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Abstract: Bacterial contact leaching of ores is more effective than non-contact leaching. Adhesion
is the first step for leaching bacteria to form a biofilm on a mineral surface. Extracellular polymeric
substances (EPS) are pivotal for mediating bacterial adhesion to a substratum. In order to clarify the
role of EPS, we measured the adhesion forces between chalcopyrite-, sulfur- or FeSO4·7H2O-grown
cells of Acidithiobacillus ferrooxidans and chalcopyrite by an atomic force microscope (AFM) before
and after EPS removal. Surface properties of these cells were assessed by measurements of the
contact angle, zeta potential, Fourier transform infrared spectroscopy (FTIR) and acid-base titration.
Bacterial attachment to chalcopyrite was monitored for 140 min. The results indicate that the EPS
control the surface properties of the cells. In addition, the surface properties are decisive for adhesion.
The adhesion forces and the amounts of attached cells decreased dramatically after removing EPS,
which was not dependent on the preculture.
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1. Introduction

Understanding bacterial attachment to mineral surfaces is important for bioleaching and the
control of acid mine drainage [1,2]. Attachment to minerals, the initial step for bacteria to interact with
minerals, is dependent on the preculture conditions such as the ionic strength, pH and energy source.
These factors induce bacterial surface hydrophobicity, electrical properties and surface functions [1,3,4],
thereby determining how bacteria attach to mineral surfaces.

Bacteria interact with the environment via their surfaces. Thus, extracellular polymeric substances
(EPS), which cover bacterial cells, are particularly important for mediating attachment on minerals
and, finally, leaching the minerals [5–7]. EPS are mainly composed of carbohydrates, proteins, lipids,
uronic acids and extracellular DNA (eDNA). The amount and composition of EPS vary with the
energy source. Sulfur- and pyrite-grown cells of A. ferrooxidans secret five or ten times more EPS
than iron(II) sulfate-grown cells, respectively. The EPS from iron(II) sulfate- or pyrite-grown cells of
A. ferrooxidans are composed of sugars, lipids and small amounts of nitrogen, phosphorus, and free
fatty acids, while for sulfur-grown cells an increased content of lipids, free fatty acids and phosphorus
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was detected [5]. The amount of hydrophobic proteins and lipids determines the hydrophobicity of
the bacterial surface [8–10]. Bacteria grown on ferrous iron ions contain uronic acids, which complex
ferric ions and give the bacterial surface a net positive charge [9–12].

The most widely accepted theories describing bacterial adhesion to minerals are the
Derjaguin-Landau-Verwey-Overbeek (DLVO) and the extended DLVO (XDLVO) models [13–16].
The classic DLVO theory accounts for an electrostatic double layer (EL) and Liftshitz-van der Waals
(LW) interactions. In the XDLVO theory, the acid-base interactions were added to account for Lewis
acid-base interactions. Both theories are used to predict bacteria–mineral adhesion, but fail to accurately
describe the bacteria–mineral interactions during adhesion, because they exclude biological interactions
such as chemotaxis and steric interactions originating from bacterial exopolymers [13–15,17]. Because
of the weakness of these theories, until now studies on the influence of the EPS and the preculture on
bacterial adhesion have been scarce.

A direct measurement of the bacterial adhesion force is the best way to study bacteria–mineral
interactions. An atomic force microscope (AFM) equipped with a cell probe has developed rapidly to
be a useful tool for this purpose [14,15,18,19]. The term ‘cell probe’ means that cells are immobilized on
the tip of an AFM cantilever. With this AFM cantilever, interactions between cells and the substratum
can be quantified precisely [20–23]. By using a cell probe in our previous work we measured the
adhesion forces between chalcopyrite-, sulfur- or FeSO4·7H2O-grown cells of A. ferrooxidans and
chalcopyrite in an iron-free 9K medium at pH 2, and found that the preculture showed an impact on
bacterial adhesion to chalcopyrite [24]. Diao et al. investigated the effects of the energy source (sulfur
and FeSO4·7H2O) on the interaction between cells of A. ferrooxidans and silica or pyrite under different
salt concentrations [25]. However, the effect of EPS was neither studied nor discussed.

