) of +6.7–+7.4 and a low (87Sr/86Sr)i of 0.7022–0.7029 (Figure 8A), suggesting that the magma
originated from a depleted mantle. The initial Sr isotopic and Nd ratios of the Sora gabbro range from
0.7043 to 0.7044 and from +1.8 to +2.2, respectively. The Sora gabbro porphyry yield εNd(t) of +0.7
and (87Sr/86Sr)i of 0.7041. The Erdenetiin Ovoo gabbro yield a εNd(t) value and a (87Sr/86Sr)i value
of +2.7 to +3.2 and of 0.7041 to 0.7041, respectively. Postore basalt dykes show εNd(t) ranging from
+2.2 to +2.5 and (87Sr/86Sr)i ranging from 0.7042 to 0.7043. In summary, Sr and Nd isotopic data for
the Sora and Erdenetiin Ovoo mafic samples suggest that the protolith magmas were sourced from
a moderately enriched mantle.
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Figure 8. Diagram of εNd(t)–(87Sr/86Sr)i for magmatic rocks from the Aksug (A); Sora (B) and
Erdenetiin Ovoo (C). The initial Sr and Nd isotopic ratios have been calculated at the ages based on
U–Pb and 40Ar/39Ar dating [55,56,102].
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REE patterns display gentle slope from Gd to Lu for mafic rocks from Aksug and steep slope
for the Sora and Erdenetiin Ovoo gabbroic rocks (Figure 9B). Relatively low (Tb/Yb)n ratios (<1.8)
in the most primitive samples from Aksug are likely attributed to residual spinel in the source [113].
The higher (Tb/Yb)n ratios (>1.8) observed in mafic rocks from Sora and Erdenetiin Ovoo suggest that
their magmas were formed in the presence of residual garnet. The TDM model ages for gabbroic rocks
from Aksug of ~0.8 Ga and Sora of ~1 Ga correspond to the Paleo-Asian Ocean opening [114].Minerals 2016, 6, 125 21 of 36 
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7.1.3. Geochemistry and Origin of Granitoid Rocks

Granitoid samples from Aksug, Sora, and Erdenetiin Ovoo deposits are characterized by
a certain similarity in petrogeochemical composition, alkalinity, trace element content, and Sr isotopic
composition with their precursor mafic rocks. They show enrichment in LREE and depletion in HREE
with positive Pb, Sr, and negative Nb, Ta, and P anomalies. Similar to mafic rocks, granitoid samples
from the Aksug are depleted in lithophile trace elements relative to the Sora and Erdenetiin Ovoo
granitoid samples.

Aksug. Sr–Nd isotopic characteristics (Figure 9A, Table 2) suggest a significant contribution of
mantle material in the formation of granitoid magmas at Aksug. Mafic and granitoid samples show
relatively similar geochemical characteristics and overlapping initial Sr and Nd compositions. Diorites
have REE patterns with a gentle slope, moderately enriched in LREEs with negative Eu anomaly
(Figure 10), low (La/Yb)n (<10), Sr/Y (<20) ratios and relatively high Yb (>1.8 ppm) and Y (>18 ppm)
contents, indicating an absence of residual garnet, considerable residual plagioclase in the source
magma, or fractionation during magmatic evolution. Consequently, it can be inferred that the diorites
were originated under low-pressure conditions.
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The Aksug tonalite-plagiogranite rocks from plutonic and porphyry suites show adakite-like
geochemical signatures. They have low Y (3.9–6.7 ppm) and Yb (0.40–0.69 ppm) contents and elevated
Sr/Y (38–152) and (La/Yb)n (10–23) values. Chondrite-normalized REE patterns show a lack of Eu
anomalies and steep slopes (Figure 10). Partial melts of a deep (>40 km) basaltic source will have the
high Sr/Y and La/Yb ratios and low Y and Yb contents seen if both garnet and amphibole but not
plagioclase are residual in the source. The coeval occurrence of contrasting high-pressure indicators
suggests that the Aksug quartz diorite and adakitic tonalite-plagiogranite magmas were generated
under different melting conditions.

