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Abstract: A performance monitoring study of an electric rope shovel operating in an open pit
coal mine was conducted. As the mining industry moves toward higher productivity, profitability
and predictability, the need for more reliable, productive and efficient mining shovels increases.
Consequently, it is critical to study the productivity of these machines and to understand the effect of
different operational parameters on that. In this paper a clustering analysis is performed to classify
shovel digging effort and behaviour based on digging energy, dig time and payload per pass. Then
the influence of the operator on the digging efficiency and productivity of the machine is analyzed
with a focus on operator technique during digging. A statistical analysis is conducted on different
cycle time components (dig time, swing time, return time) for different operators. In addition to time
components, swing and return angles as well as loading rate and mucking rate are observed and
analyzed. The results of this study help to understand the effect of different operators on the digging
productivity of the shovel and then to set the best operator practice.

Keywords: electric rope shovels; productivity; digging energy; operator; digging time

1. Introduction

Loading efficiency has a critical role in the success of the mining process as the loading equipment
is the source of ore supply [1] or waste removal. An efficient loading practice can help to increase
production and reduce cost. For instance, according to Scott and Mackee [2], one million dollars can be
saved in a surface coal mine with a 1% improvement in loading efficiency. Therefore, it is essential to
study and monitor the performance of loading equipment.

The electric rope shovel is one type of mining equipment primarily used in most large, high
volume operations as a loading unit. The performance of electrical rope shovels may vary with the
muck-pile characteristics, operator practice and skills, and machine type and conditions. Previous
research attempts show that shovel performance is directly influenced by muck-pile characteristics [3,4].
However, in addition to muck-pile characteristics, operator proficiency and skill play a significant role
in the productivity of loading equipment [5–12].

This paper investigates the digging efficiency and productivity of a shovel and the effect of
different operators on its performance. The shovel is currently operating in an open pit coal mine in
Canada and the data has been collected during a week of field trials in the summer of 2015. The machine
used in the present study is a P&H4100XPB shovel with a nominal dipper capacity of approximately
90 metric tonnes or approximately 48.4 cubic meters of material volume. The shovel’s main functions
during loading haul trucks include digging, swinging and dumping. The digging component is a
combination of hoist and crowd actions. These functions are mainly accomplished by two hoist, one
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crowd and two swing motors on-board the shovel. Additionally, for an electric rope shovel a normal
and productive cycle includes: digging, swinging, waiting (usually for the first pass), dumping and
returning back to the face.

It should be noted that the onboard monitoring system on the shovel provides real-time feedback
to the operator. The system was implemented to improve operator productivity and ensure consistent
shovel performance. With this system, the operators adjust their digging tactics to current digging
condition to achieve the highest productivity.

2. Background

Shovel productivity and performance are strongly influenced by operator proficiency. A
well-trained operator is essential to achieve maximum productivity [10]. Especially, with the current
cost pressure on the mining industry, it is important to have high productivity. The influence of
operator practice and skill should be a significant factor in any productivity assessment. Some research
studies have reported the effect of operators on shovel performance.

Hendricks [5] monitored the performance of four electric rope shovel operators. He concluded
that operators adjust their digging tactic to compensate for variations in muck-pile digging conditions;
however, each operator operates within a particular range of dipper trajectories.

Jesset [6], as part of his research, established a framework that might help to set the best operator
practice to improve shovel productivity and reduce loading duty. By statistically comparing measured
data for different operators, Jessett [6] concluded that operator’s style affects shovel productivity and
duty loading.

In contrast to blasted muckpile digging, Patnayak et al. [8] reported the influence of operating
practice on the shovel performance in oil sand digging. For the purpose of this study, performance
parameters, recorded from the shovel, were compared for four teams of operators. They believed
that “the operating characteristics of each team of operators will overshadow the influence of material
diggability at a given shovel location” [8] (p. 133). Comparing average shift hoist and crowd motor
power during different shifts and for different teams, Patnayak et al. [8] concluded that the consumed
hoist power depends on the way that a team operates the shovel while the crowd power is independent
of an operators’ team digging tactic. They also showed that the hoist energy per unit volume of payload
can be a measure of the operators’ team performance.