Since no studies seriously took account of EPS when they studied the interaction between leaching
bacteria and minerals, in this study we chose A. ferrooxidans ATCC 23270T to study the effect of the
EPS on the adhesion force and attachment under different culture environments. Firstly, the adhesion
forces between FeSO4·7H2O- or element sulfur- or chalcopyrite-adapted cells of A. ferrooxidans and
chalcopyrite were measured. Also the adhesion forces between EPS-deficient cells and chalcopyrite
were measured. Furthermore, the physicochemical surface properties of A. ferrooxidans were analyzed
by contact angle, zeta potential, Fourier transform infrared spectroscopy (FTIR) and acid-base titration
experiments before and after EPS removal. Finally, bacterial adhesion to chalcopyrite was recorded
over 140 min. The data contribute to an improved understanding of the influence of EPS on
bacterial attachment.

2. Materials and Methods

2.1. Strain and Growth Conditions

A. ferrooxidans ATCC 23270T was purchased from the American Type Culture Collection (ATCC,
Rockefeller MD, USA) and was cultured in 9K medium: (NH4)2SO4 3 g/L, KCl 0.1 g/L, K2HPO4·3H2O
0.5 g/L, MgSO4·7H2O 0.5 g/L, Ca(NO3)2 0.01 g/L. 4.47% FeSO4·7H2O or 1% chalcopyrite or 1%
elemental sulfur were added as energy source. All assays were incubated at 30 ◦C and 170 rpm.
The harvest of bacterial cells was carried out in the mid-exponential phase. The culture was filtered
through Whatman 42 filter paper to remove precipitates. The filtrate was then centrifuged at 10,000 rpm
for 20 min at 4 ◦C. The cell pellet was washed several times with pH 2-H2SO4 solution to obtain
metabolite-free cells. Ethylenediaminetetraacetic acid (EDTA) was used to remove EPS to obtain
EPS-deficient cells.

2.2. Preparation of Chalcopyrite Coupons

Chalcopyrite was obtained from Hunan Provincial Museum. The samples were cut into slices
with 10 mm in diameter, 1 mm in height. After that the slices were polished by using liquid diamond
paste of 6, 3, and 0.5 µm grain size on a polishing cloth. Then the polished slices were cleaned with
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70% ethanol solution and immersed in acetone to prevent oxidation. Some samples were ground into
particles with 75 µm in diameter.

2.3. The Operation of the Atomic Force Microscope

A Nanoscope V Multimode AFM (Digital Instruments) in contact mode was used to record
force-distance curves. Differently pre-grown cells of A. ferrooxidans were tested in iron-free 9K medium
at pH 2 with chalcopyrite coupons. The spring constant of microfabricated Si3N4 cantilevers was
0.57 ± 0.03 nN/nm. Force-distance curves were acquired with a constantly approaching and retracting
speed of 500 nm/s. Further details about cell immobilization and data acquisition have been described
previously [18]. After the AFM measurement, all bacteria-coated tips were checked by scanning
electron microscopy (SEM) (Figure 1).
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Figure 1. A scanning electron microscopy image of a silicon nitride tip coated with
Acidithiobacillus ferrooxidans.

2.4. Zeta Potential and Contact Angle Measurements

Cells were harvested and washed as mentioned before and then resuspended in iron-free 9K
medium at pH 2. After that 5 mL cell suspension with a cell density of 1 × 108 cells/mL was injected
into a Zetasizer Nano-ZS MPT-2 (Malvern, UK) to obtain the zeta potential of the cells. Then 1% freshly
ground chalcopyrite grains suspended in iron-free 9K medium at pH 2 were used for measuring the
zeta potential of the chalcopyrite. All the measurements were done in five times.

Contact angle of water on a chalcopyrite coupon was measured with a telescopic goniometer.
Bacterial cell layers were prepared by giving 5 mL bacteria suspension with a cell density of
1 × 1010 cells/mL onto porous membranes with a pore size of 0.22 µm. The contact angle of water on
the bacterial cell layer was measured 10 times.

