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Abstract: Extreme thermoacidophiles (Topt > 65 °C, pHopt < 3.5) inhabit unique environments 

fraught with challenges, including extremely high temperatures, low pH, as well as high 

levels of soluble metal species. In fact, certain members of this group thrive by 

metabolizing heavy metals, creating a dynamic equilibrium between biooxidation to meet 

bioenergetic needs and mechanisms for tolerating and resisting the toxic effects of 

solubilized metals. Extremely thermoacidophilic archaea dominate bioleaching operations 

at elevated temperatures and have been considered for processing certain mineral types 

(e.g., chalcopyrite), some of which are recalcitrant to their mesophilic counterparts. A key 

issue to consider, in addition to temperature and pH, is the extent to which solid phase 

heavy metals are solubilized and the concomitant impact of these mobilized metals on the 

microorganism’s growth physiology. Here, extreme thermoacidophiles are examined from 

the perspectives of biodiversity, heavy metal biooxidation, metal resistance mechanisms, 

microbe-solid interactions, and application of these archaea in biomining operations. 

Keywords: extreme thermoacidophiles; bioleaching; heavy metal resistance; heavy metal 

biooxidation; archaea 
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1. Introduction 

The commercial application of microorganisms for the extraction of metals from sulfide ores, 

concentrates, low-grade ores and tailings, often referred to as bioleaching and biomining, falls within 

the discipline biohydrometallurgy [1,2]. Bioleaching leverages microbially-based conversion of 

insoluble metal sulfides (or oxides) to water-soluble metal sulfates. For example, conversion of 

insoluble chalcopyrite (CuFeS2) to a soluble copper sulfate has become the basis for technologically 

important processes. Similarly, microorganisms have also been used as a pretreatment step for metals 

recovery. For example, the removal of sulfur from sulfidic gold ores can enhance downstream 

recovery and limit depletion of the cyanide extraction agent [3]. The development of bioleaching and 

biomining technologies has been ongoing for several decades, and more recently is finding increased 

interest in commercial application. Advances in molecular microbiology and genomic sciences present 

new opportunities for discovering, characterizing and implementing microbial systems for the recovery 

of base, precious and strategic metals. 

The future of biomining was once declared to be “hot”, owing to the recalcitrance of metal sulfides 

such as chalcopyrite at moderate temperatures, thereby requiring thermal conditions (65–80 °C) to 

obtain increased solubilization rates [4–6]. At higher temperatures, metal sulfide mobilizing  

consortia are dominated by archaea, mainly belonging to the genera Acidianus, Metallosphaera, and  

Sulfolobus [7–11]. The mechanisms by which metal biooxidation, metal resistance, and microbe-solid 

interactions take place in thermal, acidic environments are not well understood but, if elucidated, could 

provide valuable information necessary for the successful application and optimization of extremely 

thermoacidophilic bioleaching. 

2. Biodiversity of Extremely Thermoacidophilic Microorganisms 

To date, the only known extreme thermoacidophiles (as defined here, microorganisms with Topt > 65 °C, 

pHopt < 3.5) belong to the crenarchaeotal class of Thermoprotei, represented by the orders 

Desulfurococcales, Thermoproteales, Fervidococcales, Acidilobales, and Sulfolobales, with only 

certain species in the Sulfolobales thus far considered for bioleaching [12–14]. The Euryarchaeota 

order Thermoplasmatales, while containing extremely acidophilic genera, some found in bioleaching, 

are considered to be moderate thermophiles [15]. The Sulfolobales are comprised of the genera 

Sulfolobus (9 species), Acidianus (8 species), Metallosphaera (5 species), Sulfurococcus (2 species), 

Stygioglobus (one species), and Sulfurisphaera (one species). The following section highlights the 

physiology of the Sulfolobales, with an overview of isolation and sequencing chronology presented in 

Figure 1 and growth physiology in Table 1. 
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Table 1. Growth physiology information for the Sulfolobales. (Opt.) Optimum, (ED) Electron donor, (EA) Electron acceptor, (Seq.) Genome 

sequenced, (ND) Not determined, (COR) Complex organic compounds, (AA) Amino Acids. 

Species Isolated From pH (Opt.) T °C (Opt.) ED EA Growth Modes Seq. Refs. 

Sulfolobus acidocaldarius  

(98-3T, DSM639) 

Locomotive Spring, 

Yellowstone National 

Park, USA 

1.0–5.9  

(2.0–3.0) 

55–85  

(70–75) 

H2 ~, H2S ?, S0 ?, FeS ?, K2S4O6 ?, 

COR, Sugars, AA 
O2 Heterotrophic  Y [16–20] 

Sulfolobus solfataricus  

(P2, DSM1617) 

Hot spring, Pisciarelli 

Solfatara, Italy 

2.0–4.0  

(3.0) 

65–87  

(80) 

H2 ~, H2S ?, S0 ?, FeS ?, K2S4O6 ?, 

COR, Sugars, AA 
O2 Heterotrophic Y 

[17–19, 

21,22] 

Sulfolobus shibatae  

(B12T, DSM 5389) 

Geothermal pool, Beppu, 

Kiushu Island, Japan 

ND  

(3.0) 

ND–86  

(81) 
H2 ~, S0, Sugars, AA O2 Heterotrophic Mixotrophic N [17,18,23] 

Sulfolobus metallicus  

(Kra23T, DSM 6482) 

Continental solfataric 

fields, Iceland 

1.0–4.5  

(ND) 

50–75  

(65) 

S0, Fe2+, FeS2,  

CuFeS2, ZnS, CdS 
O2 Chemolithoautotrophic N [18,24,25] 

Sulfolobus tokodaii  

(7T, DSM 16993) 

Beppu Hot Springs, 

Kyushu Island, Japan 

2.0–5.0  

(2.5–3.0) 

70–85  

(80) 
S0, Fe2+, COR, AA O2 Heterotrophic Mixotrophic Y [25–28] 

Sulfolobus yangmingensis  

(YM1T) 

Acidic and muddy hot 

spring, Yang-Ming 

National Park, Taiwan 

2.0–6.0  

(4.0) 

65–90  

(80) 

S0, FeS, K2S4O6, COR, Sugars, 

AA 
O2 

Heterotrophic Mixotrophic 

Chemolithoautotrophic 
N [29] 

Sulfolobus tengchongensis  

(RT8-4T) 

Sulfur-rich hot spring, 

Tengchong, China 

1.7–6.5  

(3.5) 

65–95  

(85) 
S0, COR, Sugars, AA O2 

Heterotrophic Mixotrophic 

Chemolithoautotrophic 
N [30] 

Sulfolobus islandicus 

(Ren1H1) 
Solfataric fields, Iceland ND ND ND ND Heterotrophic N ^ [31] 

Metallosphaera sedula  

(TH2T, DSM 5348) 

Thermal pond in 

Pisciarelli Solfatara, Italy 

1.0–4.5  

(2.0) 
50–80 (75) 

H2, S0, K2S4O6, K2SO4, Fe2+, 

FeS2, CuFeS2, CdS, SnS, ZnS, 

COR, Sugars, AA 

O2 
Heterotrophic Mixotrophic 

Chemolithoautotrophic 
Y [18,32–34] 

Metallosphaera prunae  

(Ron 12/IIT, DSM 10039) 

Smoldering slag heap, 

uranium mine,  

Thüringen, Germany 

1.0–4.5  

(2.0) 
55–80 (75) 

H2, So, FeS2, CuFeS2, ZnS,  

COR, Sugars , AA 
O2 

Heterotrophic Mixotrophic 

Chemolithoautotrophic 
Y % [35,36] 
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Table 1. Cont. 

Species Isolated From pH (Opt.) T °C (Opt.) ED EA Growth Modes Seq. Refs. 

Metallosphaera hakonensis 

(HO1-1T, DSM 7519) 

Geothermal field, Hakone 

National Park, Japan 

1.0–4.0  

(3.0) 
50–80 (70) 

H2S, S0, K2S4O6, Fe2+, FeS, 

FeS2, CuFeS2, COR, Sugars, AA 
O2 

Heterotrophic Mixotrophic 

Chemolithoautotrophic 
N [19,37–40] 

Metallosphaera cuprina  

(Ar-4T) 

Sulfuric hot spring in 

Tengchong,  

Yunnan, China 

2.5–5.5  

(3.5) 
55–75 (65) 

S0, K2S4O6, Fe2+, FeS2, CuFeS2, 

COR, Sugars, AA 
O2 

Heterotrophic Mixotrophic 

Chemolithoautotrophic 
Y [40,41] 

Metallosphaera 

yellowstonensis (MK1T) 

Acidic iron mat, 

Yellowstone National 

Park, USA 

1.0–4.5  

(2.0–3.0) 
45–85 (65–75) 

S0, Fe2+ sorbed, FeS, FeS2, 

CuFeS2, CuS, ZnS, COR 
O2 

Heterotrophic Mixotrophic 

Chemolithoautotrophic 
Y [42,43] 

Acidianus hospitalis (W1) 

Acidic hot spring, 

Yellowstone National 

Park, USA 

2.0 ? 85 ? ND ND ND Y [44–46] 

Candidatus Acidianus 

copahuensis (ALE1) 

Copahue geothermal area, 

Argentina 

1.0–5.0  

(2.5–3.0) 
55–80 (75) 

H2,S0, K2S4O6,Fe2+, FeS2, CuS, 

ZnS, COR, Sugars 

Fe3+, 

S0, O2 

Heterotrophic Mixotrophic 

Chemolithoautotrophic 
Y [47,48] 

Acidianus infernus  

(So4aT, DSM 3191) 

Solfatara Crater  

and Pisciarelli  

Solfatara, Naples 

1.0–5.5  

(2.0) 
65–96 (90) H2, H2S, S0 

S0, O2, 

MO4
2- 

Mixotrophic 

Chemolithoautotrophic 
N [18,49,50] 

Acidianus ambivalens  

(Lei 10T, DSM 3772) 
Solfatara, Iceland 

1.0–3.5  

(2.5) 
70–87 (80) H2, H2S, S0 S0, O2 

Mixotrophic 

Chemolithoautotrophic 
N [50–52] 

Acidianus brierleyi  

(DSM 1651T) 

Acid hot spring, 

Yellowstone  

National Park 

1.0–6.0  

(1.5–2.0) 
45–75 (70) 

H2 ?, H2S, S0, Fe2+,FeS2, 

CuFeS2, ZnS, MoS2, COR 

Fe3+, 

S0, O2, 

MO4
2- 

Heterotrophic Mixotrophic 

Chemolithoautotrophic 
N 

[14,18,21, 

49,50,53–56] 

Acidianus sulfidivorans  

(JPTT, DSM 18786) 

Solfatara on Lihir Island, 

Papua New Guinea 

0.35–3.0  

(0.8–1.4) 
45–83 (74) 

H2S, S0 ,Fe2+, FeS2,CuFeSs, 

FeAsS 

Fe3+, 

S0, O2 

Mixotrophic 

Chemolithoautotrophic 
N [50] 

Acidianus tengchongensis 

(S5T) 

Acidothermal spring, 

Tengchong China 

1.0–5.5  

(1.5–2.0) 
60–75 (70) H2, S0, S2O3

2− S0, O2 Chemolithoautotrophic N [57] 
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Table 1. Cont. 

Species Isolated From pH (Opt.) T °C (Opt.) ED EA Growth Modes Seq. Refs. 