A lack of correlation between εNd and MgO (Figure 11) could be interpreted as being due to
partial melting/fractional crystallization without a high level of contamination/assimilation during the
generation and evolution of the Aksug magmas. A lack of adakitic geochemical signatures and elevated
contents of incompatible elements in diorites probably suggest their derivation via differentiation of
basaltic magma in high-level magma chambers at a depth <20 km. The generation of Aksug adakitic
magma is consistent with the basalt partial melting in a mafic lower crust at high pressure where garnet
is stable as a residual phase. Relatively high εNd(t), ranging from +6.6 to +7.7, low Sri (0.7011–0.7029),
young TDM (0.6–0.7 Ga) model ages, and adakite-like geochemical characteristics suggest that the
tonalite-plagiogranite magmas may have been generated by a partial melting of a basaltic lower
crustal source formed by an underplating of earlier depleted mantle-derived mafic magmas. Similar
geochemical signatures and Sr–Nd isotopic compositions for the gabbroic and felsic rocks suggest
their derivation from similar sources.

Sora. The composition of plutonic and porphyry rocks at Sora deposit varies from gabbros
to granites with SiO2 contents ranging from 47.91 to 73.7 wt %. There is a composition gap at
the interval of SiO2 ~62–65 wt %, which is inconsistent with a continuous fractionation process.
The (Na2O + K2O)–SiO2 diagram for the less altered samples shows the presence of two different
magmatic evolution trends (Figure 7A). The first trend evolves from gabbro to syenite, and the second
from gabbro to granite. The granitoid samples with elevated K2O + Na2O contents (monzonites) form
a single linear trend with the mafic rocks, while granitoid samples with lower K2O + Na2O contents
(leucogranites and granite porphyries) form a group that falls on the right side of the trending line.
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The monzonitic rocks show elemental geochemistry (e.g., relatively high Rb, Ba, U, Sr, La, Ce, Yb,
and Lu) and Sr isotopic compositions similar to the gabbroic rocks, which indicates that the two rock
suites share a similar origin. Initial 87Sr/86Sr values range from 0.7043 to 0.7044 and from 0.7043 to
0.7045 in the monzonitic rocks and gabbro/monzogabbro, respectively. The CaO, MgO, FeO, TiO2, and
compatible element contents display a negative correlation with SiO2 for gabbroic to monzonitic rocks,
while alkalis, Rb, Ba, and HFSE, show a positive correlation with SiO2. These facts indicate that the
gabbro-monzonitic series of both plutonic and porphyry suites may have been produced by fractional
crystallization of basaltic parental magma.

The presence of two trends in compositional evolution, as well as a gap in SiO2 content suggests
that granites within both suites could not be interpreted as the products of fractional crystallization of
monzonites. The decrease in alkalinity could not result from the feldspar fractionation, as the samples
do not exhibit a pronounced negative Eu or Sr anomaly (Figure 12A,B). REE patterns with a gentle
slope for monzonite and steep slope for leucogranite (Figure 12B) require the generation of melts at
different depths, where residual garnet was absent/present, respectively.

