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Abstract: Magmatic–hydrothermal breccia pipes are widespread in numerous major porphyry and
epithermal gold deposits globally, representing significant repositories of metal resources and serving
as potential indicators for exploration targeting. More than ten breccia pipes occur in the Central
Taihangshan District (CTD) of the North China Craton. Some of these breccia pipes host gold
mineralization and are proposed to be related to the adjacent lode gold mineralization. However,
the lack of detailed geological constraints make this hypothesis ambiguous. To address this, the
present study conducted comprehensive field observations, drill core logging, an in situ sulfur isotope
analysis of pyrite, and the 40Ar/39Ar dating of adularia along a 1400 m section of the Tietangdong
breccia pipe at Yixingzhai. Three distinct breccia facies were identified at Tietangdong, exhibiting
variable proportions across the entire section, including a massive skarn breccia; polymictic, skarn
matrix-supported breccia; and polymictic, intrusive rock cement chaotic breccia. Furthermore,
adularia 40Ar/39Ar dating indicates a syn-/post-gold mineralization age of 136 ± 1.5 Ma, coinciding
with the age of post-breccia felsite dike. The deepest sampled pyrite displays δ34S values of ~2.7‰,
strongly indicating a magmatic–hydrothermal signature. These results, when combined with the
geological, geochronological, and isotopic studies on the adjacent lode gold mineralization, further
suggest a close genetic relationship between the breccia pipes and the lode Au mineralization, paving
the way for their utilization as effective indicators for gold targeting within the CTD.

Keywords: North China Craton; Central Taihangshan District; breccia pipes; gold mineralizations;
sulfur isotope; adularia dating

1. Introduction

Porphyry and epithermal gold deposits represent a crucial and economically signifi-
cant class within the spectrum of gold deposits [1,2]. Magmatic–hydrothermal breccia pipes
have been reported in some giant porphyry and epithermal gold deposits [3–7], such as the
Cripple Creek gold deposit, USA [8,9], Mt. Polley Cu-Ag-Au porphyry deposit, Canada [10],
Kellan gold deposit, Indonesia [11], and Ladolam epithermal gold deposit, Papua New
Guinea [12]. As such, the magmatic–hydrothermal breccia pipe is a potential indicator
for porphyry and epithermal gold deposit exploration [13]. The magmatic–hydrothermal
breccia pipe is characterized by the mechanical disruption of wall rocks resulting from the
release of overpressured magmatic–hydrothermal fluids or the subsurface emplacement of
intrusions [3]. In contrast, other breccia pipes, such as phreatic breccia and pebble dikes,
share some similar textures with magmatic–hydrothermal breccias, but lack significant min-
eralization [3]. Therefore, determining the genesis of breccia pipes is crucial in evaluating
the relationships between breccia pipes and mineralization.
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Numerous breccia pipes have been identified in the Central Taihangshan District
(CTD) within the central North China Craton (NCC) (Figure 1b, Refs. [14,15]). This district
hosts numerous early Cretaceous hydrothermal ore deposits, encompassing porphyry
Cu-Mo [16], skarn Fe-Au, lode Au [17,18], and volcanic-hosted Pb-Zn deposits [19]. More
than ten breccia pipes have been found adjacent to these deposits, such as the Yixingzhai,
Gaofan, Tanshang, Zhijiadi, and Chakou deposits (Figure 1b) [14]. It is uncertain whether
these breccia pipes are associated with their adjacent hydrothermal mineralization due to
poor geological constraints.
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Figure 1. (a) Geological map showing the tectonic division of the NCC and the location of the CTD.
(b) Regional geological map illustrating the distribution of the early Cretaceous magma, breccia
pipes, and gold polymetallic deposits in the CTD. Geological map (c) and cross-section along the A-A’
transect (d) of the Tietangdong breccia pipe (modified after [14]).