As reported by Hendricks [5] and Patnayak et al. [8], energy consumption and digging effort of
shovels are significantly influenced by operating characteristics. Similarly, other attempts have been
made in the past to address the effect of operator practice and skill on equipment energy consumption
and its performance. Widzyk-Capehart and Lever [13] similar to Jessett [6] stated that operator style
has a significant effect on shovel productivity. Similarly, Onederra et al. [7] , based on the result of their
case study, showed that operator proficiency is critical in shovel performance which was indicated
through production rate variability. Vukotic [10] established a methodology to evaluate rope shovel
operators and then to minimize energy consumption and maximize production rate. He developed a
model to analyze operator’s performance in different parts of the shovel loading cycle based on the
energy consumption and production rate. Bernold [14] compared operator’s digging performance by
analyzing digging forces through a backhoe simulator. He estimated operator’s performance on the
basis of total energy per digging cycle, total path distance per digging cycle and bucket average velocity.
Komljenovic et al. [15] developed a performance indicator for dragline operators. This indicator was
defined as the ratio of dragline hourly production rate and hourly energy consumption. Awuah-Offei
and Frimpong [16] introduced hoist rope and crowd arm speeds as critical parameters in evaluating
operator’s performance. In this study, a simulation of a rope shovel was conducted.
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3. Approach

3.1. Field Studies

In this study data was collected during a one-week period using a commercially available fleet
management and health monitoring system on-board the shovel. This monitoring system records data
from sensors mounted on the shovel and processes them to estimate a comprehensive set of key shovel
performance indicators (KPIs) per cycle. These KPIs include dig time, swing time, return time, swing
angle, return angle, payload, and equivalent digging energy. This data is stored in a MySQL database
and can be queried. In addition to the mentioned system, an embedded computer system, Octagon
(Octagon Systems, Westminster, CO, USA) (Figure 1), has been installed in the shovel house to capture
on-board shovel signals such as electrical motor responses and joystick reference signals. The Octagon
computer records the data using an OPC (Open Platform Communications) interface. There is OPC
bridge software installed on the two computers on the shovel. The software makes a connection to
these bridges to collect the signals from digital side of the programmable logic controller (PLC). The
signals pertaining to this paper include the hoist and crowd joysticks references as well as the hoist
rope retraction and crowd arm extension. The sampling rate for these signals has been set at 20 Hz.
Finally, in parallel to all of these data sets, the entire operation shift has been recorded using a USB
camera mounted in the operator cab. These digital video records help to interpret collected data.
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Figure 1. Octagon computer installed in the shovel house.

During the monitoring trial, four different operators worked the shovel; throughout the paper
they are identified as ‘’Operator A”, “Operator B”, ‘’Operator C” and ‘’Operator D”. The shovel was
loading 315 tons trucks (930 E) from both sides (left and right) in 3 to 5 passes. Digging conditions were
also assessed based on the operator comments, the blast engineer comments and the authors’ field
observations. Figure 2 shows the digging sequence of the shovel with different colours representing
different dates during the field trial. As this figure displays, the shovel was mainly digging two blast
patterns (1905-04 and 1905-06) and the edges of another one (1905-05) (Default blast design parameters
for mentioned patterns include: Burden: 9.5 m; Spacing: 11 m; Bit Size: 13 inch; Bench Height: 15 m;
Sub-drilling: 2 m). Two zones have also been identified in Figure 1 as easier (coarse but loose material)
and harder digging (hard toe and coarse and tight material) conditions. Operator A was working on
the easier condition and Operator B was working on the harder one. It should be noted that Operators
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C and D were working during the night shifts and the authors couldn’t make a conclusive statement
about digging conditions while these operators were working.
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3.2. Statistical and Clustering Analysis

As the first step in the analysis of the data collected during field studies, different shovel key
performance indicators recorded by the commercial monitoring system on-board the shovel are
statistically compared. Especially, their coefficient of variation (COV) are compared to assess the
variability in productivity of the machine from cycle to cycle and for different operators. This is done
to understand the effect of the operator on shovel performance. Additionally, the analysis of COVs in
conjunction with other data analysis can show if the new monitoring technologies are successful in
increasing production and reducing variability of machine productivity across different operators.

As the next step, to further investigate the effect of different operational parameters on the shovel
performance, a clustering analysis is performed based on digging energy, dig time and payload per
pass. The goal of this clustering is to classify shovel digging behavior and effort which depend on
operator practice and skills, digging condition and machine type and conditions. In this paper, to solve
the clustering problem, K-means clustering technique is used because of its simplicity and speed in
dealing with large datasets.