2.5. FTIR Measurements

Fourier transformed infrared spectroscopy (FTIR) analyses of native and EPS-deficient cells were
performed with a Nicolet Nexus 670 FTIR Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA)
at a resolution of 4 cm−1 using a KBr beamsplitter. For the sample preparation, first obtained the native
and the EPS-deficient cells by harvesting and removing the EPS as mentioned before. After freeze
drying, the native and EPS-deficient cell samples were directly used for measuring.

2.6. Acid-Base Titration

Cells were rinsed several times in 0.01 M NaCl electrolyte and then suspended in 50 mL 0.01 M
NaCl solution (109 cells/mL). The suspension was mixed with a magnetic stirrer to ensure homogeneity.
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Acid-base titration was performed following Tourney et al. [26] and carried out using an automatic
potentiometric titrator (ZDJ-5) (Shanghai Leici Instrument Factory, Shanghai, China). Titration of
the bacterial solution was conducted under a N2 atmosphere at 25 ± 1 ◦C. To the suspension were
added initially 1 M HCl solution to adjust the pH to 2 and then titrated up to pH 11 with 0.01 M
NaOH solution. A stability of 5 mV/min was attained at each titration step and then the next drop of
titrant was added. Blank titration was carried out using 0.01 M NaCl and each titration was conducted
in triplicate.

2.7. Adhesion Test

First 50 mL iron-free 9K medium in 100 mL Erlenmeyer flasks with 1% (w/v) chalcopyrite powder
were incubated with cell at a density of 1 × 108 cells/mL at 170 rpm for 2 h. The number of planktonic
cells was then determined by directly counting using a Thoma chamber. The number of attached cells
was obtained by subtracting the planktonic cell number from initial one [18]. All tests were repeated
three times.

3. Results and Discussion

3.1. Forces between Different Cell Tips and Chalcopyrite before and after EPS Removal

Figure 2 presents force-distance curves for chalcopyrite-, sulfur- and FeSO4·7H2O-grown cells
of A. ferrooxidans immobilized on a cantilever approaching to and retracting from chalcopyrite,
respectively. A curvature was observed in the approach curves indicating repulsion (Figure 2a).
This may be due to steric or long-distance repulsive forces between the cell probe and chalcopyrite.
Similar effects were observed by other researchers [18,23,27]. This repulsive force kept increasing until
the cell probe contacted the chalcopyrite surface.
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After contact the cell probe started to retract, but because of adhesion forces the cell probe could
not separate from the chalcopyrite surface immediately. The probe kept retracting and, when the
deflection force of the cantilever overcame the adhesion force, the cell probe would separate from
the chalcopyrite surface. The adhesion peaks from the retraction curves indicate this separation
(Figure 2b). At last there was no force that could be detected as the cell probe retracted far away
from the chalcopyrite surface. The retraction curve shows complicated dynamic effects of adhesion
including bond breaking, intermolecular forces and extension of outer membrane biomolecules [28].
Comparing the values of these force peaks, we can see that chalcopyrite-grown bacteria exhibited the
highest adhesion force (1.0532 ± 0.1132 nN), followed by sulfur-grown bacteria (0.9677 ± 0.1070 nN)
and FeSO4·7H2O-grown bacteria (0.8513 ± 0.0746 nN) (Table 1). We have already obtained similar
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results previously, which demonstrates that the experiment is repeatable [24]. Culture history could
mainly account for this differentiation, because the energy source affected the cell surface structures
and properties. The adhesion force was actually a sum of various biological and physicochemical
interactions, which were dependent on cell surface structures and properties.

Table 1. Adhesion forces of different cells of Acidithiobacillus ferrooxidans to chalcopyrite in iron-free 9K
medium, pH 2.