The Yixingzhai gold deposit (Lat. 39◦21′51′′ N, Long. 113◦35′46′′ E) is the largest gold
deposit in the CTD (Figure 1c, Ref. [20]). It has sixteen lode Au ore bodies and four breccia
pipes that also host gold mineralization. The Tietangdong breccia pipe is the most gold-rich
breccia pipe (~20 t Au). Previous works [21–23] have suggested a skarn crypto-explosive
origin for Tietangdong based on samples collected from the shallow part of the breccia pipe.
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Moreover, the authors of [22] analyzed zoning textures within garnet and epidote grains,
inferring several magmatic–hydrothermal pulses and multiple crypto-explosion events in
Tietangdong. However, our understanding of breccia facies and their spatial distribution
is still poor due to the inability to obtain deep samples, impacting insights into fully
comprehending the genesis of gold mineralization within the Tietangdong breccia pipe.
Furthermore, the absences of syn-gold mineralized geochronological and isotopic fluid
source tracing studies limit our understanding of its relationship with the adjacent lode Au
mineralization, thereby diminishing the efficacy of utilizing breccia pipes as a targeting
indicator. The Zijin Mining Company recently initiated a series of drilling campaigns at
the Tietangdong breccia pipe, with some drill holes reaching a depth of ~1400 m below the
surface. These drilling campaigns provide an opportunity to address the issues mentioned
above. The present study conducted comprehensive field observations and drill core
logging across a deep cross-section (1400 m in depth), the 40Ar/39Ar dating of syn-ore
adularia, and an in situ sulfur isotope analysis of pyrite grains associated with the native
gold. The results collectively provide valuable insights into the ore’s genesis and regional
gold exploration.

2. Geological Background

The CTD is located in the northern part of the ca. 1.85 Ga Trans-North China Orogen
(Figure 1a, Ref. [24]). Within the CTD, the basement rocks comprise Archean to Paleopro-
terozoic tonalite–trondhjemite–granodiorite gneiss (TTG), amphibolite, and banded iron
formation [24,25]. The NCC remained relatively stable from the late Paleoproterozoic to the
Paleozoic, accumulating a substantial sequence of carbonate and clastic sediments [26]. The
deep NE-trending faults in the basement, together with the NW-trending faults, constitute
the primary structural framework of the CTD during the Precambrian. Subsequently, these
faults experienced reactivation during the Mesozoic [14,26]. Along these faults, numerous
intermediate to felsic plutons, stocks, and dikes intruded the ancient basement of the CTD
(Figure 1b [27]). These felsic intrusions, with zircon U-Pb ages at 142–130 Ma [18,28,29], are
interpreted as products of crust–mantle interactions resulting from the lithospheric destruc-
tion of the NCC [30]. Many porphyry Cu-Mo deposits, skarn Fe-Au deposits, and lode Au
deposits formed within or around these early Cretaceous intrusions (Figure 1b). Previous
molybdenite Re-Os, garnet U-Pb, titanite U-Pb, and phlogopite 40Ar/39Ar geochronological
studies revealed that the mineralization formed in the period of 140–130 Ma, concurrent
with the early Cretaceous intrusions [17,18,21,30–32]. Numerous breccia pipes have been
identified in the CTD [15]. These pipes are structurally controlled by the NW- and NE-
trending faults and have spatial relationships with these early Cretaceous intrusions and
mineralization (Figure 1b).

The Yixingzhai deposit is the largest gold deposit in the central CTD (Figure 1b). It is
characterized by four breccia pipes and sixteen NW-trend auriferous quartz veins hosted in
the Archean to Paleoproterozoic TTG basement. Additionally, amphibolite, metamorphic
diabase, and carbonate wall rocks have been identified in the ore field (Figure 1c, Ref. [14]).
Yixingzhai features multiple generations of 135–140 Ma intermediate to felsic intrusive
dikes, stocks, and plutons (Figure 1c), including the Hewan granite porphyry, Nanmenshan
quartz porphyry, and Sunzhuang quartz monzonite (Figures 1c and 2a–d) [17,18,20,21,30].
Four breccia pipes in the Yixingzhai gold deposit are identified along these intrusions:
Tietangdong, Hewan, Nanmenshan, and Jinjiling (Figure 1c).

Sixteen lode Au ore bodies are hosted in Paleo–Proterozoic TTG gneiss and/or granite
porphyry, ranging in thickness from 0.05 to 4.30 m (Figure 1c). These ore bodies extend for
lengths of 150–2300 m and downdip for 500–1100 m. They exhibit a diverse mineralogical
composition, including quartz, hematite, pyrite, chalcopyrite, sphalerite, and galena, with
the dominant alteration characterized by sericite and chlorite [17,30].
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Figure 2. (a) Schematic cross-section showing the spatial distribution of different breccia facies, faults,
and dikes in Tietangdong. Stereographic maps of faults along the margin of the Tietangdong breccia
pipe are presented. (b) Quartz porphyry cutting the gneiss at the western part of the Tietangdong
breccia pipe. (c) Outcrop of polymictic, intrusive rock cement chaotic breccia (PICB) and skarn
breccia (SKB) in the middle of the Tietangdong breccia pipe. (d) Quartz porphyry cutting the SKB
at the middle of the Tietangdong breccia pipe. (e) Massive skarn breccia (MSK) at the Tietangdong
breccia pipe, displaying aggregations of massive prograde and retrograde skarn minerals with fine
to medium grain sizes. Definitive contact boundaries between clasts and matrix/cement are absent.
(f) Polymictic, skarn matrix-supported breccia (SMB) in the Tietangdong breccia pipe, exhibiting a
matrix-supported texture. Polymictic, rounded to sub-rounded clasts include quartz porphyry, felsite,
gneiss, and amphibolite. (g) PICB at the Tietangdong breccia pipe, where gray felsite (h) cements
rounded gneiss and amphibolite clasts. Abbreviations: Kfs—K feldspar, Act—actinolite.