The intermediate monzonitic rocks of the Uibat pluton (monzonite, monzodiorite, quartz
monzonite) show higher εNd(t) values than the gabbro/monzogabbro: monzodiorite +3.4, monzonite
+3.0, quartz monzonite +3.4. Calculated Nd model ages TDM for monzonitic rocks vary from 0.84
to 0.91 Ga. On the εNd–(87Sr/86Sr)i diagram (Figure 9B) leucogranites, granite porphyries and
gabbro-porphyrites fall close to the monzogabbro of pluton, the mantle array, and the CHUR line,
while monzonites are plotted aside from them. The steep REE pattern with (La/Yb)n ~23–28 and the
absence of negative or negligible Eu anomalies for granitoid samples imply that the garnet was in
equilibrium with the partial melt and that the source was plagioclase-free (Figure 12B). Taking into
account isotopic and REE data, it is suggested that the parental melts for leucogranite and granite
porphyries are not genetically related to the monzonitic magmas. They may have been derived from
the partial melting of basaltic protolith (similar in composition to gabbro and gabbro porphyrite) in
the deeper lower crust, where garnet was stable as a residual phase after the melting. The calculated
Nd model age TDM for leucogranites and granite porphyries is 1.0 and 0.9 Ga, respectively. They are
close to the Nd model ages of the gabbroic rocks, suggesting a dominant role of the mantle source in
the origin of granitoid rocks.
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In the εNd(T)–(87Sr/86Sr)i diagram, the isotopic compositions of calc-alkaline granitoids are 
shifted towards gabbro, the mantle array, and the CHUR line compared to the high-K calc-alkaline 
monzonitic rocks (Figure 9C). The εNd(t) values for calc-alkaline leucogranite and granite 
porphyries are +1.9 and +1.5, respectively. The εNd(t) values for high-K calc-alkaline monzonitic 
samples are higher, ranging from +3.8 to +4.1 for plutonic rocks and from +3.2 to +4.0 for the 

Figure 12. Diagram of primitive-mantle normalized trace elements patterns (A) and chondrite-normalized
REE patterns (B) for typical granitoid samples from the Sora deposit. Primitive mantle and chondrite
normalizing values are after McDonough and Sun [112].

Erdenetiin Ovoo. Like the Sora magmatic samples discussed above, Erdenetiin Ovoo rocks can be
divided into two groups. Based on the K2O vs. SiO2 classification diagram, the first group belongs
essentially to high-K calc-alkaline rocks evolving from gabbroic to felsic composition. The second group
is represented by granitoids that fall within calc-alkaline field (Figure 7B). Both high-K calc-alkaline
(monzonites and quartz monzonites) and calc-alkaline (granodiorites, granites) granitoids have similar
SiO2 contents, but show distinct major element (K, Na, and Mg) and REE compositions. The high-K
calc-alkaline granitoids have in general higher contents of K2O and MgO compared to the calc-alkaline
felsic rocks with similar SiO2 contents. Chondrite-normalized REE diagrams show a gentle slope
and negative Eu anomaly for the high-K calc-alkaline granitoits, suggesting an evolution of magma
under low pressure conditions in which plagioclase was a stable mineral (Figure 13). In contrast,
the calc-alkaline granitoid samples display a steeper slope of REE patterns with no Eu anomalies.
These geochemical features suggest that the magma equilibrated with amphibole and garnet-bearing
mineral residues. Therefore, it is reasonable to conclude that the high-K calc-alkaline and calc-alkaline
melts were probably generated at different depths.
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In the εNd(T)–(87Sr/86Sr)i diagram, the isotopic compositions of calc-alkaline granitoids are
shifted towards gabbro, the mantle array, and the CHUR line compared to the high-K calc-alkaline
monzonitic rocks (Figure 9C). The εNd(t) values for calc-alkaline leucogranite and granite porphyries
are +1.9 and +1.5, respectively. The εNd(t) values for high-K calc-alkaline monzonitic samples are
higher, ranging from +3.8 to +4.1 for plutonic rocks and from +3.2 to +4.0 for the porphyry samples.
The calculated Nd model age TDM for the gabbroic rocks is ~0.9 Ga. The granitoids yield a εNd(t)
value from 0.7 to 0.8 Ga. Thus, the REE and isotopic data suggest that the parental granitoid melts
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are not genetically related to the monzonitic melts. Like the Sora granitoid rocks, the calc-alkaline
granitoids from Erdenetiin Ovoo were probably derived by partial melting of basaltic protolith at the
bottom of lower crust. This suggestion is also supported by the plots of Erdenetiin Ovoo calc-alkaline
granitoids within the adakite field on (La/Yb)n vs. Ybn and Sr/Y vs. Y discrimination diagrams
(Figure 14). The most widely accepted model for generating adakitic magmas involves the partial
melting of a mafic protolith, which has been transformed into either amphibolite, garnet amphibolite,
or eclogite at a pressure of at least 12 kbar (corresponding to a depth of at least 40 km). High-K
calc-alkaline monzonitic rocks, showing low Sr and elevated Y contents, were crystallized at a lower
pressure of <8 kbar (within the plagioclase-pyroxene stability field).
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7.2. Mesozoic Deposits