K-means [17] is an unsupervised learning algorithm that partitions a set of n data points in
Rd pRd is the data space of d dimensions) into k clusters. Given an integer k and a set of n data
points X Ă Rd, K-means algorithm aims at minimizing an objective function (J), in this case sum of
the square of the distance from data points to the clusters centers (centroid), so that k cluster centers
C = [c1, c2, . . . , ck] P Rd are defined.

J “
n

ÿ

xPX

d px, cq2 (1)

where c P C and d px, cq denotes the Euclidean distance between data points and each center. The
details of K-means algorithm have been presented in [17].
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In this paper, the number of clusters has been set as k “ 4 to allow for the results from this
work to be integrated into a diggability algorithm that is a subject of ongoing research. Additionally,
Euclidian distance, the most common metric used for clustering, has been chosen to assign data points
to each cluster.

Finally, K-means++ algorithm [18] has been used to initialize cluster centers. According to Arthur
and Vassilvitskii [18], this algorithm improves the speed and quality of clustering of K-means.

In this paper to ascertain that the K-means algorithm will result in a solution that is a global
minimum, 10 replicates with different starting points (according to K-means++ algorithm) have been
used. The results of productivity analysis, as well as clustering analysis are presented next.

4. Analysis of Results

4.1. Productivity

A total of 4791 shovel cycles were monitored during the course of the field trial. As discussed
in Section 3.1 a commercial monitoring system was used to record different shovel activities such as
digging, swinging and returning. Additionally, the monitoring system detects and records activities
that are not associated with loading the truck such as cleaning up the face. In this paper, such activities
are not included in the analysis. As the current study mainly focuses on the digging part of each
loading cycle, Figure 3 illustrates a histogram and a box plot of dig time values. The histogram
indicates that dig times are positively skewed and they range from 2 to 48 s. The box plot also describes
the spread of data and highlights outliers. In this paper an outlier is defined as a value that is more
than 1.5 times the interquartile range away from the top or bottom of the box in the boxplot.
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Outliers were removed from the data and statistics for different KPIs were calculated. The KPIs
include payload, cycle time components, swing and return angles, equivalent digging energy, loading
rate and mucking rate. In this paper, productive cycle time is defined as the interval between two
consecutive dumps excluding waiting times. Dump time and the positioning of the bucket before
digging have been included in return time (The shovel monitoring system has been coded in this
way). Equivalent digging energy, loading rate and mucking rate are also given by Equation (2) to
Equation (4), respectively:

Equivalent Digging Energy “
ż t1

t0

Fb ˆCrowd Rate dt (2)
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Loading Rate “
Payload
Dig time

(3)

Mucking Rate “
Payload

Productive Cycle Time
(4)

where t0 and t1 are the start and the end of digging respectively, Fb is the bail force (bail pull) and
crowd rate is the rate of change of crowd arm angle with respect to horizon. It should be noted that all
these KPIs are being estimated by the commercial monitoring system on-board the shovel using a suit
of sensors such as load cells and gyro sensors. As Equation (2) shows the digging energy estimated by
the monitoring system on-board the shovel is an equivalent mechanical energy ptonsˆ radq during
the digging part of the cycle. The equivalent digging energy is measured at the bail and is a measure
of mechanical energy transferred to the bucket teeth. This energy is provided by electrical DC motors
on-board the shovel. A summary of the aforementioned KPIs for all of the operators is presented
in Table 1.

Table 1 shows that the largest component of the cycle is the dig phase which on average accounts
for about 50% of the productive cycle time. Swing time and return time each accounts for 25% of the
productive cycle time which is lower than dig time portion. This could be due to low swing and return
angles (<90˝).

Among the parameters presented in Table 1, waiting time has the highest variation (highest COV)
which is independent of machine performance. Furthermore, the largest variations within each cycle
occur in the swing and return phases which are mainly controlled by the operator. Payload also has
the lowest variation which demonstrates that operators try to adapt their digging technique to current
digging conditions to achieve the desired payload which is the highest target load per pass without
exceeding the truck capacity; therefore, it is mainly consistent from cycle to cycle. It should be noted
that current loading practice is not an automated process and machine monitoring systems only help
the operators to more consistently fill the bucket. The variations in payload can also be a representation
of variations in productivity of the machine. Generally, operations are interested in lower variations in
their shovel productivity which should be reflected in a narrow distribution of truck loads.