3. Sample and Methods

More than 300 samples, ranging from the open pit to the deep drill cores, were col-
lected for petrographical observation and breccia facies identification (Figure 1d). The
classification of breccia pipe facies follows the methodologies established in [11,12]. Specifi-
cally, the matrix comprises tiny grains of rock powder or skarn minerals that are derived
from the carbonate clasts undergoing metasomatism. The cement component denotes the
intrusive rocks that cement the clasts within the breccia pipe. Over 100 double-polished
thin sections were examined under an optical microscope to investigate the mineralogy and
textural features based on their optical properties, such as the refractive index, birefringence,
interference colors, and extinction characteristics. In addition to optical microscopy, carbon-
coated sections were further studied using backscattered electron (BSE) imaging with a
Quanta 450 FEG scanning electron microscope (SEM) at the State Key Laboratory of Geolog-
ical Processes and Mineral Resources (GPMR), China University of Geosciences (CUG). The
accelerating voltage was set to 15 kV, with a beam current of 20 nA. The SEM-BSE technique
provided valuable information about the elemental contrast and micro-textural relation-
ships, which are crucial for identifying minerals with similar optical properties. In cases
where further confirmation was necessary, energy-dispersive X-ray spectroscopy (EDS)
was employed to analyze the chemical composition of the minerals, ensuring accurate
identification. Detailed sample descriptions and logging results are listed in Supplementary
Material S1 (Table S1) and illustrated in Figure 3.
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Figure 3. Cross-sectional illustration depicting breccia facies, intrusive rocks, and mineral associations
in the Tietangdong breccia pipe. Abbreviations: Hem—hematite, Mag—magnetite, Po—pyrrhotite,
Py—pyrite, Au—native gold, Ccp—chalcopyrite, Sp—sphalerite, Gn—galena, Grt—garnet,
Di—diopside, Scp—scapolite, Zeo—zeolite, Ep—epidote, Act—actinolite, Ap—apatite, Ttn—titanite,
Adl—adularia, Qz—quartz, Cal—calcite.

3.1. Adularia 40Ar/39Ar Dating

The sample TTD-10 was collected from the open pit for adularia 40Ar/39Ar dating,
with adularia and calcite cementing the retrograde epidote and actinolite (Figure 4c). After
careful petrographic observation, adularia was extracted through a series of steps: crushing,
sieving, washing in distilled water using an ultrasonic bath for 10 min, and air-drying
for two days. Finally, 0.5 to 2.0 mm adularia grains were handpicked under a binocular
microscope and validated via SEM-EDS before 40Ar/39Ar dating.

The mineral separates were irradiated with ZBH-2506 biotite standards
(132.7 ± 0.2 Ma [33]) in the China Mianyang Research Reactor (CMRR) at the China
Academy of Engineering for 48 h. After cooling for three months, the argon isotope ratios
were analyzed using the incremental heating method on a multi-collector Argus VI noble
gas mass spectrometer connected to a Coherent 50W CO2-IR laser device at the 40Ar/39Ar
laboratory at CUG. The experimental details of the method were provided in [34]. The
40Ar/39Ar results were calculated and plotted using the ArArCALC (version 2.52b [35])
software. All dates were reported using 5.543 × 10−10 a−1 as the total decay constant for
40K [36], with reactor correction factors set at 8.984 × 10−4 for (39Ar/37Ar)Ca, 2.673 × 10−4

for (36Ar/37Ar)Ca, and 5.97 × 10−3 for (40Ar/39Ar)K.
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(c) Calcite and adularia at the quartz–sulfide–calcite stage cement the early stage epidote and actin-
olite. Microphotographs show anhedral native gold either as inclusions (d) or filling the interstitial 

Figure 4. Microphotographs illustrating mineral associations and the occurrences of gold grains at
the Tietangdong breccia pipe. (a) Garnet coexists with scapolite during the prograde skarn stage.
(b) Epidote coexists with actinolite during the retrograde skarn stage, cemented by late-stage calcite.
(c) Calcite and adularia at the quartz–sulfide–calcite stage cement the early stage epidote and actino-
lite. Microphotographs show anhedral native gold either as inclusions (d) or filling the interstitial of
pyrite and chalcopyrite (e,f) at the Tietangdong breccia pipe. Abbreviations: Au—native gold,
Hem—hematite, Py—pyrite, Ccp—chalcopyrite, Sp—sphalerite, Gn—galena, Grt—garnet,
Scp—scapolite, Ep—epidote, Act—actinolite, Qz—quartz, Cal—calcite, Adl—adularia, ‘+’ —under
cross-polarized light, ‘-’ —under plane-polarized light.