Acidianus manzaensis  

(NA-1T) 

Fumarole in  

Manza, Japan 

1.0–5.0  

(1.2–1.5) 
60–90 (80) H2, S0, COR, Sugars 

Fe3+, 

O2 

Heterotrophic Mixotrophic 

Chemolithoautotrophic 
N [58] 

Acidianus manzaensis 

(YN25) 

Acidothermal spring, 

Yunnan China 

1.0–6.0  

(1.5–2.5) 
50–85 (65) 

H2, S0, K2S4O6, Fe2+, CuFeS2 

,COR, Sugars, AA 
S0, O2 Heterotrophic Mixotrophic N [59] 

Sulfurisphaera ohwakuensis  

(TA-1T, DSM 12421) 

Acidic hot spring located 

in Ohwaku Valley, 

Hakone, Japan 

1.0–5.0  

(2.0) 
63–92 (84) H2, S0, COR S0, O2 Heterotrophic Mixotrophic N [60] 

Stygiolobus azoricus  

(FC6T, DSM 6296) 

Acidic geothermal spring 

(Furnas Caldeira), São 

Miguel Island, Azores 

1.0–5.5  

(2.5–3.0) 
57–89 (80) H2 S0 

Mixotrophic 

Chemolithoautotrophic 
N [61] 

Sulfurococcus 

yellowstonensis (Str6karT)  

Thermal spring,  

Yellow Stone  

National Park, USA 

1.0–5.5  

(2.0–2.6) 
40–80 (60) 

S0, FeS2, ZnS, CuFeS2, Fe2+, 

COR, Sugars 
O2 

Heterotrophic Mixotrophic 

Chemolithoautotrophic 
N [13,62] 

Sulfurococcus mirabilis  

(INMI AT-49T)  

Crater, Uzon volcano in 

Kamchatka, Russia 

1.0–5.8  

(2.0–2.6) 
50–86 (70–75) 

S0, FeS2, ZnS, CuFeS2, COR, 

Sugars, AA 
O2 

Heterotrophic Mixotrophic 

Chemolithoautotrophic 
N [13,62] 

Notes: T Type strain; ~ Indicates poor growth; ? Indicates conflicting evidence as growth substrate; ^ Tentative type strain not sequenced but strains sequenced;  
% Unpublished genome. 
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Figure 1. Chronology of microbiology advances within the Sulfolobales. 

2.1. The Genus Sulfolobus 

The genus Sulfolobus was defined in 1972 when the first species, Sulfolobus acidocaldarius (98-3), 

was isolated from Locomotive Spring in Yellowstone National Park, USA [16]. The genus is 

distributed globally, with species typically isolated from acidic geothermal hot springs. Only seven of 

the nine species comprising the genus have been characterized in any physiological detail. Sulfolobus 

species are strict aerobes, with metabolic features ranging from heterotrophy to obligate 

chemolithoautotrophy. The genus was initially defined by its members’ ability to oxidize elemental 

sulfur (S0), although subsequent work provided conflicting evidence on this physiological trait. 

Heterotrophic growth represents a unifying trait among Sulfolobus species, except for S. metallicus, 

which is an obligate chemolithoautotroph. The range of substrates supporting heterotrophic growth 

varies markedly within the genus, though all species utilize complex organic substrates (e.g., yeast 

extract and tryptone). S. acidocaldarius grows on a limited set of monosaccharides (D-fucose,  

D-glucose), disaccharides (sucrose), and polysaccharides (maltotriose, dextrin, starch), along with 

certain amino acids (L-alanine, L-asparagine, L-aspartate, L-glutamate) [17]. S. tengchongensis utilizes 

more sugars and amino acids than S. acidocaldarius, with pentoses (D-arabinose, D-xylose), hexoses 

(D-galactose, D-fructose), disaccharides (maltose, sucrose), and amino acids (L-glutamic acid) 
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supporting growth [30]. Compared to S. acidocaldarius, S. solfataricus also grows on a broader range 

of sugars, including pentoses, hexoses, disaccharides, and polysaccharides [17]. S. shibatae shares many 

properties with S. solfataricus, but represents a distinct species based on genome content [17,23]. 

Heterotrophic growth of Sulfolobus tokodaii (7), formerly S. acidocaldarius strain 7, has only been 

determined for complex organic substrates and certain amino acids, and a complete survey of sugar 

utilization has not been done [26]. S. yangmingensis is capable of utilizing all sugars observed for 

other Sulfolobus species, in addition to L-rhamnose, and utilizes all 20 amino acids, except  

cysteine [29]. None of the tested complex organic substrates, sugars or amino acids supported growth 

of S. metallicus [24]. 

The use of inorganic substrates varies widely amongst Sulfolobus species. S. acidocaldarius,  

S. solfataricus, and S. shibatae can oxidize H2, allowing for mixotrophic growth on H2 and yeast 

extract, though growth was poor compared to growth of other Sulfolobales [18]. S. metallicus, the only 

obligate chemolithoautotroph within the genus, cannot grow on H2 as an energy source [18]. H2 

utilization by S. tokodaii, S. tengchongensis, and S. yangmingensis was not determined at isolation, nor 

has it been reported to date [26,29,30]. There is conflicting evidence for the chemolithoautotrophic 

growth of the type strains of S. acidocaldarius Deutsche Sammlung von Mikroorganismen (DSM) 639 

and S. solfataricus DSM 1616. At isolation, both S. acidocaldarius DSM 639 and S. solfataricus DSM 

1616 were reported to grow autotrophically on S0, but this observation was contradicted by subsequent 

work and several key reviews [32,62,63]. The consensus appears to be that these species mutated into 

obligately heterotrophic strains. However, strain analysis of Metallosphaera hakonensis (formerly  

S. hakonensis) and S. tengchongensis, which also included S. acidocaldarius DSM 639 and  

S. solfataricus DSM 1616, showed that these last two Sulfolobus species grew chemolithoautotrophically 

on S0, FeS, potassium tetrathionate, and H2S [19,30]. 

S. tokodaii was shown to be incapable of chemolithoautotrophic growth on S0; limited growth was 

possible on S0 when supplemented with organic carbon [26]. Further work revealed the capacity of  

S. tokodaii to oxidize Fe(II) with yeast extract supplementation, while weak growth and Fe(II) 

occurred for autotrophic conditions. [25]. S. tokodaii’s genome encodes genes related to hydrogen 

sulfide metabolism, though their connection to sulfur metabolism has not been determined. [28]. 

Chemolithoautotrophic growth of S. yangmingensis and S. tengchongensis by S0 oxidation has been 

noted; the former utilizes FeS and potassium tetrathionate [29,30]. 

S. metallicus is distinctive among members of the genus Sulfolobus due to its inability to utilize 

organic carbon sources for growth, exhibiting obligate chemolithoautotrophy. Inorganic substrates 

supporting growth include: S0, FeSO4, FeS2, CuFeS2, ZnS, and CdS, but not H2, FeAsS, Cu5FeS4, HgS, 

Cu2S, CuS, FeS, MoS2, Sb2S3, and SnS [18,24,25]. The ability of S. metallicus to oxidize S0, reduced 

sulfur compounds, and Fe(II) makes it relevant to heavy metal mobilization applications, particularly 

bioleaching [64]. 

S. acidocaldarius and S. solfataricus, S. tengchongensis, and to a lesser extent S. shibatae, appear to 

be motile [17,23,30], while S. metallicus and S. yangmingensis are immotile [24,29]. It is not clear 

whether S. tokodaii is motile, but the genome contains the archaellum operon found in  

S. acidocaldarius, indicating S. tokodaii is likely motile [65]. To date, published genomes exist for  

S. acidocaldarius (98-3, N8, Ron12/I, SUSAZ), S. solfataricus (P2, 98/2), S. tokodaii (7), Sulfolobus 

Type II, and a myriad of S. islandicus strains [20,22,28,66–71]. 
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S. acidocaldarius, S. solfataricus, and S. islandicus are the only Sulfolobales with genetic tools for 

molecular biology manipulation [72–76]. In the case of S. acidocaldarius and S. solfataricus, these 

genetic systems are dependent upon restoration of an engineered auxotrophy. The recent development 

of a uracil-auxotrophic S. acidocaldarius mutant MW001 has led to a tractable system for metabolic 

and genetic studies [72], as well as reliable inducible promoters [72,77] and a plasmid-based 

recombinant expression system [78]. While uracil selection has been utilized in S. solfataricus, more 

success has been achieved in the utilization of the lactose auxotrophic strain PBL2025 and the 

lactose/maltose auxotrophic strain PBL2069, which also allow for integration of linear DNA  

fragments [73,74]. In contrast, S. islandicus faced difficulties in the early stages of developing reliable 

auxotrophic selection [79]. However, the recent use of simvastatin affords a distinctly different route 

of selection based on antimicrobials [76,80]. These new genetic systems provide a means to further 

study and elucidate metabolic and genetic pathways involved in metal mobilization and resistance. 

There is limited information on other Sulfolobus species that have been isolated (e.g.,  

S. neozealandicus, [81,82]). S. islandicus strains have been isolated from around the  

world [31,68,83,84], although the growth physiology of the proposed type strain REN1H1 has not 

been studied to any significant extent [63]. S. islandicus is a model species for the study of clustered 

regularly interspaced short palindromic repeats (CRISPR) systems within the Sulfolobales [85,86]. 

2.2. The Genus Metallosphaera 

The type strain of the genus, Metallosphaera sedula (TH2T), was isolated from a thermal pond in 

Pisciarelli Solfatara (near Naples, Italy) [32]. To date, the genus Metallosphaera includes five reported 

species with diverse growth physiology. All Metallosphaera species are obligate aerobes, utilizing O2 

as their only terminal electron acceptor, and are capable of facultative chemolithoautotrophy, on a 

variety of inorganic substrates. Variations exists in degrees of heterotrophy in the genus Metallosphaera, 

with M. cuprina appearing to be the only member capable of significant growth on sugars [40].  

M. sedula can grow on beef extract, casamino acids, peptone, trypone and yeast extract, but no 

utilization of sugars was noted at isolation [32]. However, recent work has indicated M. sedula can use 

D-mannose and individual amino acids (L-aspartic acid, L-glutamic acid, L-tryptophan, L-alanine), 

though growth is limited for D-mannose, L-aspartic acid, and L-glutamic acid [40]. Originally, M. prunae 

was reported to use the same heterotrophic substrates as M. sedula, except for casamino acids and 

tryptone which were not tested; no utilization of sugars was noted when isolated [35]. Recent work has 

shown that M. prunae can indeed utilize casamino acids and tryptone, along with D-mannose and 

individual amino acids (L-aspartic acid, L-glutamic acid, L-tryptophan, L-alanine) [40]. However, 

growth on D-mannose and L-tryptophan is limited compared to complex organic carbon sources.  

M. hakonensis exhibits strong heterotrophy on yeast extract, while has limited growth on maltose,  

L-glutamic acid and L-tryptophan [19]. However, subsequent analysis showed growth on beef extract, 

peptone, casamino acids, maltose, and L-glutamic acid, with weaker growth achieved on tryptone [40]. 