Table 1 also shows that although different operators have different average equivalent digging
energy per cycle, they have similar average loading rates as well as mucking rates. Among the four
operators, Operator A has the lowest digging rate and mucking rate while he has the highest average
equivalent digging energy per cycle. It should be noted that Operator A encountered one of the easier
digging conditions during the field trial. Operator B has the highest loading and mucking rates while
he was digging one of the harder digging conditions during the field trial. The digging practice of these
two operators will be compared in Section 4.3 using recorded signals from PLC to better understand
the effect of different operational parameters on the shovel performance. Operators C and D have not
been chosen for comparison due to technical issues that caused the PLC signals not to be recorded
while they operated the shovel.

In order to further investigate the effect of operator on the machine productivity, especially
digging component, a clustering analysis is performed and operators’ techniques during digging are
compared. The results are presented next.
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Table 1. Key shovel performance indicators.

Operator Statistics Payload
(tons)

Dig
Time (s)

Swing
Time (s)

Swing
Angle (˝)

Return
Time (s)

Return
Angle (˝)

Productive
Cycle Time (s)

Waiting
Time (s)

Equivalent
Digging Energy

(tons ˆ rad)

Loading
Rate

(tons/s)

Mucking
Rate

(tons/s)

Operator A
589 Cycles

Mean 98.3 16.4 8.2 68.8 8.6 62.3 33.3 18.9 266,265.5 6.2 3.0
COV 0.17 0.20 0.31 0.36 0.24 0.36 0.15 1.94 0.36 0.26 0.19
Min 13 8 2 9 1 0 21 0 36,461 1 0
Max 133 24 18 180 27 173 53 373 588,114 15 6

Operator B
1629 Cycles

Mean 104.1 16.5 8.5 66.8 8.1 61.8 33.1 18.9 231,875.7 6.5 3.2
COV 0.14 0.18 0.33 0.32 0.33 0.43 0.16 2.18 0.32 0.20 0.16
Min 11 8 2 1 0 0 18 0 6717 1 0
Max 139 24 30 166 36 175 67 411 617,241 15 6

Operator C
1633 Cycles

Mean 98.6 15.7 8.5 70.8 8.5 64.6 32.7 17.0 204,946.2 6.5 3.1
COV 0.16 0.20 0.32 0.32 0.30 0.38 0.15 2.03 0.34 0.22 0.19
Min 17 8 1 2 1 0 16 0 19,629 1 0
Max 137 24 23 172 46 161 70 540 491,753 15 6

Operator D
671 Cycles

Mean 97.0 15.3 7.6 66.8 8.5 58.8 31.4 12.8 253,197.2 6.4 3.1
COV 0.21 0.21 0.31 0.37 0.31 0.37 0.16 2.46 0.37 0.22 0.19
Min 11 8 2 4 1 0 19 0 22,938 1 1
Max 139 24 23 165 32 131 59 476 557,642 17 5

All Data
4522 Cycles

Mean 100.3 16.0 8.3 68.5 8.4 62.5 32.7 17.4 230,100.6 6.4 3.1
COV 0.16 0.20 0.32 0.34 0.31 0.40 0.16 2.14 0.36 0.22 0.18
Min 11 8 1 1 0 0 16 0 6717 1 0
Max 139 24 30 180 46 175 70 540 617,241 17 6
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4.2. Clustering of Shovel Cycles

To classify shovel digging behavior and effort, first a 3D space of digging energy, dig time and
payload for total of 4522 cycles is built. These three parameters or a combination of them have been
widely used as a measure of digging efficiency or shovel performance [4,5,7,8,16]. Then, using the
K-means method [17], this space is divided into four clusters. Figure 4 shows different clusters in the
3D space.
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As the results of clustering show (Figure 4), clusters have been generated based on the digging
energy which means that digging energy explains the majority of variability in the data. Therefore,
a classification for digging energy based on the results of clustering analysis is presented in Table 2.
This table illustrates that most cycles are within the range of average to high digging energy. Among
all operators, Operator C has the highest percentage of cycles in the low energy class and the lowest
percentage of cycles in the extremely high energy class while Operator A has the lowest percentage of
cycles in the low energy class and the highest percentage of cycles in the extremely high energy class.