3.2. In Situ Sulfur Isotope Analysis

Five samples from the Tietangdong breccia pipe were selected for in situ sulfur isotope
analysis. In situ sulfur isotope analyses of pyrite that related to gold inclusions were carried
out using an NWR FemtoUC femtosecond system (New Wave Research, Fremont, CA, USA)
coupled with a Neptune Plus multi-collector inductively coupled plasma mass spectrometer
(MC-ICPMS, Thermo Fisher Scientific, Bremen, Germany) at the GPMR, CUG. In the laser
ablation system, helium was used as the carrier gas for the ablation cell and was mixed with
argon (make-up gas) after the ablation cell. Single-spot ablation mode was employed. The
laser fluence was kept constant at ~2.5 J/cm2. To mitigate the downhole fractionation effect,
a large spot size (40 µm) and slow pulse frequency (4 Hz) were utilized [37]. The Neptune
Plus, equipped with nine Faraday cups fitted with 1011 Ω resistors, collected isotopes 32S,
33S, and 34S in static mode. The X skimmer cone and Jet sample cone in Neptune Plus were
used to improve the signal intensity. Nitrogen (4 mL/min) was introduced into the central
gas flow to diminish the polyatomic interferences. Medium resolution was applied in all
measurements, with the revolving power kept at greater than 5000.

The standard-sample bracketing method (SSB) was employed to correct instrumental
mass fractionation. The external standard of pyrite PPP-1 (δ34S = 5.40‰ ± 0.16‰) was
used to correct the mass fractionation of the sulfur isotope in various sulfide samples. In
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addition, the in-house references of pyrrhotite YP136 (δ34S = 1.50‰ ± 0.30‰ [38]) were
repeatedly analyzed to verify the calibration accuracy. The analyzed δ34S results of YP136
were 1.44‰ ± 0.18‰ (n = 10, 2σ). All data reductions for the LA-MC-ICPMS analysis were
conducted using the ISO-Compass software [39].

4. Results
4.1. Breccia Facies and Intrusive Sequences

Based on the clasts composition, matrix characteristics, and cement types [11,12], the
breccia facies of the Tietangdong breccia pipe can be classified into two main facies: the
skarn breccia (SKB) and the polymictic intrusive rock cement-supported chaotic breccia
(PICB) (Table 1).

Table 1. Classification of breccia facies in the Tietangdong breccia pipe.

Breccia Facies Interpretation

Component Internal
Organization and

Mineralization

Spatial
DistributionClast Matrix Cement Open

Space

Skarn
breccia
(SKB)

Massive
skarn
(MSK)

Magmatic–
hydrothermal

breccia

Aggregates of massive prograde and retrograde skarn
minerals (Grt, Scp, Di, Act, Ep, Qz, Chl, and Cal) with fine to
medium grain sizes (2–64 mm), commonly lacking definitive
boundaries between the clasts and the cement; ore minerals

include Mag, Hem, Py, Ccp, Sp, Gn, and Au

<5 vol.%
vugs

Massive skarn ores,
mainly bearing low to

high grades of gold
and iron

Mainly
distributed at
the top of the
Tietangdong
breccia pipe

Polymictic,
skarn

matrix-
supported

breccia
(SMB)

Magmatic–
hydrothermal

breccia

5–70 vol.%; generally
rounded to

sub-rounded;
polymictic clasts,
including felsite,

gneiss, amphibolite,
and a few skarn

carbonate clasts; the
clasts measure

5–30 mm, with blocks
measuring up to

20 cm occasionally

30–95 vol.%;
skarn minerals
(Scp, Act, Ep,

Py, Ccp)
that are

predominantly
1–2 mm

– <5 vol.%
vugs

Chaotic; mainly
matrix supported; no

high grade of gold

Polymictic, intrusive
rock cement chaotic

breccia (PICB)

Intrusive
breccia

10–75 vol.%; rounded
to sub-rounded;

polymictic clasts,
including partly skarn

carbonate clasts,
gneiss, amphibolite,

and some felsite clasts;
the clasts measure

5–60 mm

–

15–90 vol.%;
igneous rocks

(felsite, granite
porphyry, and

diorite
porphyry)