M. cuprina differentiates itself from other Metallosphaera species by its broader range of sugar 

utilization, as it is capable of growth on L-arabinose, D-xylose and D-glucose [40]. M. yellowstonensis 

growth on sugars and individual amino acids has not been determined, but the organism can grow on YE as 

the sole carbon and energy source [43]. 
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The unifying trait among Metallosphaera species is their chemolithoautotrophy on S0. H2 oxidation 

has been determined only for M. sedula and M. prunae [18,35]. Beyond S0 and H2, M. sedula can grow 

chemolithoautotrophically with inorganic electron donors, including potassium tetrathionate, 

potassium sulfate, and metal sulfides (FeS2, ZnS, CuFeS2, CdS, SnS) and FeSO4 [18,32,33,87]. 

However, M. sedula cannot utilize FeAsS, Cu5FeS4, HgS, Cu2S, CuS, PbS, FeS, MoS2 or Sb2S3 as 

growth substrates [32]. M. prunae is capable of chemolithoautotrophy with inorganic electron donors, 

including S0, FeS2, CuFeS2, ZnS [35], but thiosulfate, potassium tetrathionate, FeSO4, and various coal 

substrates do not serve as inorganic energy sources. M. prunae’s reduced capacity to utilize Fe(II) and 

potassium tetrathionate as an electron donor differentiates it from others in the genus. Growth on H2S 

for M. sedula and M. prunae has not been reported [40]. M. hakonensis exhibits chemolithoautotrophy, 

with inorganic electron donors FeS, FeSO4, CuFeS2, potassium tetrathionate, H2S [14,19,37]. 

Chemolithoautrophic growth for M. cuprina was supported by FeS, potassium tetrathionate, FeSO4, 

FeS2, CuFeS2 [40]. Unlike M. hakonensis, M. cuprina was not able to utilize H2S as an electron donor. 

Finally, a detailed analysis of M. yellowstonensis growth physiology revealed inorganic energy sources 

Fe(II) sorbed to ferrihydrite, FeS, FeS2, CuFeS2, CuS, and ZnS [42]. Growth was not supported by 

FeCO3, Fe3O4, FeSO4, potassium tetrathionate, or Na2S. Autotrophic growth for M. sedula, like several 

other Sulfolobales, involves the 3-hydroxypropionate/4-hydroxybutyrate cycle to assimilate CO2 [88]. 

This pathway is evident in the sequenced genomes of M. cuprina and M. yellowstonensis [41,43]. 

As indicated above, Fe(II) oxidation is associated with growth for M. sedula, M. cuprina,  

M. hakonensis and M. yellowstonensis, though for M. yellowstonensis only when Fe(II) is sorbed to 

ferrihydrite [42]. M. prunae cannot utilize Fe(II) for growth, perhaps because of a mutation [36]. As is 

the case with S. metallicus, the capability of Metallosphaera species to oxidize S0, reduced sulfur 

compounds, and Fe(II) make these archaea relevant to heavy metal mobilization, particularly 

bioleaching [64]. 

Motility is a shared characteristic for M. cuprina, M. sedula, M. prunae, but not for M. hakonensis; 

motility has yet to be determined for M. yellowstonensis, though its genome contains the archaellum 

operon found in S. acidocaldarius, indicating the potential for motility [19,32,35,40,42,65]. To date, 

M. sedula, M. cuprina, and M. yellowstonensis have published genomes and an unpublished draft 

genome exists for M. prunae [34,36,41,43]. In fact, the nearly identical genomes of M. sedula and  

M. prunae suggest that these are strains and not different species [36]. 

2.3. The Genus Acidianus 

Nine species currently comprise the genus Acidianus, all of which are facultative anaerobes capable 

of chemolithoautotrophy and, in some instances, facultative autotrophy. To date, only the genomes of 

A. copahuensis and A. hospitalis have been sequenced [46,48]. The common characteristic displayed 

by all Acidianus species is their ability to oxidize or reduce elemental sulfur, depending on oxygen 

availability. The only exception is A. manzaensis NA-1, which cannot use S0 as an electron acceptor 

during anaerobic respiration. Under aerobic conditions, S0 serves as an electron donor and is oxidized 

to sulfuric acid. While under anaerobic conditions, S0 serves as an electron acceptor and is reduced to 

H2S. Additionally, all characterized Acidianus species can utilize H2 as an electron donor for aerobic 

respiration, except A. sulfidivorans. 
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Under anaerobic conditions, when S0 serves as the electron acceptor, H2 becomes the electron donor. 

A. infernus, A. ambivalens, A. tengchongensis, A. manzaensis YN25, and A. copahuensis are capable of 

utilizing H2 as an electron donor, while A. brierleyi and A. sulfidivorans cannot [47,48,50,57,59]. This 

suggests that A. brierleyi and A. sulfidivorans lack the Ni-Fe-hydrogenase, an essential enzyme used 

by A. ambivalens for H2 oxidation coupled to S0 reduction [89]. There are conflicting reports as to 

whether A. brierleyi can utilize H2 as an electron donor for S0 reduction [18,49,50]. Other electron 

acceptors include Fe(III) coupled with electron donors S0 and H2 for A. copahuensis and A. manzaensis 

NA-1, and H2S for A. sulfidivorans and A. brierleyi [47,50,58]. Furthermore, A. brierleyi and  

A. infernus can utilize MO4
2− as an electron acceptor for S0 oxidation [49]. 

A. brierleyi, A. copahuensis, A. manzaensis YN25, and A. manzaensis NA-1 are capable of 

heterotrophic growth, utilizing organic compounds as the sole energy source [47,49,58,59]. The 

former, along with A. sulfidivorans, are facultative autotrophs, capable of using either organic or 

inorganic carbon, while A. infernus, A. ambivalens, and A. tengchongensis are obligate autotrophs, solely 

reliant on inorganic carbon sources. A. copahuensis, A. brierleyi, A. sulfidivorans, and A. manzaensis 

YN25 can oxidize Fe(II) under aerobic conditions [47,49,50,53,59]. This trait, and the fact that  

A. copahuensis, A. brierleyi, A. sulfidivorans, and A. manzaensis YN25 utilize various metal sulfides, 

make them candidates for bioleaching applications [47,50,54–56,59]. 

A. hospitalis growth physiology has not been fully characterized, but genome analysis indicates that 

it can grow by facultative chemolithoautotrophy. As such, energy sources likely include complex 

organic compounds, S0, hydrogen sulfide and other reduced inorganic sulphide compounds, but not 

Fe(II). No Ni–Fe-hydrogenase can be identified in this species, indicating that A. hospitalis does use 

H2 as an electron donor for growth [46]. 

2.4. The Genera Sulfurisphaera, Stygiolobus and Sulfurococcus 

The only current member of the genus Sulfurisphaera, S. ohwakuensis (TA-I), was isolated from an 

acidic hot spring located in Ohwaku Valley, Hakone, Japan [60]. S. ohwakuensis is a facultative 

anaerobe, utilizing S0 and O2 as electron acceptors, and H2 along with complex organic compounds 

yeast extract and peptone as electron donors. The organism does not exhibit autotrophy, nor were pili- 

or flagella-like structures found. 

Stygiolobus azoricus (FC6) was isolated from an acidic geothermal spring on São Miguel Island, 

Azores [61]. St. azoricus differentiates itself from all other Sulfolobales in being strictly anaerobic, but 

shares with Acidianus spp. the ability to grow chemolithoautotrophically by S0 using H2 [61]. The 

microorganism displays no flagella or motility, but is surrounded by pilus- or fimbria-like appendages. 

The genus Sulfurococcus is represented by two species S. yellowstonensis and S. mirabilis, both 

facultative chemolithoautotrophs [13,62]. Both species use complex organic compounds and sugars for 

growth, but S. mirabilis can also utilize amino acids. While these Sulfurococcus species use S0, FeS2, 

ZnS, CuFeS2, S. yellowstonensis also uses Fe(II). S. yellowstonensis capacity for growth on sulfur, mineral 

sulfides and Fe(II) makes it relevant to bioleaching, as is the case for other Sulfolobales noted above. 
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2.5. Sequenced and Unclassified Sulfolobales 

One novel Sulfolobales archaeon, named Acd1, was isolated during a metagenomic study of 

nanoarchaeon from Obsidian Pool, Yellowstone National Park and has an available genome sequence [90]. 

Another, Sulfolobales archaeon AZ1 was isolated from a hot spring located at Los Azufres National 

Park, Mexico and has been proposed as Candidatus Aramenus sulfurataquae, representing a novel 

genus and species [91]. 

3. Biooxidation of Heavy Metals 

Pioneering work by Ingledew and co-workers laid the framework for studies on microbial Fe(II) 

oxidation by the mesophilic bacterium Acidithiobacillus ferrooxidans, thereby forming a foundational 

basis to study Fe(II) oxidation pathways [15,92–96]. Extensively characterized, A. ferrooxidans has 

been the main microorganism considered for biohydrometallurical processes, but challenges with the 

recalcitrant nature of ores like chalcopyrite motivates the search for other bioleachers. Understanding 

the basic elements of energy metabolism in heavy metal mobilizing microorganisms is critical for 

future technological applications, especially when solutions tailored to specific ores are needed. 

Initial efforts to understand the mechanisms driving the oxidation of metals by the Sulfolobales 

began more than 20 years ago, although it was only recently that significant progress has been reported 

in this regard. From the beginning, the respiratory clusters associated with Fe(II) oxidation of the 

extremely thermoacidophilic Sulfolobales could be differentiated from their mesophilic counterparts. 

Fe(II)-grown cells of M. sedula and A. brierleyi showed high expression of a novel membrane-bound 

yellow cytochrome, directly reduced by Fe(II), possibly representing a unique extremely 

thermoacidophilic redox-active enzyme associated with respiratory Fe(II) oxidation [97]. Sulfolobus 

strain BC, now S. metallicus, produced copious amounts of a similar novel acid-stable material during 

growth on Fe(II), revealing similarity among the Fe(II)-oxidizing archaea [97,98]. The results 

suggested phylogenetically distinct groups of Fe(II)-oxidizing organisms have characteristically unique 

acid-stable, redox-active biomolecule. 

Until the early 2000s, most studies on crenarchaeotal respiratory chains focused on understanding 

the molecular properties of oxidases and associated electron transfer proteins [99–101]. The 

SoxABCD-SoxL complex, an aa3 quinol oxidase [102–104], the SoxM supercomplex, a bb3 terminal 

oxidase [105–108], and the CbsAB-SoxLN complex, a cytochrome ba [109] of S. acidocaldarius, later 

found in A. ambivalens [110], and the DoxBCE complex, an aa3-type quinol oxidase [111–113] of  

A. ambivalens had encapsulated the current view of aerobic respiratory electron transfer in the 

Sulfolobales. Unfortunately, neither S. acidocaldarius nor A. ambivalens can grow well on metal 

sulfides, thus motivating study of Crenarchaeota capable of growth on metal sulfides. 

M. sedula, capable of chemolithoautotrophy with metal sulfides (e.g., pyrite) or sulfur, and 

heterotrophy with complex organic substrates, is a prime candidate for investigation of Fe(II) oxidation 

mechanisms within the Sulfolobales. Prior to the availability of the M. sedula genome sequence, three 

gene clusters containing oxidases and cytochromes were observed to be differentially expressed, 

according to whether growth was chemolithoautotrophic (S0 or FeS2) or heterotrophic (yeast extract). 