Table 2. Digging energy classification.

Digging
Energy Class

Energy Range
(ˆ105)

ptonsˆ radq

Percentage of
Cycles (All Data)

Percentage of
Cycles

(Operator A)

Percentage of
Cycles

(Operartor B)

Percentage of
Cycles

(Operator C)

Percentage of
Cycles

(Operator D)

Low Energy <1.57 18 14.2 14.4 24 15.2
Average
Energy 1.57–2.36 37 22.6 39.1 44 25.4

High Energy 2.36–3.23 33 34.2 36.2 27 37.5
Extremely

High Energy >3.23 12 29 10.3 5 21.9

In order to further investigate the relationship between digging energy, payload and dig time,
Figures 5 and 6 compare dig time and payload for the different classes of digging energy from Table 2.
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As the above figures show, dig time and payload vary widely across all the clusters, but Figure 5
indicates that the average payload increases with increasing digging energy. Similarly, Figure 6 shows
that the higher energy clusters have higher average dig time. To combine the effect of dig time and
payload, loading rate given by Equation (3) is analyzed.

Figure 7 shows how loading rate changes as digging energy increases. This figure indicates that
there is no relationship between loading rate and digging energy (correlation coefficient = 0.0302). In
addition, average loading rate is almost the same for all of the clusters (all digging energy classes).
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Therefore, one would conclude that variations in digging energy are caused by variations in muck-pile
digging conditions or operators. However, even for one operator working in the same location (nearly
same digging condition), digging energy will vary from cycle to cycle while average loading rate is
almost constant. This can be explained by the effect of operator digging practice and its variability.
Figure 8 compares loading rate values for different digging energy classes for Operator A. These results
indicate that for this case the loading rate is independent of operator or digging condition.
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In order to further understand the effect of operator digging practice on the shovel performance,
the digging practice of two operators (A and B) are compared in the next section. In addition to the
data presented in Section 4.2 (from the commercial monitoring system), the joysticks reference signals,
as well as hoist rope retraction and crowd arm extension (from the Octagon computer), are analyzed
for Operators A and B.
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4.3. Operator Digging Practice

As mentioned in Section 1, digging is mainly a combination of hoist and crowd actions. There
are two joysticks in the operator’s cab that allow operators to control the machine. To study the effect
of operator practice on digging efficiency, an evaluation of their hoist and crowd practices based on
joystick signals is done. Figure 9 shows the hoist joystick reference signal for Operators A and B during
a period of 250 s (5 cycles). The signals for Operators A and B have been annotated to show the start of
digging (red circles), the end of digging (blue circles) and the end of the cycle (green circles). Similarly,
Figure 10 shows the crowd joystick reference signals for Operators A and B for the same period of time.
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The above figures show that each operator has a unique style in filling the dipper. Operator B has
a smoother hoist action during digging while he frequently pulls the crowd joystick towards himself
(retraction) which is shown as valleys in the crowd joystick reference signal. Although, the above
signals exhibit some similar trends, it is clear that each operator has different digging habits/techniques.
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To better understand the effect of operator digging techniques on shovel performance, Figures 11
and 12 compare the average dig time and payload respectively for the different digging energy classes
presented in Table 2. These figures show that average dig time and payload increase with higher
digging energy classes. Figure 11 shows that Operators A and B have similar average dig time values
except for the low energy class where Operator A has slightly lower (~1 s) average dig time.Minerals 2016, 6, 48 12 of 17 
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In contrast to dig time, Figure 12 shows that for average to extremely high digging energy classes,
Operator B has a higher average payload. In other words, to fill the bucket to the same payload,
the shovel consumed more energy when Operator A worked. One might conclude that Operator
A worked in harder digging conditions since the shovel consumed more energy during digging for
the same payload as Operator B (Figure 12); however, based on the authors’ field observations, the
blast engineer’s comments and operators comments, as mentioned in Section 3.1, muck-pile digging
conditions were easier for Operator A. Therefore, to understand the differences in digging energy,
Figure 13 compares the digging trajectories of 5 consecutive cycles for each of the operators. This
figure indicates that Operator A takes deeper cuts compared to Operator B which causes higher
energy consumption.
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According to past studies [16,19] the best operator digging practice is achieved by lower crowd
extension speed and higher hoist rope retraction speed, which result in a decrease in the depth of cut.
Such a practice should result in lower digging energy consumption per unit of loading rate known
as specific digging energy. However, a limit of using specific digging energy as a measure of shovel
performance is the inability to determine causes for its variations. In Section 4.1 it was shown that
there is no relationship between digging energy and loading rate; therefore, based on the definition of
specific digging energy, digging energy is not normalized for the effect of loading rate. Additionally,
digging energy can be affected by other factors, such as muck-pile digging conditions and machine
type and conditions.