Adhesion Force to Chalcopyrite nN

FeSO4·7H2O-grown A. ferrooxidans 0.8513 ± 0.0746
EPS-deficient FeSO4·7H2O-grown A. ferrooxidans 0.6095 ± 0.0912

Sulfur-grown A. ferrooxidans 0.9677 ± 0.1070
EPS-deficient sulfur-grown A. ferrooxidans 0.7828 ± 0.1260

Chalcopyrite-grown A. ferrooxidans 1.0532 ± 0.1132
EPS-deficient chalcopyrite-grown A. ferrooxidans 0.8335 ± 0.0841

Type IV pili of A. ferrooxidans play an important role during adhesion, because they contain
adhesins [29]. A. ferrooxidans highly expressed pili-associated proteins when high amounts of ferrous
ions were available [30]. The elongation of Gram-negative pili was one component of the forces
involved in cell adhesion [31]. Accordingly, chalcopyrite- and FeSO4·7H2O-grown cells should have
more pili-associated proteins than sulfur-grown cells. Thus, there were different contributions to the
total adhesion force. Some other publications also reported that proteins from the cell outer membrane
had a function in the recognition of the substratum, thereby conferring the cells with the ability to
adhere to minerals [28,32]. It is most likely that the amount of total protein in the EPS of the three
kinds of cells were different, because their total amounts of EPS were different [5].

Hydrophobic forces contribute considerably to microbial adhesion [33]. The energy source
can alter bacterial hydrophobicity [5]. Results shown in Table 2 indicate that the hydrophobic
forces between chalcopyrite-, sulfur- or FeSO4·7H2O-grown cells and chalcopyrite were different.
Chalcopyrite-grown cells had the strongest hydrophobicity, indicated by the largest contact angle
(33.4◦ ± 1.8◦), while FeSO4·7H2O-grown cells had the lowest one (22.1◦ ± 1.1◦). Besides hydrophobic
forces, electrostatic interactions are of importance. The values for the zeta potential in Table 2
demonstrate that in an iron-free 9K medium of pH 2, the charge of chalcopyrite was negative and the
charge of bacterial cells was positive. Thus, electrostatic interactions between bacteria and chalcopyrite
would result in attraction forces. The attractive force between chalcopyrite-grown cells and chalcopyrite
was the largest one, whereas that between sulfur-grown cells and chalcopyrite was the lowest one.

Table 2. Contact angle and surface charge of bacteria/chalcopyrite in iron-free 9K medium, pH 2.

Sample Contact Angle (◦) Zeta Potential (mV)

FeSO4·7H2O-grown A. ferrooxidans 22.1 ± 1.1 4.22 ± 0.52
EPS-deficient FeSO4·7H2O-grown A. ferrooxidans 17.6 ± 1.6 0.32 ± 0.21

Sulfur-grown A. ferrooxidans 28.3 ± 1.3 3.33 ± 0.62
EPS-deficient sulfur-grown A. ferrooxidans 19.1 ± 1.8 −0.03 ± 0.43

Chalcopyrite-grown A. ferrooxidans 33.4 ± 1.8 4.63 ± 0.48
EPS-deficient chalcopyrite-grown A. ferrooxidans 20.3 ± 1.2 0.46 ± 0.35