M. sedula’s homologs to soxB, representative of the cluster, and soxM were highly expressed for 
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growth on S0 and yeast extract, respectively [114]. The soxL2N transcriptional unit, separately located 

from csbA, exhibited high expression on either S0 or yeast extract. Growth on S0 and FeS2 induced 

csbA, such that it was the highest transcribed gene for FeS2, indicating the gene product’s importance 

for chemolithoautotrophic growth. CsbA is a membrane-bound cytochrome b566/588, implicated in 

electron shuttling across the pseudo-periplasmic space of S. acidocaldarius and speculated to be 

related to the previously mentioned novel yellow redox-active enzyme [97,114–116]. While a  

potential chemolithoautotrophic electron shuttle had been identified, the corresponding Fe(II)- and/or  

sulfur-oxidizing enzymes remained uncharacterized.  

Analysis of S. metallicus and S. tokodaii grown on Fe(II) finally revealed a suspected genetic basis 

for Fe(II) oxidation among the Sulfolobales. The ferrous iron oxidation (fox) genes, encoding a novel 

terminal oxidase complex first characterized in S. metallicus, were highly induced during Fe(II) 

oxidation, with homologs present in S. tokodaii, capable of Fe(II) oxidation, but not S. acidocaldarius, 

incapable of Fe(II) oxidation [25]. The significant involvement of the fox genes in Fe(II) oxidation was 

further supported by the observation that pyrite-grown cells, but not sulfur-grown cells, exhibited a 

dominant membrane-bound protein corresponding to FoxA. Additionally, the observations suggest that 

one of the fox genes is a more likely candidate, than csbA, for the previously noted redox-active 

enzyme, associated with Fe(II) oxidizing Sulfolobales [25,97,98,114]. The availability of genome 

sequence data for the Sulfolobales has established the presence of the fox gene cluster in Fe(II)-oxidizing 

species, and the absence of this cluster in non-Fe(II)-oxidizing species, except for M. cuprina (Table 2). 

The genome of M. prunae contains the fox cluster, but with a mutated foxA’, possibly impacting 

activity of the cluster as indicated by a reduced capacity for uranium and Fe(II) oxidation [36]. The 

presence of the fox cluster appears to correlate to Fe(II)-oxidizing capacity. However, the fact that the 

M. cuprina appears not to encode this cluster, but oxidizes Fe(II), needs to be resolved. 

Results from transcriptomic studies continue to support the hypothesis of significant involvement of 

the fox gene cluster in Fe(II) oxidation, though in the absence of biochemical characterization other 

candidates cannot be completely ruled out [33,43]. As previously noted, the cbsA-soxLN2 complex 

exhibited high expression levels in M. sedula when grown on Fe(II) and S0, with further work 

revealing preferential differential up-regulation for Fe(II) [33,114]. In contrast, analysis of  

M. yellowstonensis showed that cbsA expression was the same in the presence and absence of  

Fe(II) [43]. Furthermore, csbA-soxNL2 homologs are present in non-Fe(II)-oxidizing Sulfolobus 

species. In light of the previous observations, the cluster cannot be ruled out for Fe(II) oxidation. 

Other likely Fe(II) oxidation candidates include the other three terminal oxidase clusters, namely 

SoxABCD, SoxM supercomplex and DoxBCE. However, gene expression and physiological analysis 

point to functions of sulfur oxidation for SoxABCD and DoxBCE, and heterotrophy for the SoxM 

super-complex [33,34,43,114]. As with csbA-soxNL2, homologs are present in non-Fe(II)-oxidizing 

Sulfolobus species. The function of rusticyanin, sulfocyanin, and other novel multi-copper oxidases has 

yet to be determined for extremely thermoacidophilic Fe(II)-oxidizers, though they have been 

hypothesized to function as electron shuttles to the terminal oxidase. Rus-like blue copper proteins in 

Metallosphaera spp., with plastocyanin type I domain, were highly transcribed on growth on 

chalcopyrite and triuranium octaoxide, begging the question about the cellular localization of Rus and 

its role in the electron transport chain for Fe(II) oxidation in Metallosphaera spp. [33,36]. 
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Table 2. Complete terminal oxidase clusters and associated proteins identifiable in sequenced extreme thermoacidophile genomes. (x) and (-) 

indicate presence and absence, respectively, with (y) being used when a secondary candidate exists. Species in bold are known to oxidize 

Fe(II). Blank boxes indicate absence of sequence data for those species. Homology searches were completed using previously identified M. 

sedula proteins as search queries with The National Center for Biotechnology Information’s (NCBI) Basic Local Alignment Search Tool 

(BLAST) against the Sulfolobales (taxid:2281) database. 

Terminal Oxidase Fox ABCDEFG Sox ABCDL Sox EFGHIM DoxBCE CbsAB-SoxL2N Rusticyanin Sulfocyanin 

Metallosphaera sedula x x x x x x, y x, y 

Metallosphaera prunae x x x x x x, y x, y 

Metallosphaera cuprina - x x x x - x, y 

Metallosphaera yellowstonensis x x x x x x, y x, y 

Sulfolobus solfataricus - x x x x x x, y 

Sulfolobus acidocaldarius - x x x x - x, y 

Sulfolobus tokodaii x x x x x - x, y 

Sulfolobus metallicus x       

Sulfolobus islandicus - x x x x x, y x, y 

Acidianus brierleyi  x      

Acidianus ambivalens    x x   

Acidianus hospitalis - - - x x - x 

Candidatus Acidianus copahuensis x x - x x x x, y 

Notes: Gene IDs used for BLAST queries: FoxA (Msed_0484), FoxB (Msed_0480), FoxC (Msed_0478), FoxD (Msed_0477), FoxE (Msed_0475), FoxF (Msed_0474), FoxD (Msed_0469); 

SoxA (Msed_0289), SoxB (Msed0290), SoxC (Msed_0288), SoxD (Msed_0285), SoxL (Msed_0287); SoxE (Msed_0323), SoxF (Msed_0322), SoxG (Msed_0321), SoxH (Msed_0320), 

SoxI (Msed_0219), SoxM (Msed_0324); DoxB (Msed_2032), DoxC (Msed_2031), DoxE (Msed_2030); CbsA (Msed_0504), CbsB (Msed_0503), SoxL2 (Msed_0501), SoxN (Msed_0500); 

Rusticyanin 1 (Msed_0966), Rusticyanin 2 (Msed_1206); Sulfocyanin 1 (Msed_0323), Sulfocyanin 2 (Msed_0826). 
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There are additional membrane bound redox complexes which may respond to different organic and 

inorganic substrates: Nicotinamide adenine dinucleotide reduced (NADH):quinone oxidoreductase 

from A. ambivalens and S. metallicus is proposed to transfers electron from NADH to quinones [117], 

while the succinate:quinone oxidoreductase SdhABCD from A. ambivalens and S. tokodaii is proposed 

to transfer electrons from succinate to quinones [118,119]. The thiosulfate:quinone oxidoreductase, 

tetrathionate hydrolase TetH from A. ferrooxidans and Acidithiobacillus caldus [120,121] functions in 

S0 oxidation, in agreement with the M. sedula model [33,96]. The DoxDA, aa3 type quinol oxidase, has 

been annotated as a thiosulfate:quinone oxidoreducatase (TQO) in A. ambivalens [111], with likely 

involvement in sulfur oxidation. It has been shown that TQO can oxidize thiosulphate to tetrathionate, 

using ferricyanide or decyl ubiquinone (DQ) as electron acceptors [122]. 

As noted above, biooxidation of Fe(II) has been most widely and extensively studied in  

A. ferrooxidans and a brief overview of the current model is warranted prior to discussion of models 

within the Sulfolobales. The overall organization of Fe(II) oxidation components, mainly the vertical 

topography where Fe(II) is kept outside the cell, appears to be conserved, but significant diversity 

exists among the redox proteins [15]. For A. ferrooxidans, the transfer of electron from Fe(II) to 

oxygen involves a super-complex connecting the outer and inner membranes. The super-complex 

consists of an outer membrane high molecular-weight cytochrome c, encoded by cyc2, where Fe(II) 

oxidation occurs [123,124], a gene of unknown function (ORF1), a periplasmic soluble blue copper 

protein rusticyanin encoded by rus believed to responsible of uphill/downhill bifurcation [125,126], 

and a periplasmic membrane-bound di-hemic cytochrome c4 encoded by cyc1 [127]. Downhill flow 

proceeds to a terminal aa3-type cytochrome oxidase encoded by the coxBACD gene cluster [128,129]. 

The uphill components flow proceeds to a cytochrome bc1 complex (complex III, ubiquinol-cytochrome 

c reductase) through the quinone pool, and finally to a NADH1 dehydrogenase complex [130–132]. 

The bc1 complex is part of a five-gene operon, termed the petI operon, which is adjacent to the resBC 

operon, suspected to be involved in the construction of the c1 cytochrome [96]. Elements remaining to 

be determined in the electron transport chain are the specific interactions between certain complexes, 

assembly proteins, and the mechanisms of regulation for modulating uphill or downhill flux [96]. 

To date, hypothetical models for Fe(II) oxidation by the Fox cluster has been proposed for 

Metallosphaera species, based on expression, modeling and comparative genomic analysis  

(Figure 2) [33,43]. The Sulfolobales do not have the initial electron acceptor from Fe(II) found in  

A. ferrooxidans, a c-type cytochrome, supporting the notion that the Sulfolobales Fe(II) oxidation 

pathway is evolutionarily distinct [15]. Initially, electrons are extracted from Fe(II) by FoxCD, 

cytochrome b, and shuttled by a multi-copper oxidase either uphill or downhill. FoxA1 and FoxA2 are 

annotated as cytochrome c-oxidases (subunit I), forming a complex with FoxB, annotated as 

cytochrome c-oxidase (subunit II), and receive electrons proceeding in the downhill direction from the 

multi-copper oxidase. FoxG has been annotated as a 4Fe–4S polyferredoxin-like protein, and can form 

a complex with FoxCD for uphill electron flow through the multi-copper oxidase to the cytochrome ba 

complex, CbsAB-SoxLN. Electrons then pass through the quinone pool, finally to a NADH 

dehydrogenase. FoxH has been annotated as a signal transduction protein and its location in the fox 

cluster suggests an Fe(II)-sensing role. 

Recently, M. sedula was found to oxidize uranium trioxide, with the fox cluster likely mediating the 

oxidation process [36]. The conclusion was supported by M. prunae’s inability to transform the oxide 
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and a corresponding frame shift in foxA’, possibly also exerting a polar effect on the fox cluster. Prior 

to this report, three microorganisms possessed the ability to oxidize tetravalent U(IV) to hexavalent 

U(VI), namely the aerobic acidophilic chemolithotroph A. ferrooxidans, previously discussed, the 

anaerobic chemoorganoheterotroph Geobacter metallireducens, and the anaerobic obligate 

chemolithotroph Thiobacillus denitrificans [133–135]. The latter two catalyze the nitrate-dependent 

oxidation of U(IV). Two di-heme, c-type cytochromes, putatively c4 and c5 cytochromes, have been 

found to play a major role in the nitrate-dependent U(IV) oxidation by T. denitrificans [136]. The two 

cytochromes are membrane-associated and may be periplasmic, based on homology to characterized c4 

and c5 cytochromes in Pseudomonas stutzeri. The fact that periplasmic, rather than outer membrane, 

proteins are involved in the oxidation of UO2 suggests that U(IV) dissolution occurs before U(IV) 

oxidation, because it is unknown how periplasmic proteins would interact with a solid mineral 

substrate. Siderophores could enhance the solubility of U(IV), making it more bioavailable to the 

periplasmic cytochromes, or perhaps some yet undetermined outer membrane protein directly contacts 

the UO2. The biological oxidation of uranous sulfate, a soluble U(IV) species, by A. ferrooxidans has 

been demonstrated [133]. The authors hypothesized that rusticyanin was the first protein in the electron 

transport chain for the uranous ion. Subsequent electron transfer involved a yet unidentified electron 

acceptor between rusticyanin and cytochrome c. Based on more recent evidence for Fe(II) oxidation, 

the initial electron acceptor could be Cyc2, as opposed to rusticyanin. This is supported by the fact that 

the uranous ion has been found to be a competitive inhibitor of Fe(II) oxidation, which would 

implicate use of the same cytochrome c [137]. 