To demonstrate how operators control the machine during digging, Figure 14 shows the crowd
arm extension and hoist rope retraction during digging for 5 consecutive cycles for Operators A and
B. In this figure, the slope of hoist rope retraction represents hoist speed and the slope of crowd arm
extension represents crowd speed.
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Figure 14 shows that the slope of the hoist rope retraction is almost constant for each cycle and a
straight line can be fitted on the data for each cycle to estimate the hoist speed. Comparing the two
operators, Operator A has a lower hoist speed. The hoist speeds and associated R-squared values for
cycles in Figure 14 are presented in Table 3. In contrast to the hoist rope retraction, Figure 14 shows
that the crowd arm extension exhibits two different trends:

1. Constant crowd speed until the desired dipper depth of penetration is achieved (the first part of
the digging);

2. Once the dipper penetrates into the bank, digging is mainly accomplished by hoist action, and
the crowd speed is approximately zero.

Table 3. Crowd and hoist speed values.

Operator Cycle # 1 2 3 4 5 Mean Standard
Deviation

Coefficient
of Variation

Operator A

Crowd Speed (m/s) 0.460 0.523 0.567 0.599 0.402 0.510 0.080 0.157
R-squared 0.994 0.986 0.986 0.989 0.959

Hoist Speed (m/s) 0.692 0.816 0.518 0.528 0.571 0.625 0.127 0.204
R-squared 0.954 0.966 0.992 0.983 0.995

Operator B

Crowd Speed (m/s) 0.379 0.654 0.553 0.462 0.493 0.508 0.103 0.202
R-squared 0.988 0.996 0.986 0.992 0.947

Hoist Speed (m/s) 0.782 0.617 0.766 0.591 0.792 0.709 0.097 0.137
R-squared 0.983 0.961 0.978 0.942 0.970

This observation confirms that the dipper is mainly filled through the hoist action and the crowd
action only helps to maintain a proper dipper depth of penetration into the bank. However, depth
of penetration and crowd speed (in the first part of the digging) have effects on digging energy and
shovel performance. The crowd speed values are estimated based on the slope of a straight line fitted
on the crowd arm extension values in the first part of the digging. Crowd speeds and the associated
R-squared values are presented in Table 3.

Table 3 shows that the average hoist speed is higher for operator B while the average crowd
speeds are almost the same for both operators. The R-squared values indicate that a straight line is
the best fit to describe the data. A combination of crowd and hoist speeds generates different digging
trajectories, as shown in Figure 13, which directly affects the energy consumption and consequently
shovel performance.

Therefore, to compare the digging performance of different operators, in contrast to the common
approach of using one indicator, such as loading rate or specific digging energy, in this paper, a rating
system similar to surface excavating classification systems [20–22] developed in the past is proposed
based on the product of digging energy, loading rate, crowd speed and hoist speed:

N “ a1 ˆ a2 ˆ a3 ˆ a4 (5)

where a1, a2, a3, a4 are the numerical ratings of digging energy, loading rate, crowd speed and hoist
speed, respectively. Because of high variability in digging energy, a weighted average based on
the percentage of cycles within each class can be used to calculate the numerical rating of digging
energy (a1):

a1 “ p1 ˆ 5` p2 ˆ 4` p3 ˆ 3` p4 ˆ 2 (6)

where p1, p2, p3, p4 denote the percentage of cycles in low, average, high and extremely high energy
classes, respectively.

Despite the fact that it was shown in Section 4.1 that loading rate is independent of the operator,
to have a more generic equation it has been included in this approach. Additionally, digging energy is
influenced by not only operator practices (crowd and hoist speeds) but also digging conditions and
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machine type and conditions. Therefore, to ensure that other factors such as digging conditions don’t
mislead the assessment, it is essential to include crowd and hoist speeds in addition to digging energy.
It should be noted that the proposed formulation has operational purposes and is an experimentally
derived approach that can be employed by different operations to assess digging performance of
electric rope shovels operators.