–

Chaotic; cement
supported to clast
supported; rarely

mineralized

Mainly
distributed at

the bottom
of the

Tietangdong
breccia pipe

The SKB can be categorized as a massive skarn breccia (MSK) and a polymictic skarn
matrix-supported breccia (SMB). The MSK is characterized by aggregates of massive
prograde and retrograde skarn minerals, including garnet, scapolite, diopside, actinolite,
epidote, quartz, chlorite, and calcite (Table 1), with a grain size of 2–64 mm (Figure 4a,b).
It has indistinct boundaries between the clasts and the cement (Figure 2e). Ore minerals
in the MSK consist of magnetite, hematite, and pyrite (Figure 3). The MSK is widely
distributed at the top of the Tietangdong breccia pipe (Figures 2a and 3). The SMB comprises
polymictic clasts and a skarn matrix (Figure 2f, Table 1). Polymictic clasts comprise felsite,
gneiss, amphibolite, and partly skarn carbonate clasts. Individual clasts are generally
rounded to sub-rounded, measuring 5–30 mm, with blocks up to 20 cm occasionally. The
matrix is mainly composed of skarn minerals, including scapolite, actinolite, epidote, and
some sulfide minerals (pyrite and chalcopyrite), predominately in the size of 1–2 mm
(Figure 2f). The SMB is primarily distributed at the top of the Tietangdong breccia pipe
(Figures 2a and 3).

The PICB (Figure 2c,g, Table 1) exhibits chaotic characteristics and transitions from
cement-supported to clast-supported. Polymictic clasts encompass partly skarn carbonate,
gneiss, amphibolite, and some felsite clasts (Figure 2g). These individual clasts generally
display rounded to sub-rounded shapes, with sizes ranging from 5 to 60 mm (Figure 2g).
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The cement mainly consists of fine-grained intrusive rocks (Figure 2g,h). The PICB is mainly
distributed at the base of the Tietangdong breccia pipe (Figure 3).

Three generations of intrusive dikes have been identified through field relationships
(Figure 3). The first pre-breccia stage is represented by intrusive rock fragments of the clasts,
such as the felsite clasts in the SMB (Figure 2f). The second syn-breccia stage is characterized
by the felsic intrusive cement in the PICB (Figure 2g). The third post-breccia stage is
represented by intrusive dikes that cut the Tietangdong breccia pipe (Figures 2d and 3).

4.2. Mineralization of and Alteration in Tietangdong Breccia Pipe

The Tietangdong breccia pipe exhibits three hydrothermal alteration and mineraliza-
tion stages: the prograde skarn stage, retrograde skarn stage, and quartz–sulfide–calcite
stage. The prograde skarn stage consists of garnet, diopside, scapolite, and minor mag-
netite (Figures 3 and 4a). It is primarily concentrated in the shallow part of the breccia pipe
(Figure 3, 800–1300 m above sea level). The retrograde skarn stage is characterized by
scapolite, epidote, actinolite, magnetite, and minor sulfide minerals, with minor native
gold (Figures 3 and 4b). It is distributed throughout the breccia pipe, often replacing or
cementing the prograde skarn minerals. The quartz–sulfide–calcite stage is represented
by pervasive quartz, sulfides, calcite, and adularia (Figures 3 and 4c–f). This stage is
identified as the dominant gold mineralization stage. Native gold is mainly present as
inclusions (5–35 µm) or filling the intergranular space of the texturally homogeneous pyrite
and chalcopyrite of this stage (Figure 4d–f), with tiny irregular native Au grains (1–5 µm)
sporadically adjacent along the margin of hematite, quartz, calcite, and chlorite grains [22].
The quartz–sulfide–calcite stage is distributed throughout the Tietangdong breccia pipe
(Figure 3). The mineral paragenesis of the Tietangdong breccia pipe is summarized in
Figure 5. In comparison to previous works [22,23], scapolite and adularia were first identi-
fied in this study. Although molybdenite was reported in an earlier work [22], we did not
observe this mineral in this study (Figure 5).
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The breccia facies, intrusive sequences, and mineral associations along the section
in the Tietangdong breccia pipe are illustrated in Figure 3. The results show that the
proportions of MSK and SMB decrease with depth. However, the PICB increases with
the depth in the Tietangdong breccia pipe (Figure 3). In addition, Figure 3 reveals a
vertical zonation of sulfide and oxide mineral associations along the 1400 m section. This
zonation encompasses two segments: (1) hematite and magnetite-bearing breccia above
approximately 510 m above sea level and (2) magnetite, pyrrhotite, and pyrite-bearing
breccia below 510 m above sea level (Figure 3).