 

Figure 2. Proposed model for Fe(II) oxidation in M. sedula, based on transcriptional 

response experiments and bioinformatics analysis [33,43]. FoxC is believed to be the 

primary electron acceptor from metal ions and transfer the electrons to a blue copper 

protein (Rus—rusticyanin), which can follow an uphill electron flow to NADP+ or a 

downhill electron flow to O2. The dotted line shows the direction of electron flow.  

(a) heme a center in FoxA, (CuBa3) binuclear center in FoxA where O2 is reduced to H2O; 

(b) heme b in FoxC and soxN, (CuA) copper center in FoxB, (Fe–S) iron sulfur clusters in 

FoxG and SoxL, (Q) ubiquinone, (QH2) hydroquinone. 
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4. Heavy Metal Resistance Systems in Extreme Thermoacidophiles 

The dichotomy between metabolic requirements for metals by microorganisms and the potential 

associated toxicity has created an interesting and broad set of metal homeostasis and resistance 

systems required to maintain a delicate balance [138]. The concern of metal toxicity is particularly 

pertinent to metal mobilizing microbes, which must resist toxic heavy metals released into the 

environment as a result of their energy metabolism. In general, there are seven broadly defined 

categories of postulated mechanisms for metal resistance/tolerance in microorganisms (Figure 3):  

(1) passive tolerance; (2) metal exclusion by permeability barrier; (3) active transport of the metal;  

(4) intracellular sequestration of the metal by protein/chelator binding; (5) extracellular sequestration 

of the metal by protein/chelator binding; (6) enzymatic detoxification of the metal to a less toxic form, 

and (7) reduction in metal sensitivity of cellular targets to metal ions [139]. Microorganisms may 

contain one or more combinations of the above resistance mechanisms, but the primary mechanism for 

regulating intracellular metal concentrations under normal growth conditions involves membrane 

transport. However, exposure to higher toxic concentrations can elicit other more stringent responses 

that reduce non-specific uptake or induce specific metal resistance mechanisms, for example efflux [140]. 

The following section describes the current knowledge of metal resistance mechanisms with an 

emphasis on extremely thermoacidophilic microorganisms, useful for bioleaching applications. 

Comprehensive reviews covering microbial metal resistance exist, but few specifically target extreme 

thermoacidophiles [141–146]. 

 

Figure 3. Overview of metal resistance mechanisms for acidophiles. Energy for 

transporters can be provided by ATP (P-type ATPase), proton gradient (RND), or 

chemiosmotic (CDF). Metal sequestration can occur through small molecule complexing 

agents (e.g., phosphate) or metal-chelating proteins. The exterior blue barrier represents 

some external permeability barrier (e.g., S-layer or biofilm). The figure does not including 

reduction in metal sensitivity of cellular targets. 



Minerals 2015, 5 413 

 

 

4.1. Passive Tolerance and Metal Exclusion 

Recent literature concerning the high capacity of acidophiles to tolerate significantly higher levels 

of metal ions than their neutrophilic counterparts has revealed a potentially important set of passive 

tolerance features [141,147]. The first passive mechanism relates to metal ion chelation by sulfate ions, 

which are typically high in acidophile habitats and are coupled to metal concentrations. Chelation 

significantly reduces the availability of free ions, which are much more toxic [147,148]. However, 

soluble complexes can still exert significant toxicity, as found for zinc phosphate with the neutrophile 

Arthrobacter sp. [149]. Unlike neutrophiles, acidophiles maintain an inside positive cytoplasmic 

transmembrane potential, thus generating a chemiosmotic gradient inhibiting proton and metal cation 

passage across the membrane [147,150,151]. At lower pH, a greater competition exists between 

protons and metal cations for metal-binding sites [152,153], which has been hypothesized to account 

for decreased toxicity of zinc at lower pH values for acidophiles [154]. However, for more toxic 

metals, the importance of the above passive systems might be limited [147]. For example, the capacity 

of an M. sedula strain, deficient in an active efflux system for copper, failed to mobilize chalcopyrite, 

despite the concomitant increase of sulfate during mineral dissolution [155]. 

Metal exclusion represents another general defense against toxic metal effects and involves 

alterations in the cell wall, membrane, envelope, or surface layer (S-layer) in an attempt to prevent 

damage to intracellular or cytoplasmic targets [139]. Arsenate can be taken up by phosphate transport 

systems in bacteria, but enhanced resistance can be achieved with highly specific phosphate 

transporters, excluding arsenate. Specifically, for E. coli, this involves use of the Pst system as 

opposed to the less specific Pit system [156]. A loss of function for the Pit system in M. sedula 

increased resistance compared to a spontaneous mutant harboring a restored version, but found to 

reduce resistance to copper [157]. The result is consistent with mutations of low-affinity, high velocity 

transporters pit and corA being more tolerant to arsenate and cobalt, respectively [158–161]. 

Therefore, a potential system of defense relies on the mutation of non-specific systems or use of more 

specific uptake systems for essential nutrients in an attempt to exclude toxic metals and avoid the 

“open gate” issue [140,162]. Limitations exist for this strategy, as use of more specific uptake systems 

generate tolerant mutants that are less robust than the wild-type [144]. Another resistance strategy 

exists for metals, such as nickel and cobalt, where repression of permeases responsible for their uptake 

can prevent associated toxic effects when extracellular concentrations become physiologically 

dangerous [163]. 

Non-specific binding of metals by the outer membrane, envelope, S-layer, extracellular polymeric 

substances (EPS), and/or lipopolysaccharide (LPS) offers yet another means of metal exclusion. 

Biofilms, generally composed of extracellular polymeric substances, are capable of enhancing metal 

tolerance of attached communities since they sorb metals [164–166]. The extracellular matrix and  

S-layer, known to contain many functional groups capable of interacting and trapping metals, have in 

the case of Bacillus sphaericus been shown to act as a protective uranium immobilizing matrix, 

resulting in a local detoxification [167–170]. This offers limited metal protection due to saturation of 

binding sites, but regeneration of binding sites by enzymes, such as phosphatases, can extend the 

effectiveness of the system [169]. 
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4.2. Copper 

Among the metals studied in extreme thermoacidophiles, copper has received the most attention 

because of the potential of these archaea for extraction of copper from primary ores like chalcopyrite. 

The known copper resistance strategies employed by these microorganisms includes active transport 

and metal sequestration. The active transport system utilizes members of the P-type ATPase superfamily, 

which includes many members responsible for pumping cations against steep electrochemical gradients 

by exploiting the energy from ATP hydrolysis [171]. A myriad of microorganisms, including the 

widely studied S. solfataricus, employ single-unit membrane class IB heavy metal translocating P-type 

ATPases [171–174], used for metal (Cu2+, Cu+, Ag+, Pb2+, Zn2+, Cd2+, Co2+) homeostasis and 

resistance [175–178]. The metal sequestration system is associated with inorganic phosphate 

metabolism, known to be involved in bacterial stress responses [179–182]. The role of polyP 

metabolism in metal stress response among extremophiles has received limited attention, despite the 

potential of this system to confer significantly higher levels of copper resistance [183,184]. 

The S. solfataricus genome exhibits only two P-type ATPases, both belonging to class 1B, CopA 

and CopB encoded by Sso_2651 and Sso_2896, respectively [22]. CopA and CopB are known to 

impart copper resistance to S. solfataricus, with CopA being an effective copper pump at low and high 

copper concentrations, and CopB apparently functioning as a low-affinity copper export ATPase 

extending resistance at higher concentrations [178]. Similar roles have been observed for the 

homologous CopA and CopB of Thermus thermophilus, with stimulation of each occurring most in the 

presence of Cu(I) and Cu(II), respectively [185]. Interestingly, PIB-type copper pumps of the CopA-2 

subclass have been implicated in the assembly of metalloproteins, such as the copper-containing  

cbb3-type respiratory oxygen reductases [186–188]. As a result, CopA and/or CopB may function 

together with periplasmic copper chaperons in the assembly of the ba3-type and caa3-type  

copper-containing respiratory oxygen reductases present in T. thermophilus [185]. However, 

Völlmecke et al. (2012) demonstrated neither PIB-type ATPase, both of the CopA-1 subclass, found in 

S. solfataricus play an essential role in cytochrome oxidase biosynthesis.  

The CopA operon occurs as the gene cluster copRTA, encoding the copper-responsive regulator 

CopR [189], the copper-binding protein CopT containing the metal coordinating ligands within the  

so-called trafficking, resistance and sensing of heavy metals (TRASH) domain [190], and the Cu(I) 

transporting P1B-type ATPase, which are induced under the presence of excess copper and represent the 

general structure of the operon found in archaea [191,192]. The copB gene cluster is organized in a 

different region, with the transcriptional regulator copY and a small copper chaperone of the heavy 

metal associated (HMA) group copZ arranged in the opposite orientation of the Cu(II) transporting 

P1B-type ATPase, copYZ/copB [178]. The catalytic ATP-binding/phosphorylation domain of CopB was 

shown to be active in the presence of Cu(II), but not Cu(I), and is believed to play a role in the 

transport of Cu(II) [193]. In the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus, 

two copper-transporting ATPases, CopA and CopB, were isolated, characterized and found to 

activated on Cu(I) and Cu(II), respectively [194,195]. The CopA of A. fulgidus has been extensively 

studied with regards to its metal binding, actuator, ATP binding domains, and interaction with 

chaperones [196–202]. 
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The genome of the extreme acidophilic archaeon Ferroplasma acidarmanus contains a cop operon 

encoding a putative transcriptional regulator (copY), a putative metal-binding chaperone (copZ), and a 

putative copper-transporting P-type ATPase (copB) [190]. Transcript levels of the co-transcribed 

copZB were found to increase in response to exposure to high levels of Cu2+ [203]. Recently, a similar 

copA operon to the one in S. solfatariucus was studied in M. sedula, which has 20 times greater 

resistance to Cu2+ [32,34,155,189]. A genetics-based investigation proved the functional role of the 

PIB-type ATPase operon copRTA found in the M. sedula genome [155]. Further, targeted 

recombination of copA compromised both metal resistance and eliminated chalcopyrite bioleaching. 

Two non-identical cop loci in S. metallicus have been identified to respond to both copper and 

cadmium, implicating functionality in resistance response [204]. 

Despite the possibility of polyP to impart broad metal resistance, study of polyP related to stress 

responses has largely been ignored in extremophiles, especially those best suited for biomining 

applications, except for the bacterium A. ferrooxidans and the archaeon S. metallicus [182,205,206]. 