7.2.1. The Most Primitive Rocks

Zhireken. The most primitive samples at Zhireken are composed of gabbro in the plutonic series
and monzonite porphyries in the porphyry series. The gabbroic samples from the plutonic series
show relatively high MgO (up to 8.84 wt %), Ni, Cr, V, and Sc contents (up to 101, 216, 360 and
52 ppm, respectively), and a high Mg# value (67). The contents of Rb and Ba are low (17 and 72 ppm,
respectively). They are mainly metaluminous (A/CNK = 0.64–0.75) and exhibit high-K calc-alkaline
features. Trace and REE distribution diagrams for typical Zhireken rocks are presented on Figure 15A,B.
In contrast to mafic samples of Paleozoic–Early Mesozoic deposits of Siberia and Mongolia discussed
above, the Zhireken gabbro show a pronounced negative Ba anomaly (Figure 15A). This results in high
Rb/Ba and Th/Ba (>1) ratios in gabbro, consistent with the suggestion that their precursor melts were
derived from a mantle that had been metasomatized predominantly by melts [116]. A relatively low
εNd(T) value (−1.4) and a (87Sr/86Sr)0 value of 0.70501 in gabbro probably imply an involvement of
the crustal component in the source. Figure 16 shows an isotope correlation diagram (εNd vs. initial
87Sr/86Sr) for the Zhireken rocks. The Sr–Nd isotopic characteristics of gabbro are similar to those
of enriched mantle type I. The estimated TNd(DM-1st) age for gabbro is 1.1 Ga, suggesting that the
mantle source resulted from being metasomatized by the interaction with the Precambrian crust.
A relatively high (Tb/Yb)n value of 1.9–2.06 in the gabbro implies that the basaltic magma was derived
from a source at pressures high enough to stabilize the garnet [113].
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Two possible mechanisms are generally assumed to account for the petrogenesis of mafic rocks
with low εNd and high 87Sr/86Sr values: (1) they result from the mixing of mantle-derived and crustal
melts during magma ascent [1]; or (2) they are derived from the upper mantle metasomatized by melts
from deeply recycled subducted continental crust and/or a delaminated thickened lithosphere. The last
model (crustal recycling) is typical of collisional zones [117–119]. The magmatic events at Zhireken
deposit occurred during continental collision, which is favorable for crustal thickening and the
subsequent mantle interaction with the foundered continental crust. Geological data suggest that the
continental crust in Transbaikalia had previously been thickened by abundant calc-alkaline magmatism
in an Andean-type setting on the border of the closing Mongol–Okhotsk Ocean by widespread
collisional to post-collisional thrusting, and by extensive alkaline-peralkaline magmatism [120].
We therefore propose that the mantle source of gabbroic rocks from the Zhireken may have been
resulted from the upper mantle metasomatized by melts from the foundered recycled lower crust.
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(0.95 ppm), a high Sr/Y ratio (60), and negligible Eu anomaly (Eu/Eu* = 0.88) (Figure 15B) suggest the 
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The content of SiO2 and MgO in Zhireken gabbro-diorite is 51.60 and 4.91 wt %, respectively.
The Mg# value (49) is lower than that in gabbro. The εNd(t) value for gabbro-diorite is −1.8, similar to
those for the gabbroic samples (Figure 16). Contents of compatible elements (Cr and Ni) are lower
while incompatible elements (Ba and Rb) are more abundant than those in the gabbro. All of these
characteristics suggest crystal fractionation of mantle-derived basaltic melt for the petrogenesis of
gabbro-diorite. The increased (87Sr/86Sr)i in gabbro-diorite (0.70542) relative to gabbro probably
suggests some crustal contamination from derivatives of basaltic melts. Low Y (14.3 ppm) and Yb
(0.95 ppm), a high Sr/Y ratio (60), and negligible Eu anomaly (Eu/Eu* = 0.88) (Figure 15B) suggest the
derivation of gabbro-diorite melt in the source area at (or near) the mantle–crust boundary.