Chalcopyrite 60.7 ± 6.2 −52.6 ± 4.86

Figure 3 shows force-distance curves for cantilevers coated with EPS-deficient chalcopyrite-,
sulfur- or FeSO4·7H2O-grown cells of A. ferrooxidans approached to and retracted from chalcopyrite,
respectively. The results clearly show that the EPS were pivotal for the adhesion. Compared with
the values for untreated bacteria, all approach curves indicate a decreased distance of repulsion
(Figure 3a), while all the retraction curves illustrate that the distance of the “separation” event as well
as the magnitude of the adhesion force were reduced (Figure 3b). The steric effect of the EPS can be
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responsible for this change. EPS effectively increased the radius of the cellular action, which then
contributed positively to the interactions between the bacteria and minerals [1,34]. The reduced values
for the contact angle and the zeta potential demonstrate that both hydrophobicity and electrostatic
forces were reduced for EPS-deficient cells (Table 2). It is noticeable that after EPS removal, the
surface charge properties of sulfur-grown cells changed from positive to negative values. In addition,
the cellular appendages might have been destroyed by the EPS removal. Thus, we can conclude that
EPS possibly inducing cellular appendages govern the cellular surface properties and are responsible
for cell adhesion.
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3.2. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectra of cellular surfaces for chalcopyrite-, sulfur- or FeSO4·7H2O-grown cells of
A. ferrooxidans as well as EPS-deficient cells are presented in Figure 4. The spectra have quite similar
bands and represent vibrations of single bonds or functional groups resulting from carbohydrates,
proteins and lipids [35]. The band at 2926 cm−1 was characterized as an asymmetric –CH2 stretching
from fatty acids. Very intensive bands between 1750 and 1620 cm−1 indicated the –C=O group
from membrane lipids and fatty acids. Bands at 1661 cm−1 and between 1550 to 1515 cm−1 were
assigned to the –NH2 bending of the primary amide group and the –NH bending of the secondary
amide group (–CONH), respectively. Bands at 1445 and 1399 cm−1 were assigned to the bending of
the –CH3 and –CH2 groups from proteins. Bands at 1240, 1155 and 1082 cm−1 were due to –P=O
stretching from phosphate, –CH3 wagging and –CH2 twisting modes from carbohydrates, respectively.
After EPS removal, the intensity of all bands became much weaker than before. This indicated
a positive correlation between the band intensity and the EPS amount. The intensity of the bands from
chalcopyrite- and sulfur-grown cells of A. ferrooxidans is stronger than that of FeSO4·7H2O-grown ones.
Gehrke et al. [5] also reported that A. ferrooxidans produced more EPS when they were grown on solid
substrata such as pyrite or sulfur compared with cells grown on soluble substrata such as ferrous iron.
Thus, the type of surface functional groups was quite similar for differently pregrown cells; however,
the amount of the functional groups differed according to the substrata.
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Functional groups (R–NH2, R–COOH, R–OH, R–PO2) contribute to the surface potential.
Their ability to complex metal ions was reported before [36,37]. Our data confirm this. For example,
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iron ions were complexed by uronic acids in the EPS, causing them to be positively charged [38].
Sulfur-grown cells had only a few ferric iron ions complexed because of their limited amount of uronic
acids in the EPS [5], but their surface charge was still positive. Metal ions from basic salt medium,
complexed by functional groups, may be responsible for the positive charge. Furthermore, why, after
EPS removal, sulfur-grown cells exhibited a negative charge is clear: EDTA as a metal chelator removed
the metal ions from these functional groups, rendering the cells negatively charged.

3.3. Acid-Base Titration

Figure 5 shows titration curves for different cells of A. ferrooxidans in 0.01 M NaCl solution. As the
amount of the added base increased, the pH of the cell suspension increased. However, before the
pH ascended dramatically, the pH stabilized within a certain range, which illustrates that the cells of
A. ferrooxidans empowered NaCl solution buffering capacity. The deprotonation of functional groups
on the cell surface increased the solution buffering capacity to the added base. The functional groups
included carboxylic, phosphoric, phosphodiester, amino and hydroxyl groups [39]. Thus, the buffering
capacity of the cell suspension indicated the amounts of functional groups on the cell surface. Figure 5a
clearly shows that chalcopyrite-grown cell suspension could buffer 16 mL base, while 14 mL and 13 mL
base were buffered by sulfur- and FeSO4·7H2O-grown cell suspension, respectively. In another word,
the highest numbers of functional groups were found on the chalcopyrite-grown cell surface compared
to the other two. Our FTIR results confirmed the existence of these functional groups. From the spectra
we deduce that chalcopyrite-grown cells had the highest numbers of functional groups on their surface
because of the strongest bands. FeSO4·7H2O-grown cells had the weakest bands, and accordingly, the
lowest buffering capacity. After removal of the EPS, the bands were less intensive. As a consequence,
the buffering capacity of all bacterial solutions decreased. It suggests that the buffering capacity is
related to the amounts of EPS.
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3.4. Adhesion Curves

Figure 6 shows the attachment behavior of differently pre-grown cells of A. ferrooxidans and of
their EPS-deficient cells to chalcopyrite. A positive correlation was found between the adhesion force
and the amount of attached cells. Around 65% of chalcopyrite-grown cells attached to chalcopyrite,
while for sulfur- and FeSO4·7H2O-grown cells only 60% or 55% attached, respectively. The ability of
adhesion was reduced after the removal of EPS. For sulfur- and FeSO4·7H2O-grown cells, the number
of attached cells decreased approximately by 25%, and by 15% for chalcopyrite-grown cells. Thus, EPS
were mainly responsible for cell attachment.
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