Several acidophilic organisms, including A. ferrooxidans, S. metallicus, S. acidocaldarius, A. thiooxidans, 

M. sedula, A. caldus and to a lesser extent S. solfataricus, accumulate polyP [146,183,184]. 

Comparison of polyP production in S. solfataricus to that in S. metallicus showed that S. metallicus 

had significantly higher polyP synthesis and could tolerate up to 200 mM copper sulfate, while  

S. solfataricus could not resist more than 1–5 mM copper sulfate, suggesting a relationship between 

Cu-resistance and polyP levels [184]. Also, a study on the transcriptional and functional genes related 

to survival in the presence of copper for A. ferrooxidans identified polyP as contributing to copper 

resistance [207]. Another system found in A. ferrooxidans, but not found in the Sulfolobales, is the 

proton-driven Cus CBA-transport system, studied extensively in E. coli [146,208]. Both the Cop and 

Cus mechanisms are believed to be key determinants in the copper resistance of A. ferrooxidans [207]. 

Enzymes essential to polyP metabolism are the polyphosphate kinase (PPK) that catalyzes the 

reversible conversion of ATP’s gamma phosphate into polyP and the exopolyphosphatase (PPX) that 

hydrolyzes terminal residues of polyP [206]. Interestingly, production of polyP has been proven to 

occur in several archaeal species, but only PPX proteins and genes have been described, in particular 

for S. solfataricus [209]. Further, analysis of extremophilic archaea has shown that Crenarchaeota 

possess ppx genes but lack ppk genes, while Euryarchaeota possess ppk genes, but no ppx genes. Most 

extremophilic bacteria included in the analysis contained both genes [206]. The role of polyP in metal 

resistance in extremophiles encompasses both its role as an energy source and metal chelating agent. 

Through the action of PPX, the microorganism can generate organic phosphate for metal chelation, or 

the reversible reaction catalyzed by PPK can generate additional ATP for heavy-metal efflux systems 

or other cellular metabolism associated with metal challenge [142]. The importance of phosphate 

metabolism, specifically import via an archaeal Pit system, to enhanced copper resistance for an  

M. sedula mutant has been established and indicates phosphate plays a key role in supernormal copper 

resistance [157]. 

4.3. Mercury 

Currently, the most pervasive and generally employed mercury resistance strategy among bacteria 

and archaea occurs through volatilization [210–214]. Mercury methylation or reduction can lead to 
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volatilization, but only the latter is believed to operate as a resistance mechanism, because 

organomercurials are highly toxic [144]. Bacterial mediated mercury methylation occurs anaerobically, 

is coupled to dissimilatory reduction of various electron acceptors, mostly sulfate [215], and has been 

extensively studied and recently reviewed [216,217]. There exists a limited understanding of mercury 

methylation in archaea, but it has been shown to occur in certain methanogens [218]. The known 

mercury resistance strategy in extreme thermoacidophiles is based on reduction of Hg2+ to the volatile 

Hg0+ by the Hg-reductase MerA and is a homolog of the thoroughly investigated bacterial mercury 

resistance system (mer) encoded by the mer operon [144,210,213,219,220]. The extreme 

thermoacidophile mechanism is based on genes encoded by the merRAHI operon, which has been 

studied in detail for S. solfataricus [221,222]. The gene merA encodes a protein that is homologous to 

the bacterial mercury reductase MerA. MerR acts as a negative regulator inducing transcription without 

leaving the merA promoter. MerH contains the conserved metal binding TRASH domain and is 

suspected to chaperone mercury for mobilization. MerI has a yet undetermined functional role [221,222]. 

Like other early evolving microbial lineages, Aquifica [223] and Thermus/Deinococcus [224],  

S. solfataricus’s (Crenarchaeota) mer operon encodes fewer functional genes than the operons found in 

Proteobacteria, Firmicutes, and Actinobacteria [211]. Another avenue for mercury reduction beyond 

the mer system has been discovered in A. ferrooxidans, where a cytochrome c oxidase was found to 

detoxify mercurial compounds [225,226]. 

4.4. Other Metals (Arsenic, Cadmium, Nickel, Uranium) 

Although most work to date centers on copper and mercury resistance, other metals have been 

studied. Arsenic resistance systems include arsenate reduction followed by arsenite efflux, 

complexation by metallothioneins, and methylation [227–229]. The most pervasive system employs an 

arsenic resistance (ars) operon encoding an As3+ responsive transcriptional repressor (ArsR) [230], an 

arsenate reductase (ArsC) responsible for extending resistance to As5+ by mediating As(V) reduction to 

As(III) [231], which is then extruded by the ArsB antiporter, catalyzing exchange of As(OH)3 for protons 

and thus conferring resistance [232]. Additionally, some ars operons contain an ArsB complexing  

As3+-translocating ATPase (ArsA), enhancing resistance [233], and an arsenic metallochaperone (ArsD) 

that transfers As3+ to ArsA, increasing its ability to extrude arsenite [234,235]. Other genes associated with 

ars operons include the putative thioredoxin reductase (arsT) [236,237] or thioredoxin system  

(arsTX) [238] required for As(V) reduction using NADPH reducing power, and two genes of unknown 

function with weak homology to oxidoreductases (arsO and arsH) [236,239,240]. The ArsH protein 

from Shigella flexneri was shown to have NADPH-dependent FMN reductase activity [241]. 

Several archaeal genomes contain homologs of the ArsC [162], but a sub-section that contain other 

ars operon components, or are known to be resistant to arsenate, appear to lack ArsC. The extreme 

arsenite resistance of F. acidarmanus has been attributed to the established ars operon, which for this 

organism is only represented by the arsenite inducible operon homologous to arsRB [242]. Despite the 

absence of a homolog to the arsenate reductase (arsC), the inability to reduce arsenate and accumulation 

of intracellular arsenate, F. acidarmanus still possesses extreme arsenate resistance [242,243]. Since 

ArsB can only extrude As(III), an unknown and novel arsenate resistance mechanism likely exists in  

F. acidarmanus, with modes including direct efflux of As(V), intracellular sequestration, resistance of 
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cellular components to As(V), or high levels of intracellular phosphate [242]. F. acidarmanus genome 

does contain a homolog to arsA, but due to the lack of a promoter and an N-terminal domain it is likely 

a pseudogene [242]. A similar arrangement can be found in other extreme acidophilic archaea, such as 

Thermoplasma acidophilum and Picrophilus torridus, with the addition of either a partial or complete 

separately encoded arsA, respectively [244,245]. The genomes of both S. solfataricus and M. sedula 

encode a stand-alone arsenite transporter ArsB [34]. Transcriptional analysis of the archaea 

Pyrobaculum aerophilum utilizing arsenate as the terminal electron acceptor revealed the up-regulation 

of a putative arsR homolog, but not the up-regulation of an annotated arsenical pump-driving ATPase 

and arsenite permease [246]. In contrast to acidophilic archaea, arsC containing operons are present in 

other acidophilic bacteria, such as Acidithiobacillus ferrooxidans [239], Acidithiobacillus caldus [247], 

Acidiphilium multivorum [248], and Leptospirillium ferriphilum [249]. 

Beyond F. acidarmanus, ars-based arsenic resistance in archaea has only been extensively 

characterized in Halobacterium sp. strain NRC-1. The megaplasmid pNRC100 encodes the gene 

clusters arsADRC and arsR2M, while arsB occurs on the chromosome [250]. Deletion of the arsADRC 

cluster resulted in increased sensitivity to arsenite and antimonite, while deletion of arsB caused no 

change in sensitivity to either arsenate or arsenite, indicating Halobacterium sp. strain NRC-1 contains 

a novel arsenite/antimonite extrusion system vastly different from bacterial counterparts [250]. The 

arsM gene was determined to be a putative methyltransferase, known to exist in mammals, and 

knockout of the gene produced sensitivity to arsenite, possibly indicating a novel detoxification 

stragtegy [250]. Analysis of microbial genomes identified 125 bacterial and 16 archaeal homologs of 

arsM genes, with a subset located downstream of an arsR gene, suggesting these ArsMs confer arsenic 

resistance [251]. The system now represents an established arsenic resistance system for certain 

archaea and bacteria [162]. 

Arsenite oxidation could represent an alternative or enhancing strategy to other known arsenic 

resistance systems [227,252]. The membrane fraction S. metallicus (formerly Sulfolobus acidocaldarius 

strain BC) has been shown to oxidize arsenite to the less toxic arsenate using an unknown oxidase [253]. 

Recently, A. brierleyi was shown to oxidize arsenite from refinery wastewater by an undetermined 

mechanism, presumably an arsenite oxidase [254]. During the bioleaching of arsenic containing ores 

and concentrates, considerable care must be exercised as mineral dissolution releases arsenite and 

unless sufficient Fe(III) is present to oxidize As(III), toxicity ensues [254]. The capacity of extremely 

thermoacidophilic archaea, involved in biomining, to oxidize arsenite differentiates them from the 

majority of their mesophilic counterparts [255].Many phylogenetically distinct bacteria are known to 

oxidize As3+ [256,257] using the heterodimeric enzyme Aio (formerly Aox, Aro or Aso; see [258]), 

comprised of the AioA (molybdopterin) and AioB (Rieske) subunits. Among archaea with sequenced 

genomes, which does not include S. metallicus or A. brierleyi, several including Pyrobaculum 

calidifontis, Sulfolobus tokodaii, and Aeropyrum pernix, were found to harbor aio clusters, indicating 

these as putative As3+-oxidizing archaea [256]. The aio gene cluster appears to be linked to an 

“ancient” bioenergetic pathway [257]. 

In general, few studies exist exploring cadmium resistance mechanisms among acidophiles, especially 

extreme thermoacidophiles. The common detoxification mechanism in neutrophiles employs a variety 

of active efflux systems [144,145]. Although not elucidated, analysis of sequenced acidophile genomes 

indicates cadmium efflux, mediated by CadA, might be a common resistance mechanism amongst 
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acidophiles [259]. Exposure of S. metallicus to cadmium revealed the response of two cop loci, 

suggesting the locus not only functions for copper detoxification, but cadmium as well [204]. 

Additionally, the cadmium response, along with copper, elicited a defensive stress response including 

proteins related production and conversion of energy, amino acids biosynthesis, stress responses, and 

transcription regulation. The results of a general defensive response are consistent with previous 

characterization and appear to represent a general cellular response to metal challenge [203,242,260,261]. 

No determinants of nickel resistance have been experimentally identified in acidophilic archaea, 

despite a detoxification system, based on efflux, existing for bacteria [144,145]. The nickel resistance 

determinant has been identified for acidophilic bacteria Leptospirillum ferriphilum, which was attributed 

to a nickel–cobalt resistance operon (NCR) [262,263]. However, the only study to date in acidophilic 

archaea identified redox stress proteins involved in the adaptation response of S. solfataricus to nickel 

challenge [260]. 