4.3. 40Ar/39Ar Dating of Adularia

The 40Ar/39Ar dating results obtained for the adularia grains in sample TTD10 are
illustrated as the 40Ar/39Ar spectrum and inverse isochron plots in Figure 6, with detailed
data in Supplementary Material S2 (Table S2). The adularia 40Ar/39Ar spectra show
anomalously old apparent ages at low-temperature steps, followed by several continuous
plateau ages (135.9 ± 1.5 Ma, 2σ level, full external uncertainty considering the decay
constant, Σ39Ar = 70%) at mid–high temperature steps (Figure 6a). The old apparent ages at
low-temperature steps are interpreted as 39Ar loss in intercrystallite and/or damaged sites
of adularia through recoil during irradiation [40]. Then, argon in the tight crystallographic
reservoir of adularia releases at mid–high temperature steps and forms the plateau age
(Figure 6a), which can be interpreted as the timing of adularia formation. In addition, the
adularia grains also yield an isochron age of 135.2 ± 1.7 Ma (Figure 6b), which is consistent
with its plateau age. This consistency supports the adularia formed at ca. 136 Ma in the
Tietangdong breccia pipe.
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Figure 6. Laser-heated 40Ar/39Ar date spectra (a) and inverse isochron (b) of adularia from the
Tietangdong breccia pipe.

4.4. In Situ Sulfur Isotopes of Pyrite

Sixteen spot analyses of pyrite from the Tietangdong breccia pipe yielded δ34S values
ranging from 2.03‰ to 9.01‰, with a mean of 4.08‰ (Figure 7a; Table 2). These results
strongly illustrate decreased pyrite δ34S values with increasing depth within the Tietang-
dong breccia pipe (Figure 7b). Specifically, at elevations of 15 m, 258 m, 510 m, 830 m,
and 1380 m, the δ34S values exhibit ranges of 2.48‰–2.73‰, 2.03‰–2.63‰, 2.10‰–4.22‰,
3.98‰–9.01‰, and 5.29‰–6.59‰, respectively.
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ing 2‰ of δ34S and 1000 ppm of sulfur contents at an elevation of −100 m) and the ore field carbonate
wall rocks (assuming 10‰ of δ34S and 200 ppm of sulfur contents at an elevation of 1450 m).

Table 2. The sulfur isotope analysis results in the Tietangdong breccia pipe.

Sample no. Elevation (m) Minerals δ34S (‰) 2SD (‰) Secondary Standard δ34S (‰) 2SD (‰)

T601-494.7-01 15 Pyrite 2.48 0.10 YP136 1.33 0.12
T601-494.7-02 15 Pyrite 2.69 0.10 YP136 1.56 0.16
T601-494.7-03 15 Pyrite 2.73 0.11 YP136 1.44 0.16
T601-251.6-01 258 Pyrite 2.63 0.10 YP136 1.49 0.09
T601-251.6-02 258 Pyrite 2.03 0.10 YP136 1.51 0.11
T601-251.6-03 258 Pyrite 2.16 0.08 YP136 1.39 0.18
T11-16-2-01 1380 Pyrite 6.59 0.11 YP136 1.27 0.12
T11-16-2-02 1380 Pyrite 6.56 0.11 YP136 1.49 0.15
T11-16-2-03 1380 Pyrite 5.29 0.11 YP136 1.41 0.14

830-9-01 830 Pyrite 3.98 0.13 YP136 1.55 0.12
830-9-02 830 Pyrite 4.13 0.12
830-9-03 830 Pyrite 9.01 0.14
830-9-04 830 Pyrite 4.94 0.16

T510-3-2-01 510 Pyrite 3.67 0.10
T510-3-2-02 510 Pyrite 4.22 0.11
T510-3-2-03 510 Pyrite 2.10 0.10
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5. Discussion
5.1. Discrimination and Genesis of Breccia Facies

Detailed field observation and drill core logging identified three breccia facies at
Tietangdong, including massive skarn breccia (MSK), polymictic, skarn matrix-supported
breccia (SMB), and polymictic, intrusive rock cement chaotic breccia (PICB) (Figure 3).
The presence of high-salinity fluid inclusions in skarn minerals [31] in the MSK and SMB
suggests a magmatic–hydrothermal origin of the Tietangdong breccia pipe [43]. The
identification of PICB further substantiates this conclusion. The PICB exhibits felsite as
cement for both wall rock and skarn clasts, providing evidence of the direct involvement of
intrusive rocks in the formation of the Tietangdong breccia pipe. Moreover, the increasing
prevalence of PICB in deeper segments of the breccia pipe (Figure 3) indicates heightened
intrusive activities. The widespread occurrence of felsite and diorite clasts in PICB and
SMB, along with post-breccia felsite and diorite dikes (Figures 2–4), suggests significant
intrusive processes both preceding and succeeding the breccia pipe formation. In summary,
our comprehensive geological observations across the 1400 m section confirm the magmatic–
hydrothermal origin of the Tietangdong breccia pipe.