The rating of each of the parameters in Equation (5) is subjective and their weights can change
according to management policies. For example, if the focus of an operation is mainly on the volume
produced, loading rate should have the highest weight in the rating system. Table 4 suggests an
example of the rating system based on the observed data during the field trial. The ratings may vary
from mine to mine with different types of operations and management strategies, and can be modified
by operations as more data is collected. In this study, the classification for digging energy is based
on the clustering analysis performed, and the classes for loading rate, hoist speed and crowd speed
have been defined based on the observed distribution of data and the discussion with mine senior
engineers. To be able to have a universal classification data needs to be collected from different types
of operations and from different machines. The proposed rating/classification in Table 4 can only be
used as a guideline. In this table, higher loading rates, lower digging energy, higher hoist speed and
lower crowd speed should have higher rating numbers. Such a rating will result in higher N values for
operators with a better performance. N values can be calculated for each operator per shift. To validate
the proposed approach, Table 5 compares the N values for Operators A and B. Although Operator B
was digging harder conditions, he has a higher N value compared to Operator A which means he has
a better digging performance.

Table 4. Operator rating system.

Parameters
Class

Rating

Loading Rate (tons/s) <5.4 5.4–6.9 6.9–8.8 >8.8
4 6 8 10

Digging Energy Low Average High Extremely High
5 4 3 2

Hoist Speed (m/s) <0.6 0.6–0.7 0.7–0.8 >0.8
1 2 3 4

Crowd Speed (m/s) <0.3 0.3–0.4 0.4–0.5 >0.5
0.5 0.4 0.3 0.2

Table 5. N values for Operators A and B.

Patarameters

Loading Rate
(tons/s)

Digging
Energy

Hoist Speed
(m/s)

Crowd Speed
(m/s)

N
Average Value

ai

Operator A 6.2 266,265.5 0.625 0.510
7.26 3 2 0.2

Operator B 6.5 231,875.7 0.709 0.508
14.46 4 3 0.2

5. Conclusions

This study presented the results of performance monitoring of an electric rope shovel operating
in an open pit coal mine in Canada. The effect of operator on shovel productivity was studied.
The performance of four operators was compared. It was found that among different key
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shovel performance indicators for each operator, payload has the lowest variability. The low
variability of payload values was found to be influenced by the operator’s response to the payload
monitoring system.

A clustering analysis was performed to classify shovel digging effort and behaviour based on
digging energy, dig time and payload. It was found that digging energy is the principal component
which describes the majority of variability in the data. Therefore, based on the result of clustering
analysis, a classification for digging energy was presented. It was shown that most of the cycles during
the monitoring trial were in the range of average to high digging energy. The best operator practice
should result in a higher percentage of cycles in the lower digging energy classes while maintaining a
proper loading rate. Furthermore, average dig time and payload for different clusters were compared.
It was concluded that average dig time and average payload increase toward higher digging energy
classes. It was also shown that digging energy is independent of loading rate. Average loading rate
was almost constant along different energy classes.

Furthermore, to demonstrate the effect of operator digging practice on shovel performance, two
cases were selected and compared. It was found that the joysticks reference signals can be used to
compare the operators’ styles. It was shown that digging energy is not only a function of muck-pile
digging conditions but also mainly is a function of digging practice. Even for the same loading rate, a
good operator operating the shovel in harder digging conditions can achieve lower digging energy
by adjusting the hoist and crowd speeds. It was found that the operator with the lower hoist speed
and higher crowd speed takes deeper cuts in the bank and the shovel consumes more energy during
digging to achieve a targeted payload.

To compare the operators’ digging performance an experimentally derived rating system based
on digging energy, loading rate, hoist speed and crowd speed was proposed. Given the rapid
implementation of onboard shovel performance monitoring systems, the proposed rating system
should be easy to implement.

It is believed that a properly determined digging energy, which has been compensated for the
effect of operator digging practice, can be part of an approach to measure muck-pile diggability and
indirectly blast quality. Future work will study the effect of muck-pile digging conditions to develop a
diggability index based on the shovel performance and independent of operator practice.
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