A number of processes have been investigated for the bioaccumulation of uranium, which includes 

biosorption [264], bioreduction [265], and biominerlization [266–268]. These studies have largely 

focused on bacteria with the mechanisms of uranium accumulation and the resulting uranium 

complexes being poorly understood in archaea. Given the differences in cell wall structures between 

archaea and bacteria, differences in interaction mechanisms can be expected [269]. The anaerobic 

hyperthermophile, Pyrobaculum islandicum, has been shown to reduce U(VI) to the insoluble U(IV) 

mineral uraninite leading to the formation of extracellular deposits [270]. Dense uranium deposits were 

observed at the cell surface in the halophilic archaeon Halobacterium halobium, with complexation of 

uranium predominantly via cellular inorganic phosphate (uranyl phosphate) [271]. More recently, the 

interaction of S. acidocaldarius with U(VI) was studied under highly acidic (pH 1.5–3.0) and 

moderately acidic (pH 4.5) conditions, relevant to the physiological growth optimum of this organism 

and uranium polluted environments [269,272]. For the highly acidic conditions, U(VI) was 

demonstrated to complex with organic phosphate groups, while under moderately acid conditions 

carboxylic groups were also involved in U(VI) complexation. Intracellular deposits associated with the 

inner side of the cytoplasmic membrane represented the majority of U(VI) accumulation, with a small 

amount biomineralized extracellularly [269]. In contrast to the use of organic phosphate groups, 

neutrophilic bacteria are known to secrete orthophosphate (via polyphosphate metabolism) and form 

inorganic uranium precipitates that serve to protect bacterial cells from uranium toxicity [266,267,273]. 

The pH dependence of uranium complexation in S. acidocaldarius differs from the pH independent 

process of the acidophilic bacterium A. ferrooxidans, where uranium complexation occurred solely via 

organic phosphate groups between pH 2–4.5 [274,275]. Further, in contrast to U(VI) biosorption in 

Chryseomonas sp. [276], Bacillus sphaericus ATCC 14577 [277], Pseudomonas fluorescence  

ATCC 55241 [271], and H. halobium [271] under corresponding experimental conditions,  

S. acidocaldarius has a significantly lower capability [269]. As noted above, bacteria have significantly 

different cell wall structures from archaea, which contain a large number of uranium binding ligands, 

such as carboxylic and phosphate groups [169,278]. Although the cell wall of H. halobium only 

consists of a S-layer protein, in contrast to S. acidocaldarius this S-layer is enriched in carboxylic 

amino acid residues and can explain the higher uranium binding capacity [269,279]. A few 

microorganisms, such as like Bacillus sphaericus JG-A12, possess a phosphorylated S-layer allowing 

for binding of large amounts of uranium [169]. Taken together, S. acidocaldarius appears to interact 
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with and detoxify U(VI) differently than other acidophilic and non-acidophilic bacteria. Recently,  

a preliminary investigation into the uranium resistance of M. prunae compared to M. sedula indicated a 

novel role of a toxin-antitoxin in resistance [36]. 

5. Attachment of Extreme Thermoacidophiles to Surfaces 

The vast majority of leaching bacteria adhere to the mineral sulfide surface, generally mediated by 

an exopolysaccharide (EPS) surrounding the cells [280–285]. The EPS provides an essential  

micro-environment and reaction space for organisms leaching mineral sulfides [286–289]. Certain 

species, like Acidithiobacillus caldus, cannot adhere and requires co-culture with EPS-forming 

acidophiles [290]. Curiously, if an organism is capable of mineral sulfide attachment, the space for 

attachment must be non-limiting [291,292]. The formation of EPS is known to be stimulated by 

attachment or surface contact [285,293]. The composition of EPS consists of sugars, fatty acids, 

glucuronic acid, and Fe(III) ions [39,281,294]. Adherence is mainly attributed to electrostatic 

interactions, but hydrophobic interactions do contribute and the magnitude of the adhesion force has 

been determined [281,295–299]. The EPS does display adaptability depending on whether the 

substrate is a metal sulfide or sulfur [281], though the molecular mechanisms used to adapt 

composition and amount of EPS according to growth substrate are still unknown [291]. While the site 

of attachment and mechanisms for specific site detection are still unknown, the process does not 

appear to be random, with cells attaching to areas of surface imperfection or low-degree of  

crystallinity [281,291,294,300–304]. Additional elements mediating adherence to surfaces include pili 

and S-layer proteins [170,305–307]. 

L. ferrooxidans and A. ferrooxidans possess chemotaxis systems for sensing Fe(II), which might 

function to identify specific sites on pyrite surfaces for attachment [308,309]. Quorum sensing 

functions in bioleaching bacterium allow for swarming behavior on metal sulfides and play a key role 

in biofilm formation, enhancing dissolution of the mineral substrate [310–315]. Early biofilm 

formation involves capsular polysaccharide production (CPS), up-regulation of genes related to pili 

and EPS production, motility and quorum sensing, synthesis of cell wall structures, specific proteases, 

stress response chaperons, and mixed acid fermentation [316–319]. Proteomic analysis revealed 

similar results with the addition of increased production of osmolarity sensing, outer-membrane efflux, 

iron uptake, sulfate uptake and assimilation, glutathione/coenzyme/cofactor biosynthesis, lipoproteins, 

and nucleotidases [320]. 

As discussed above, chalcopyrite bioleaching is more effective at temperatures above 65 °C, 

requiring the use of extremely thermoacidophilic microorganisms [4,321–323]. The majority of 

studies, related to mineral sulfides, focused on attachment parameters of temperature and culture 

history, the influence of planktonic and attached cells on the dissolution process, visualizing pyrite 

leaching, and biofilm development [324–327]. As is the case for other acidophilic metal  

mobilizers, EPS plays an important role in the adhesion to solid mineral substrates for extreme  

thermoacidophiles [34,39,283,328]. The EPS for S. acidocaldarius, S. solfataricus, and S. tokodaii, 

contains mannose, galactose, and N-acetylglucosamine [328,329]. Thicknesses of EPS for M. hakonensis 

grown on pyrite and chalcopyrite have been determined to be 8–12 and 4–8 μm, respectively [283]. 

Elemental analysis of EPS produced by M. hakonensis, grown on chalcopyrite, showed iron levels 
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below the detection limit, preventing assessment of the presence or absence of iron in the EPS [39]. 

The result suggests differences in Fe(II)-oxidation enzymes could be more important for dissolution 

than iron levels in the EPS. For S. solfataricus and S. acidocaldarius and likely other extremely 

thermoacidophilic archaea, initial attachment to solid substrates involves pili, and additionally flagella 

for S. solfataricus [328,330,331]. 

A proteomic/transcriptomic study of S. acidocaldarius, S. solfataricus, and S. tokodaii adjustment 

to biofilm lifestyle was strain specific [329]. As noted above for other acidophiles, these changes were 

largely associated with energy production and conversion, amino acid metabolism, lipid and 

carbohydrate metabolism, transport related functions, and cell surface modifications. Interestingly, 

very few changes were shared across the species, which included a family of Lrs14-like transcriptional 

regulators, several significantly influencing biofilm formation or cell motility [332]. No quorum sensing 

(QS)-phenomena were detected in the biofilm formation of S. acidocaldarius, S. solfataricus, and  

S. tokodaii nor for F. acidarmanus Fer1, leaving the significance of cell signaling and communication 

unknown [329,333]. The biofilms formed by F. acidarmanus rely on EPS and involve shifts in 

metabolism towards anaerobic growth. Further, the biofilms are monolayer, and like acidophilic 

bacteria, appear to preferentially occur at cracks/defects on pyrite surfaces [284,333]. Recently, a 

methodology for investigating archaeal biofilms was developed using fluorescence lectin-binding 

analysis. Results showed variations in EPS glycoconjugates for three archaeal species and that various 

substrates induce different EPS glycoconjugates, similar to the flexibility of bacteria [281,334]. For more 

information on the aspects of other archaeal biofilms, informative reviews are available [331,335–338]. 

In general, there exist three models describing microbe-mineral electron transfer: (i) direct;  

(ii) electron shuttle; (iii) nanowire [339,340]. For metal-reducing Shewanella and Geobacter species, 

several strategies have been proposed to mediate interfacial electron transport from the cell to the 

external solid-phase electron sink, though intense debate still exits concerning molecular details. For 

short distances, <2 nm, electron tunneling could play a critical role in electron transfer, whereby direct 

electron transfer occurs between the extracellular substrate and redox-active enzyme [341–343]. 

However, dramatically longer distances of electron transfer have been reported, ranging from 

nanometers to centimeters, requiring long-distance electron transport models [344]. A model for 

diffusive shuttling of electrons involves flavin-mediated transfer of electrons between the extracellular 

substrate and redox-active enzymes, multi-haem cytochromes, on the cell surface [345–347]. A model 

based on extracellular appendages, commonly called nanowires, involves electron transfer along these 

nanowires, believed to be either membrane- or pilin-based, between the solid substrate and  

cell [265,348–352]. Interestingly, the occurrence of nanowires coincides with formation of separate or 

attached redox-active membrane vesicles [352,353]. Further, bacterial biofilms incorporating 

nanowires or outer membrane cytochromes and multicellular bacterial cables can transfer electrons 

over long distances [354,355]. Electron conductance is proposed to occur from either metallic-like band 

transport or multi-step redox hopping mechanisms, though the former remains controversial [356–360]. 

A tentative “contact” model for metal sulfide dissolution (e.g., FeS2), requiring an oxidizing attack 

by Fe(III), has been proposed [291]. The model postulates that Fe(III), complexed to glucuronic acid in 

the EPS, performs the oxidizing attack of the metal sulfide. The Fe(II) produced by the cathodic 

electron transfer is then released from EPS chelators and diffuses toward the outer membrane where 

(re)oxidation occurs, thus the cycle repeats [291]. The model is similar to the flavin-mediated 
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shuttling, noted above, with Fe(II) serving as the electron shuttle. The metal sulfide model rests on four 

assumptions: (i) oxidizing attack by Fe(III) is required; (ii) EPS-complexed Fe(III) fulfills this 

function; (iii) electron tunneling effects explain transfer, and (iv) Fe(II) ion-glucuronic acid complexes 

are less stable than Fe(III). The first assumption rests on the assertion that direct electron transfer from 

the metal sulfide to the attached cell does not occur, since no enzymes or nanowires have been 

demonstrated for metal sulfide attached cells [291]. This assumption seems tenuous, given the recent 

work on metal reducing species showing usage of nanowires for metal reduction, discussed above. 

Additionally, type IV pili in A. ferrooxidans are highly conductive and might function as nanowires, 

directly transferring electrons from the external substrate [361]. The second assumption is based on 

experimental evidence where an A. ferrooxidans strain with high Fe(III) in the EPS had a higher 

bioleaching capacity compared to strains with low Fe(III) concentration [289,294]. A similar 

phenomenon has been seen for L. ferrooxidans, but the results only revealed the importance of the 

local concentration of the corrosion promotor Fe(III) in the biofilm environment [362]. The 

complexation “probably” occurs with glucuronic acid residues, but conclusive evidence along with 

Fe(II)/Fe(III) binding constants has not been presented [288,289,294]. Electron tunneling over 

distances <2 nm is widely accepted [341,363] and would allow both EPS complexed and solution 

Fe(III) to be reduced. However, given the thickness of the EPS is 10–100 nm wide, not all Fe(III) 

would be within range, requiring diffusion towards the surface [286,364].  

The above model does not incorporate the potential for mineral sulfide destabilizers that could help 

initiate release of Fe(II). Cysteine is known to accelerate FeS2 dissolution, possibly by disrupting the 

FeS2 surface, causing release of iron-sulfur species [365,366]. Further, A. ferrooxidans’ aporusticyanin 

was suspected to function as a receptor for initial adhesion to mineral sulfides, in which the protein 

could destabilize the mineral surface, leading to Fe(II) dissolution [367]. 