5.2. The Age of Breccia-Hosted Au Mineralization at Tietangdong

Adularia is prevalent at the quartz–sulfide–calcite stage (Figure 4c). Given the lower
temperature of adularia crystallization [44], in line with the low closure temperature of
the 40Ar/39Ar system [45], adularia is a promising candidate for constraining the time
of syn-/post-gold mineralization at Tietangdong. Consequently, the obtained date of
135.9 ± 1.5 Ma (Figure 6) may represent the age of gold mineralization in the Tietangdong
breccia pipe. Although this age coincides well with the pre-gold garnet U-Pb dating result
of 139 ± 4 Ma [21], it exhibits a slight inconsistency with the zircon U-Pb age of the post-
breccia quartz porphyry (141 ± 1 Ma, ref. [21]). This discrepancy might be derived from
the application of different radiometric dating systems and analytical methods. After
accounting for their systematic and the decay constant uncertainties of 40Ar/39Ar (~2%,
total relative uncertainty [45–47]) and U-Pb (~3%, total relative uncertainty [45–47]), the
overlapping results around ca. 136 Ma are revealed. In summary, the spatial and temporal
evidence strongly support a close genetic relationship between gold mineralization and the
intrusive rocks at the Tietangdong breccia pipe. Furthermore, the age of Tietangdong gold
mineralization is consistent with the zircon U-Pb age of the syn-/post-lode Au Sunzhuang
pluton (ca. 135 Ma, refs. [18,30]), indicating a potential genetic relationship between the
breccia-hosted gold mineralization and lode Au mineralization. The sulfur isotope results
below provide additional support for this hypothesis.

5.3. The Source of Breccia-Hosted Au Mineralization at Tietangdong

Pyrite is one of the most predominant sulfide minerals, enclosing gold grains (Figure 4)
within the Tietangdong breccia. Furthermore, no sulfate has been identified in the whole
section. Consequently, the sulfur isotopes of pyrite could be a reliable proxy for the sulfur
isotope of hydrothermal fluids at Tietangdong [48]. The sulfur isotopes of the pyrite from
the Tietangdong breccia pipe exhibit a variation of 2.03‰–9.01‰ (Figure 7a). Despite
aligning with the sulfur range of the regional metamorphic basement (δ34S values of
−10.0‰ to 2.0‰, ref. [26]), the absence of an early Cretaceous metamorphic event in the
CTD precludes the involvement of metamorphic fluids [49]. In addition, the identification
of daughter crystal-bearing fluid inclusions in garnet grains [21] indicates high-salinity
ore-forming fluids, distinguishing them from the typical low-salinity and CO2-rich fluid
inclusions associated with metamorphic hydrothermal fluids [50].

Most sulfur isotopes fall within the global magmatic–hydrothermal fluids range
(δ34S values of −1‰ to 8‰, ref. [41], Figure 7), implying a magmatic–hydrothermal origin
of the ore-forming fluid. Furthermore, the δ34S values exhibit a positive elevation-related
fractionation trend within the Tietangdong breccia pipe (Figure 7). This trend could be
explained using a scenario involving gradually diminishing water–rock interactions be-
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tween exsolved magmatic–hydrothermal fluids (δ34S values ~2‰) and the carbonate wall
rocks (δ34S values ~10‰) [42] with the increasing depth of the breccia pipe. As Figure 3
illustrates, the decreasing proportion of skarn breccia implies a reduced involvement of
carbonate wall rocks at greater depths. This shift would supply a less heavy sulfur isotope
for the deep hydrothermal system than the shallow part. Therefore, lighter sulfur isotope
values are revealed at depth, while heavier sulfur isotope values are retained in shallow
areas. Under this assumption, a simple two-end member mixed model was employed, as
depicted in Figure 7b. The simulated model aligns well with our sulfur isotope results.
This alignment suggests a more pronounced magmatic–hydrothermal signature in the
deeper part of the Tietangdong breccia pipe. It further implies promising potential for gold
mineralization in the deep section. This view has been supported by the subsequent drill
campaigns conducted by Zijin Mining Company.