The most primitive porphyry rocks at Zhireken are monzonite porphyry. The contents of SiO2,
MgO, and Mg# value in monzonite porphyry are 56.12–59.00 wt %, 4.91–5.57 wt %, and 53–55,
respectively. The contents of Ni and Cr are relatively high, up to 169 and 290 ppm, respectively.
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The major and trace (Ni, Cr) element compositions of the monzonite porphyry resemble that of
high-Mg andesites (diorites) [121,122]. The high contents of Ni and Cr in monzonite porphyry probably
imply melt equilibrium with mantle olivine in the mantle source. Metasomatized mantle, as one of
the possible sources, has been proposed to account for an origin as of high-Mg diorite/andesite [121].
The εNd(t) values in monzonite porphyries, ranging from −1.7 to −2.1, are slightly lower, while
(87Sr/86Sr)i (0.70535) and LILE contents are slightly higher than those in gabbro (Figures 15A and 16),
implying a greater incorporation of ancient continental crust components in the mantle source of
porphyry intrusions.
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Shakhtama. The Shakhtama rocks are predominantly metaluminous, I-type high K calc-alkaline
to shoshonitic in composition. The most primitive rocks at Shakhtama are diorites (SiO2 up to
57.9 wt %) and monzodiorite porphyries (SiO2 up to 54.63 wt %). A trace element spider diagram
shows positive Rb, U, Th, and Pb, negative Ba, Ta, Nb, and Ti, and negligible negative Sr anomalies
(Figure 17A). Diorites and monzodiorite porphyry have similar chondrite-normalized REE patterns
with a negative slope, displaying high contents of LREE, lowered medium REE (MREE), low HREE,
and a small negative Eu anomaly (Figure 17B). The samples show adakite-like signatures characterized
by low contents of Y (13.3 and 14.5 ppm), Yb (1.13 and 1.08 ppm), high La/Yb (15 and 29) in diorite,
and monzodiorite porphyry, respectively. The diorite samples show relatively high MgO (up to
8.62 wt %), a high Mg# value (69), and high compatible trace element contents: Ni (up to 197 ppm),
Cr (up to 768), and V (up to 147ppm). The monzodiorite porphyry have Mg# up to 66; MgO, Ni, Cr,
and V up to 9.48 wt %, 272 ppm, 498 ppm, and 145 ppm, respectively. Both diorite and monzodiorite
porphyry samples are characterized by high Rb (up to 120 and 400 ppm), high Ba (up to 530 and
1100 ppm), and moderate Sr (up to 480 and 600) contents, respectively.

The contents of MgO (3.42–7.12 wt %), Ni (70–260 ppm), Cr (155–429 ppm), Rb (143–346 ppm),
and Ba (687–1058 ppm) in the monzonite porphyry are higher relative to monzonites from the plutonic
series and lower relative to the monzodiorite porphyry. The monzonite porphyry shows a higher εNd(t)
value (+2.1) and an elevated (87Sr/86Sr)i ratio (0.70765) relative to the precursor diorite, the monzonite,
and the monzodiorite porphyry (Figure 18). These features indicate that the precursor plutonic rocks
(diorites and monzonites) could not be the protolith for the melts parental for monzonite porphyry.
Furthermore, the monzonite porphyry could not be formed by the differentiation of monzodiorite
porphyritic magma. The Nd isotopic composition of monzonite porphyries is comparable to that of
the juvenile crust for the magma source, formed during subduction of the Mongol–Okhotsk Ocean
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plate [123]. Therefore, it is reasonable to suggest the involvement of the juvenile crust, contributed by
mantle-derived magmatic underplating in response to the subduction of the Mongol–Okhotsk Ocean
plate and subsequent collision of Siberian and Mongolia–North China continents. The monzonite
porphyry shows higher (La/Yb)n (30–48) and Sr/Y (21–46) ratios, compared to those for monzonite,
suggesting the generation of porphyry magma at deeper levels.
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7.2.2. Granitoid Rocks