As mentioned above, the occurrence of nanowires coincides with formation of separate or attached 

redox-active membrane vesicles for the metal-reducing Shewanella species [352,353]. In bacteria, 

vesicles have roles in colonization and cell co-aggregation, both critical to biofilm formation [368]. 

Gram-negative bacteria, along with the extremely thermoacidophilic archaea S. acidocaldarius,  

S. solfataricus, S. tokodaii and S. islandicus, release membrane vesicles [369–372]. The presence of 

archaeal homologous of the eukaryotic endosomal sorting complex required for transport-I (ESCRT) 

proteins in the crenarchaeal vesicles, suggests vesicle formation occurs through an outward budding 

process, similar to inward budding of the endosomal compartment in eukaryotes [372,373]. The 

archaeal vesicles could serve a homologous function in electron transfer from the solid substrate to the 

cell, as for the metal reducers. 

The possibility that multiple mechanisms of interaction occur throughout different stages of mineral 

oxidation seems possible [374]. Initially, cells localize to non-random sites on the mineral sulfide 

surface, through an unknown mechanism, and attachment proceeds by CPS, pili, flagella, S-layer, 

mineral receptors (e.g., aporusticyanin), or a combination. Once attached mineral destabilizers cause 

an initial release of iron-sulfur species and cells switch to a sessile growth mode. EPS production 

occurs, providing an essential micro-environment and reaction space, where the corrosion promoter 

Fe(III) is entrapped and accelerates mineral dissolution. Though not experimentally observed to date, 

the implications of conductive pili and redox-active vesicles should not be ruled out. 
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6. Bioleaching 

Over the course of the past few decades, biomining has centered on the development of 

technologies to recover precious metals contained within ore-bearing matrices. In the recent past, 

numerous industrial processes have matured, primarily those involving the recovery of gold from 

refractory ores or the recovery of nickel or copper from base metal sulfides. In fact, some estimates 

suggest that as much as 15% of copper and 5% of gold production (on a global scale) utilize  

microbial-assisted extraction technologies [375]. Further, as the relative availability of higher-grade 

ores diminishes and environmental regulation increases, it is likely that interest in biomining will increase 

in an attempt to improve metal selectivity and yield, while minimizing the release of toxic pollutants. 

Recent reviews have emphasized the importance of mesophilic and moderately thermophilic 

acidophiles involved in bioleaching, ranging from industrial prospects [292,323,375] to specific uses 

for secondary copper ores [376] and polymetallic ores [377]. There are fewer details on the successful 

development of bioleaching applications using extremely thermoacidophilic microorganisms [378]. 

Extremely thermoacidophilic bioleaching, as it exists, is dominated by the genera Acidianus, 

Metallosphaera, and Sulfolobus for copper recovery from recalcitrant ores [379,380] or for sulfur 

oxidation to improve gold recovery from biooxidation, e.g., BIOPROTM [381]. 

6.1. Current Biooxidation/Bioleaching Practices at Elevated Temperatures 

The treatment of primary copper ores, such as chalcopyrite (CuFeS2), has been the main driver of 

extremely thermoacidophilic bioleaching developments, see Figure 4. Under mesophilic conditions, 

heap bioleaching of chalcopyrite tends to achieve low copper yields, often attributed to passivation, or 

the formation of deposited layers of iron complexes or polysulfides on the mineral surface [323,375,376]. 

These passivation effects do not appear to be as severe in extremely thermoacidophilic cultures, based 

on laboratory evaluations and pilot plant testing demonstrating high copper dissolution [9,379,380,382]. 

Although kinetics may be a driving factor in the dissolution process, evidence has emerged that redox 

potential can play a role in mitigating passivation for some circumstances [383,384]. In fact, it may be 

possible to greatly improve the metal dissolution of mesophilic and moderately thermophilic 

organisms by redox controlling strategies [384] or by the addition of silver, which forms a galvanic 

couple in the presence of chalcopyrite [385]. However, this result may support a more recent 

hypothesis that accounts for lowered dissolution of chalcopyrite, due to electronic and interfacial 

structure that more closely resembles a semiconductor [386]. Given that iron precipitates and polysulfides 

are so commonplace in both successful and unsuccessful leaching operations, more research is needed 

to understand if the intrinsic difference in dissolution rates is related to temperature/kinetics or perhaps 

a yet to be discovered dissolution mechanism among the extreme thermoacidophiles. 

Extremely thermoacidophilic archaea have some niche advantages in copper biomining. In the case 

of chalcopyrite-bearing molybdenite, extreme thermoacidophiles achieve selective copper dissolution, 

leading to improvement of molybdenum flotation concentrates, with minimal (<10%) molybdenum 

dissolution [387,388]. Further, there is evidence that extremely thermoacidophilic archaea may be 

more adept than mesophilic bacteria at extracting copper from other copper-sulfide ores, based on 

column bioleaching involving covellite (CuS) and enargite (Cu3AsS4) [6]. This suggests their potential 
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applications in processing mixed copper-bearing ores at elevated temperatures. Also, a study involving 

A. brierley bioleaching of enargite showed that the species can selectively mobilize copper, while 

simultaneously precipitating arsenic in the form of arsenate [389]. This approach could limit the 

deleterious effects of mining ores containing arsenic. 

 

Figure 4. Chronology of selected developments in extreme thermoacidophilic 

biotechnology [6,9,32,53,54,379,380,382,384,390–400]. 

Issues with sulfur oxidation have emerged in some biooxidation/bioleaching processes. In particular, 

gold and copper biomining of ores containing high concentrations of pyrite/pyrrhotite presents a 

challenge in mesophilic bioleaching processes. In the case of gold biomining, sulfur is often retained in 

a partially oxidized form (such as elemental sulfur). This residual sulfur is then capable of reacting 

with cyanide in downstream processing, severely impacting recoveries and increasing operating  

costs [381,401]. A consortium of mesophilic, moderately thermophilic, and extremely thermoacidophilic 

microbes has shown promise in improving sulfur oxidation and subsequent metal recoveries [381,401]. 

In the case of pyrite/pyrrhotite-rich copper deposits, heap bioleaching generates large amounts of  

heat [401,402]. In some instances, the inability to control temperature in the heap, due to the exothermic 

nature of sulfur oxidation, can result in issues with population succession and dissolution [401,402]. 

This issue might be mitigated by the use of extremely thermoacidophilic archaea. However, column 
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leaching experiments involving copper ores have revealed a tendency to form percolation channels [6,9]. 

This is possibly due to iron precipitation as oxyhydroxysulfates at higher temperatures [10].  

To improve the efficacy of extremely thermoacidophilic organisms bioleaching copper in heaps, one 

technology, GEOCOAT®, utilizes ground copper-ore concentrate coated onto a barren rock surface to 

increase surface area and, as a consequence, achieve increased rates and overall dissolution of  

copper [397,403]. 

6.2. Extreme Thermoacidophile Process Challenges 

Currently, extremely thermoacidophilic bioleaching presents certain process dynamic challenges. 

One potential concern is the delicate nature of the archaeal cell envelope, which lacks the bacterial 

peptidoglycan outer-membrane. This potentially places a limit on agitation rates that the microbes can 

endure in tank bioleaching conditions and may facilitate the need for highly specialized turbine/agitator 

designs [378–380]. Another issue is oxygen demand in high temperature environments. A well-known 

consequence of higher temperatures is decreased dissolved oxygen content, requiring the use of 

enriched oxygen sources (at a much higher operating costs than air) [378–380]. Compounding this 

issue is the production of reactive oxygen species, especially in the presence of finely ground mineral 

stocks and low pH, conditions which typically optimize leaching [404,405]. In fact, this result may be 

a critical issue that prevents higher solids loading in extremely thermoacidophilic bioreactors [405]. 

However, in all of these cases, the concerns raised for extreme thermoacidophiles as bioleachers have 

not been confirmed, but should be assessed as related technologies move forward. 

6.3. Polymetallic Ores and Industrial Waste 

A common issue in modern mining is the need to maximize yields of numerous metals of varying 

values from complex polymetallic ores. Several studies over the past few decades have suggested the 

potential value of bioleaching complex deposits with extreme thermoacidophiles. In the case of zinc, 

high recovery has been observed from complex sulfides, containing sphalerite [54,396]. In this 

instance, the extreme thermophiles appear to outperform moderate thermophiles and mesophiles. More 

recent studies continue to highlight the ability of extreme thermoacidophiles to leach a variety of 

metals from complex ores. In the case of a black shale (containing Mn, Fe, Zn, Ni, Cu, and Co), over 

90% dissolution of manganese, copper, zinc, and nickel was achieved with extreme thermoacidophilic 

cultures [406]. In the case of ores containing chalcopyrite, sphalerite, and galena, greater than 90% 

dissolution of copper and zinc were observed in the leachate, with more than 90% recovery of lead 

following brine precipitation [400]. Thus, the potential for improved kinetics of bioleaching by 

extreme thermoacidophiles is not limited to the current narrowly applied fields of sulfur oxidation and 

copper dissolution. 

Another area of growing interest is the treatment of industrial and consumer waste [407,408].  

A. brierleyi has been used to treat spent hydrocatalysts from petroleum processing in order to remove 

the molybdenum and nickel from the catalyst prior to disposal [399]. Another study focused on 

remediation of mining spillage composed primarily of pyrite, with some sphalerite and arsenopyrite. In 

this instance, extreme thermoacidophiles showed much faster kinetics for the dissolution of iron, zinc, 

and arsenic [398]. 
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7. Conclusions 

In general, bioleaching is likely to remain an important avenue for recovery of base, precious and 

strategic metals from mining operations. This processing approach reflects a trend toward more 

stringent environmental regulations which are incentivizing the use of sustainable industrial practices. 

In addition, the depletion of high-grade ores and the need to process increasing amounts of heavy 

metal waste will inevitably create a processing bottleneck, if only conventional chemical/physical 

metal extraction techniques are considered. Looking further into the future, implications for using 

extremely thermoacidophiles in asteroid mining creates yet another technological dimension [409]. 

Given the potential advantages and challenges associated with high temperature bioleaching 

operations, efforts to further understand the underlying metabolic, physiological and genetic mechanisms 

characteristic of extreme thermoacidophiles need to continue. In particular, as molecular genetics tools 

become more tractable and allow for metabolic engineering of biomining microorganisms to improve 

their efficacy, the corresponding issues with release of genetically modified organisms (GMOs) also 

arise. However, the unique aspects of extreme thermoacidophiles, and the inhospitable nature of 

biomining sites, may mitigate some of the concerns normally associated with release of GMOs. These 

concerns will need to be addressed from the perspective of microbial ecology of hot acid biotopes. 

A new and exciting frontier, of strategic importance where bioleaching microorganisms could play 

a significant role, is in the extraction and recovery of rare earth elements. Microorganisms and certain 

fungi can accumulate and absorb rare earth elements, providing a fundamental framework to build 

novel extraction and recovery processes [410–413]. Interestingly, an extremely acidophilic 

methanotrophic microorganism requires certain rare earth elements for survival [414]. Given that 

microbial metalloproteomes are largely uncharacterized, the potential for discovering novel rare earth 

element binding proteins among extreme thermoacidophiles is promising [415]. 
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