An alternative interpretation of the sulfur isotope fractionation observed in this study
could be linked to the redox state of hydrothermal fluids. In hydrothermal systems, an
oxidized state promotes the formation of SO2−

4 ligands, which preferentially incorpo-
rate the heavy sulfur isotope, resulting in the depletion of the heavy sulfur isotope in
pyrite [48,51,52]. However, our geological observations present a contradiction to this
theoretical expectation. The presence of hematite in the shallow part and pyrrhotite in
the deeper sections (Figure 3) suggests a theoretically lighter sulfur isotope composition
in the shallow region and a heavier one at the base. This contradiction excludes the
redox hypothesis.

The sulfur isotope composition of the deep section of the Tietangdong breccia pipe
(ca. 2.7‰, Table 2) closely resembles the sulfur isotope composition of the lode Au
(0.7‰–3.2‰, Ref. [30]). The gold mineralization age at Tietangdong breccia pipe shares a
similar mineralization age with the lode Au in the Yixingzhai deposit. Moreover, both the
breccia-hosted Au and lode Au orebodies are controlled by the ore-field NW-/NE-trending
faults [14]. Therefore, we propose that the Tietangdong breccia pipe and the lode Au are
part of the same magmatic–hydrothermal mineralization system.

5.4. Genetic Model and Exploration Implications

Based on field investigations, geochronology, and sulfur isotope analysis, we propose
a genetic evolution model for the Tietangdong breccia pipe and the lode Au mineralization
in Yixingzhai. During the Mesozoic, NW-/NE-trending faults in Yixingzhai became active,
establishing connections with deep magma reservoirs. These activities facilitated the
intrusion of felsite and diorite dikes and the formation of hydrothermal conduits at ca.
135–140 Ma (Figure 8a). Along these conduits, the magmatic–hydrothermal fluids, exsolved
from the deep magma reservoirs through second boiling [4], were trapped in the shallow
part due to the low permeability of superficial TTG and carbonate wall rocks. Subsequently,
the conjunction between the faults and the dikes, identified as structural weak points in the
ore field, lost stability due to the higher pressure of the accumulated volatiles compared
to the resistance of the wall rocks. This process led to a series of fault displacements, wall
rock ruptures, skarn alterations, and gold mineralization. Concurrently, the continued
intrusion of felsic dikes contributed to the formation of intrusive breccia in the deeper
sections of the breccia pipe (Figure 8a–b). These breccia and intrusive processes could have
happened several times, as revealed through the geochemistry of the distinct zonation
of garnet and epidote grains [22]. Simultaneously, lode Au mineralization occurred at
the Yixingzhai TTG adjacent to the Tietangdong breccia, which hosted Au mineralization.
Ultimately, the Tietangdong breccia pipe was intersected by late-stage quartz and diorite
dikes, followed by subsequent erosion (Figure 8c). These late-stage quartz and diorite
dikes are relatively fresh and lack gold mineralization (Figures 2d and 3), contrasting with
previous observations [22].
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This study provides valuable insights for exploration within the CTD. Firstly, this
study reveals the dominance of magmatic–hydrothermal fluids in the formation of the
breccia pipe, as evidenced by the abundance of intrusive rock clasts, pre-/syn-/post-breccia
intrusions (Figures 2 and 3), adularia age, and sulfur isotope results (Figure 7). Additionally,
a strong genetic relationship between the Tietangdong breccia pipe and gold mineralization
was demonstrated in this study. This correlation suggests that breccia pipes could be a
good indicator for gold targeting within the CTD. The intersections of regional NW- and
NE-trending faults (Figure 1c) favor the formation of breccia pipes, which, in turn, may
contribute to targeting new gold deposits, highlighting substantial exploration potential
for gold in this region.

6. Conclusions

The present study synthesizes detailed field observations, the adularia 40Ar/39Ar
dating of 135.9 ± 1.5 Ma, and a pyrite sulfur isotope analysis of 2.03‰–9.01‰, conclusively
establishing a comprehensive geological formation model of the Tietangdong breccia pipe.
Detailed field observations and drill core logging results categorize the breccia into massive
skarn breccia (MSK); polymictic, skarn matrix-supported breccia (SMB); and polymictic,
intrusive rock cement chaotic breccia (PICB). Furthermore, the sources and age of the
Tietangdong breccia pipe align closely with those of the lode Au mineralization at the Yix-
ingzhai deposit, indicating their potential genetic links. Numerous breccia pipes have been
identified in the CTD, exhibiting geological characteristics akin to those of the Tietangdong
breccia pipe and representing high potential for future gold targeting. The proposed inte-
grated approach underscores the significance of geological, geochronological, and isotopic
evidence in understanding ore genesis and informing regional gold exploration strategies.
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