Zhireken. The granites from the plutonic series show a negative εNd(t) value of −10.3 (Figure 16)
and a Nd model age of 1.5 Ga, indicating a contribution of ancient continental crustal components
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to their source. However, they have a relatively high Mg#, up to 48, a relatively low (87Sr/86Sr)i

(0.70534) value, and trace- and rare-earth element patterns quite similar to those of the gabbroic
samples (Figure 15B), implying an important role of the mantle component in their genesis. All of
these features suggest that these granites were likely the result of the melting crustal components in
response to the intrusion of mantle-derived mafic melts into the deep crust and the mixing between
mafic mantle-derived and crustal melts. The granites display low Y and Yb contents (11.5 and 1.02,
respectively), a high Sr/Y ratio (44), and a fractionated REE patterns (Figure 15B) with relatively
high (La/Yb)n ratios, a low Ybn, and a weak negative Eu anomaly (Eu/Eu* ~0.6). This is consistent
with the fact that the granitoid magma was generated in the lower crust and experienced plagioclase
fractionation during its ascent to the upper level of the crust.

Felsic porphyry samples show εNd(t) values close to gabbro from the plutonic series, ranging
from −1.6 to −2.2 (Figure 16). The strontium isotopic composition and relatively high Mg# values
(30–35) in granite porphyries, as well as the quite similar trace element spidergrams and REE patterns
for the granitic porphyry and mafic samples (Figure 15A,B), suggest genetic relations between felsic
porphyry and mafic magmas. The Nd model age in the granitic porphyry is lower (0.7 Ga) compared
with those in the granites (1.5 Ga).

The porphyry series at the Zhireken deposit include rocks of two types: (1) porphyries
with adakite-like geochemical signatures and (2) porphyries with typical arc-like characteristics
(Y > 18 ppm, Yb > 1.18 ppm, and Sr/Y < 30) with a relatively low Mg# (10–20) and Eu/Eu* ratio
(0.35–0.40). Adakite-like rocks are characterized by elevated K2O contents and K2O/Na2O ratio
of ~1. Similar K-adakitic rocks were described in orogenic units of Tibetan Plateau hosting Cu–Mo
deposits [124]. Experimental data [125] have shown that K-adakitic melts can be produced by a high
pressure (>20 kbar) partial melting of relatively felsic (TTG type) protolith. Adakite-like geochemical
characteristics of the Zhireken porphyry rocks and Nd isotopic composition similar to those for the
Zhireken mafic samples likely suggest an involvement of the juvenile crust into their source, formed
by the underplating of mantle-derived basaltic magmas. The Zhireken magmas, lacking adakite-like
signatures, were probably generated at a shallower level of lower crust.

The granitoid rock samples from the plutonic and porphyry series show some differences in Nd
isotopic composition. Variations in the εNd(t) are probably caused by the incorporation of Precambrian
crustal components in variable proportions in the magma source. The higher εNd(t) values and lower
Nd model ages of the porphyry rocks relative to granites from the plutonic series imply a higher
contribution of juvenile mantle-derived material to the fertile magmas of the porphyry series.

Shakhtama. The granites and granite porphyries from Shakhtama have relatively high MgO (2–4
and 1–2 wt %), Ni (up to 42 and 43 ppm), and Cr (up to 143 and 110 ppm) contents and a high Mg#
(55–62 and 40–62), respectively. In addition, granitoids show similar primitive mantle-normalized
incompatible element distribution patterns (Figure 17A), characterized by a significant enrichment of
LILE relative to HFSE. Chondrite-normalized REE distribution patterns of the granites and granite
porphyries are similar to those of the most primitive precursor rocks (Figure 17B). These features
probably suggest an involvement of mantle-derived component in the petrogenesis of granitoid rocks.
The granites show a lower εNd(t) value (−2.7) and an elevated (87Sr/86Sr)i ratio (0.70732) relative to
the precursor high-Mg diorite. Their two-stage Nd model age is ~1.2 Ga, implying a contribution from
the Precambrian source rocks. These geochemical characteristics suggest that the granite might be
derived from interaction of high-Mg dioritic melts with crustal component.

The sample of granitic porphyry exhibits a εNd(t) value of +2.0, a (87Sr/86Sr)i value of 0.70782,
and a two-stage Nd model age of 0.8 Ga, which is similar to those of the precursor monzonite
porphyry. These geochemical characteristics suggest that granite porphyry were produced by a partial
melting of the juvenile crust and/or the crystallization differentiation of the monzonite porphyry
magma. Additionally, relatively high MgO, Ni, and Cr contents in granite porphyry may reflect some
contribution from high-Mg mantle-derived magmas. Collectively, the Shakhtama granite porphyry
was likely generated by the partial melting of the juvenile crust modified by high-Mg mantle-derived
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melts. Geochemical and isotopic features of Shakhtama granitic rocks imply a heterogenous crustal
source in their petrogenesis including juvenile and ancient crustal components. The derivation of
melts related to the formation of plutonic and porphyry rocks involved variable amounts of old lower
crust and juvenile crust. Isotopic data imply a large contribution of juvenile mantle-derived material
to the granitoid magmas of the ore-bearing porphyry series and Precambrian crustal components to
the magma of the granites of the plutonic series.

In summary, adakite-like magmas of monzonites, granites, monzonite, and granite porphyries
were probably generated near the base of the lower crust. High-Mg mantle-derived melts caused
the partial melting of the continental crust. Granitoid magmas parental for the plutonic series were
generated via the melting of the Precambrian crust and the interaction with high-Mg melts, while
granite porphyry melts were probably generated at deeper levels by a partial melting of the juvenile
crust. Monzonitic magmas may have been derived by the mixing of high-Mg mantle-derived melts
with granitoid melts.

8. Conclusions

Based on the available geochronological data, three epochs of porphyry Cu–Mo mineralization
can be recognized within the southern margin of the Siberian craton, i.e., Early-Middle Paleozoic,
Late Paleozoic–Early Mesozoic, and Mesozoic. In general, the deposits delineate a trend of decreasing
age with decreasing Cu/Mo ratios, εNd(t) values, and increasing initial 87Sr/86Sr ratios from
west to east. Early-Middle Paleozoic and Late Paleozoic–Early Mesozoic deposits were formed
in accretion-collision zones along the margin of Siberian continent, and Mesozoic deposits occurred in
the collision zone of the Siberian and North China–Mongolia continents.

Available geochemical and isotopic data show that the magmas related to porphyritic Cu(Mo)
and Mo–Cu mineralization during the Early Paleozoic and Late Paleozoic–Early Mesozoic were mainly
derived from mantle materials. The contents of trace elements suggest a more depleted mantle source
for the magmatic rocks in Cu-rich Aksug deposits relative to the Sora and Erdenetiin Ovoo deposits
with higher molybdenum proportion in ores.

The generation of fertile melts, related to porphyritic Mo(Cu) mineralization during the Jurassic,
involved variable amounts of metasomatized mantle source components, the ancient Precambrian crust,
and the juvenile crust, contributed by mantle-derived magmatic underplating. Variations in εNd(t)
are probably caused by the incorporation of Precambrian crustal components in variable proportions
into the magma source. Relatively high (87Sr/86Sr)i values and Nd model ages suggest a significant
involvement of the Precambrian continental crust in the magma source of Mesozoic deposits.
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